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Abstract

We introduce a differentiable, end-to-end trainable

framework for solving pixel-level grouping problems such

as instance segmentation consisting of two novel compo-

nents. First, we regress pixels into a hyper-spherical em-

bedding space so that pixels from the same group have high

cosine similarity while those from different groups have sim-

ilarity below a specified margin. We analyze the choice of

embedding dimension and margin, relating them to theoret-

ical results on the problem of distributing points uniformly

on the sphere. Second, to group instances, we utilize a vari-

ant of mean-shift clustering, implemented as a recurrent

neural network parameterized by kernel bandwidth. This

recurrent grouping module is differentiable, enjoys conver-

gent dynamics and probabilistic interpretability. Backprop-

agating the group-weighted loss through this module allows

learning to focus on correcting embedding errors that won’t

be resolved during subsequent clustering. Our framework,

while conceptually simple and theoretically abundant, is

also practically effective and computationally efficient. We

demonstrate substantial improvements over state-of-the-art

instance segmentation for object proposal generation, as

well as demonstrating the benefits of grouping loss for clas-

sification tasks such as boundary detection and semantic

segmentation.

1. Introduction

The successes of deep convolutional neural nets (CNNs)

at image classification has spawned a flurry of work in com-

puter vision on adapting these models to pixel-level image

understanding tasks, such as boundary detection [1, 89, 63],

semantic segmentation [59, 10, 45], optical flow [86, 20],

and pose estimation [84, 7]. The key ideas that have enabled

this adaption thus far are: (1) deconvolution schemes that

allow for upsampling coarse pooled feature maps to make

detailed predictions at the spatial resolution of individual

pixels [89, 27], (2) skip connections and hyper-columns

which concatenate representations across multi-resolution

feature maps [31, 10], (3) atrous convolution which allows

Figure 1: Our framework embeds pixels into a hyper-sphere

where recurrent mean-shift dynamics groups pixels into a variable

number of object instances. Here we visualize random projections

of a 64-dim embeddings into 3-dimensions.

efficient computation with large receptive fields while main-

taining spatial resolution [10, 45], and (4) fully convolu-

tional operation which handles variable sized input images.

In contrast, there has been less innovation in the develop-

ment of specialized loss functions for training. Pixel-level

labeling tasks fall into the category of structured output pre-

diction [4], where the model outputs a structured object

(e.g., a whole image parse) rather than a scalar or categor-

ical variable. However, most CNN pixel-labeling architec-

tures are trained with loss functions that decompose into a

simple (weighted) sum of classification or regression losses

over individual pixel labels.

The need to address the output space structure is more

apparent when considering problems where the set of out-

put labels isn’t fixed. Our motivating example is object in-

stance segmentation, where the model generates a collec-

tion of segments corresponding to object instances. This

problem can’t be treated as k-way classification since the

number of objects isn’t known in advance. Further, the loss

should be invariant to permutations of the instance labels

within the same semantic category.

As a result, most recent successful methods for instance

segmentation have adopted more heuristic approaches that

first use an object detector to enumerate candidate in-

stances and then perform pixel-level segmentation of each

instance [56, 17, 54, 55, 2]. Alternately one can generate

generic proposal segments and then label each one with a

semantic detector [30, 12, 31, 16, 81, 33]. In either case

the detection and segmentation steps can both be mapped

to standard binary classification losses. While effective,
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these approaches are somewhat unsatisfying since: (1) they

rely on the object detector and non-maximum suppression

heuristics to accurately “count” the number of instances, (2)

they are difficult to train in an end-to-end manner since the

interface between instance segmentation and detection is

non-differentiable, and (3) they underperform in cluttered

scenes as the assignment of pixels to detections is carried

out independently for each detection1.

Here we propose to directly tackle the instance grouping

problem in a unified architecture by training a model that la-

bels pixels with unit-length vectors that live in some fixed-

dimension embedding space (Fig. 1). Unlike k-way classi-

fication where the target vectors for each pixel are specified

in advance (i.e., one-hot vectors at the vertices of a k-1 di-

mensional simplex) we allow each instance to be labeled

with an arbitrary embedding vector on the sphere. Our loss

function simply enforces the constraint that the embedding

vectors used to label different instances are far apart. Since

neither the number of labels, nor the target label vectors are

specified in advance, we can’t use standard soft-max thresh-

olding to produce a discrete labeling. Instead, we utilize a

variant of mean-shift clustering which can be viewed as a

recurrent network whose fixed point identifies a small, dis-

crete set of instance label vectors and concurrently labels

each pixel with one of the vectors from this set.

This framework is largely agnostic to the underlying

CNN architecture and can be applied to a range of low, mid

and high-level visual tasks. Specifically, we carry out exper-

iments showing how this method can be used for boundary

detection, object proposal generation and semantic instance

segmentation. Even when a task can be modeled by a bi-

nary pixel classification loss (e.g., boundary detection) we

find that the grouping loss guides the model towards higher-

quality feature representations that yield superior perfor-

mance to classification loss alone. For the problem of in-

stance segmentation, we demonstrate a notable boost in ob-

ject proposal generation (improving the state-of-the-art av-

erage recall for 10 proposals per image from 0.56 to 0.77).

To summarize our contributions: (1) we introduce a simple,

easily interpreted end-to-end model for pixel-level instance

labeling which is widely applicable and highly effective, (2)

we provide theoretical analysis that offers guidelines on set-

ting hyperparameters, and (3) benchmark results show sub-

stantial improvements over existing approaches.

2. Related Work

Common approaches to instance segmentation first gen-

erate region proposals or class-agnostic bounding boxes,

segment the foreground objects within each proposal and

classify the objects in the bounding box [90, 52, 30, 12,

1This is less a problem for object proposals that are jointly estimated by

bottom-up segmentation (e.g., MCG [70] and COB [63]). However, such

generic proposal generation is not informed by the top-down semantics.

17, 55, 33]. [54] introduce a fully convolutional approach

that includes bounding box proposal generation in end-to-

end training. Recently, “box-free” methods [68, 69, 56, 36]

avoid some limitations of box proposals (e.g. for wiry or ar-

ticulated objects). They commonly use Faster RCNN [73]

to produce “centeredness” score on each pixel and then

predict binary instance masks and class labels. Other ap-

proaches have been explored for modeling segmentation

and instance labeling jointly in a combinatorial framework

(e.g., [40]) but typically don’t address end-to-end learning.

Alternately, recurrent models that sequentially produce a

list of instances [75, 72] offer another approach to address

variable sized output structures in a unified manner.

The most closely related to ours is the associative em-

bedding work of [66], which demonstrated strong results

for grouping multi-person keypoints, and unpublished work

from [22] on metric learning for instance segmentation. Our

approach extends on these ideas substantially by integrating

recurrent mean-shift to directly generate the final instances

(rather than heuristic decoding or thresholding distance to

seed proposals). There is also an important and interesting

connection to work that segments instances using an em-

bedding that is directly learned using a supervised regres-

sion loss rather than a pairwise associative loss. [79] train a

regressor that predicts the distance to the contour centerline

for boundary detection, while [3] predict the distance trans-

form of the instance masks which is then post-processed

with watershed transform to generate segments. [81] predict

an embedding based on scene depth and direction towards

the instance center (similar to Hough voting).

Finally, we note that these ideas are related to work on

using embedding for solving pairwise clustering problems.

For example, normalized cuts clusters embedding vectors

given by the eigenvectors of the normalized graph Lapla-

cian [77] and the spatial gradient of these embedding vec-

tors was used in [1] as a feature for boundary detection.

Rather than learning pairwise similarity from data and then

embedding prior to clustering (e.g., [62]), we use a pairwise

loss but learn the embedding directly. Our recurrent mean-

shift grouping is reminiscent of other efforts that use un-

rolled implementations of iterative algorithms such as CRF

inference [92] or bilateral filtering [39, 26]. Unlike general

RNNs [6, 67] which are often difficult to train, our recurrent

model has fixed parameters that assure interpretable conver-

gent dynamics and meaningful gradients during learning.

3. Pairwise Loss for Pixel Embeddings

In this section we introduce and analyze the loss we use

for learning pixel embeddings. This problem is broadly re-

lated to supervised distance metric learning [85, 47, 49] and

clustering [48] but adapted to the specifics of instance label-

ing where the embedding vectors are treated as labels for a

variable number of objects in each image.
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Figure 2: Pairwise loss ℓ(sij)
as a function of calibrated sim-

ilarity score Eq. 1 with mar-

gin α = 0.5. The gradient is

constant, limiting the effect of

noisy ground-truth labels (i.e.,

near an object boundary)

Our goal is to learn a mapping from an input image to

a set of D-dimensional embedding vectors (one for each

pixel). Let xi,xj ∈ R
D be the embeddings of pixels i and j

respectively with corresponding labels yi and yj that denote

ground-truth instance-level semantic labels (e.g., car.1 and

car.2). We measure the similarity of the embedding vectors

using the cosine similarity, been scaled and offset to lie in

the interval [0, 1] for notational convenience:

sij =
1

2

(

1 +
x
T
i xj

‖xi‖2‖xj‖2

)

(1)

In the discussion that follows we think of the similarity in

terms of the inner product between the scaled embedding

vectors (e.g., xi

‖xi‖ ) which live on the surface of a (D −

1) dimensional sphere. Other common similarity metrics

utilize Euclidean distance with a squared exponential kernel

or sigmoid function [66, 22]. We prefer the cosine metric

since it is invariant to the scale of the embedding vectors.

This decouples the loss from other model design choices

such as weight decay or regularization that implicitly limit

the dynamic range of Euclidean distances.

Our goal is to learn an embedding so that pixels with the

same label (positive pairs with yi = yj) have the same em-

bedding (i.e., sij = 1). To avoid a trivial solution where

all the embedding vectors are the same, we impose the ad-

ditional constraint that pairs from different instances (neg-

ative pairs with yi 6= yj) are placed far apart. To provide

additional flexibility, we include a weight wi in the defini-

tion of the loss which specifies the importance of a given

pixel. The total loss over all pairs and training images is:

ℓ =
M
∑

k=1

Nk
∑

i,j=1

wk
i w

k
j

Nk

(

1{yi=yj}(1− sij) + 1{yi 6=yj}[sij − α]+
)

(2)

where Nk is the number of pixels in the k-th image (M
images in total), and wk

i is the pixel pair weight associated

with pixel i in image k. The hyper-parameter α controls the

maximum margin for negative pairs of pixels, incurring a

penalty if the embeddings for pixels belonging to the same

group have an angular separation of less than cos−1(α).
Positive pairs pay a penalty if they have a similarity less

than 1. Fig. 2 shows a graph of the loss function. [87] argue

that the constant slope of the margin loss is more robust,

e.g., than squared loss.

We carry out a simple theoretical analysis which pro-

vides a guide for setting the weights wi and margin hyper-

parameter α in the loss function. Proofs can be found in the

supplementary material.

3.1. Instanceaware Pixel Weighting

We first examine the role of embedding dimension and

instance size on the training loss.

Proposition 1 For n vectors {x1, . . . ,xn}, the total

intra-pixel similarity is bounded as
∑

i 6=j x
T
i xj ≥

−
∑n

i=1
‖xi‖

2
2. In particular, for n vectors on the hyper-

sphere where ‖xi‖2 = 1, we have
∑

i 6=j x
T
i xj ≥ −n.

This proposition indicates that the total cosine similarity

(and hence the loss) for a set of embedding vectors has a

constant lower bound that does not depend on the dimen-

sion of the embedding space (a feature lacking in Euclidean

embeddings). In particular, this type of analysis suggests a

natural choice of pixel weighting wi. Suppose a training ex-

ample contains Q instances and Iq denotes the set of pixels

belonging to a particular ground-truth instance q. We can

write

‖

Q
∑

q=1

∑

i∈Iq

wixi‖
2 =

Q
∑

q=1

‖
∑

i∈Iq

wixi‖
2+

∑

p 6=q

(

∑

i∈Ip

wixi

)T (
∑

j∈Iq

wjxj

)

where the first term on the r.h.s. corresponds to contribu-

tions to the loss function for positive pairs while the second

corresponds to contributions from negative pairs. Setting

wi = 1

|Iq| for pixels i belonging to ground-truth instance

q assures that each instance contributes equally to the loss

independent of size. Furthermore, when the embedding di-

mension D ≥ Q, we can simply embed the data so that

the instance means µk = 1

|Iq|
∑

i∈Iq
xi are along orthog-

onal axes on the sphere. This zeros out the second term

on the r.h.s., leaving only the first term which is bounded

0 ≤
∑Q

q=1

∥

∥

∥

1

|Iq|
∑

i∈Iq
xi

∥

∥

∥

2

≤ Q, and translates to corre-

sponding upper and lower bounds on the loss that are inde-

pendent of the number of pixels and embedding dimension

(so long as D ≥ Q).

Pairwise weighting schemes have been shown important

empirically [22] and class imbalance can have a substantial

effect on the performance of different architectures (see e.g.,

[57]). While other work has advocated online bootstrapping

methods for hard-pixel mining or mini-batch selection [60,

46, 78, 88], our approach is much simpler. Guided by this

result we simply use uniform random sampling of pixels

during training, appropriately weighted by instance size in

order to estimate the loss.
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3.2. Margin Selection

To analyze the appropriate margin, let’s first consider

the problem of distributing labels for different instances as

far apart as possible on a 3D sphere, sometimes referred

to as Tammes’s problem, or the hard-spheres problem [76].

This can be formalized as maximizing the smallest distance

among n points on a sphere: max
xi∈R3

min
i 6=j

‖xi−xj‖2. Asymp-

totic results in [28] provide the following proposition:

Proposition 2 Given N vectors {x1, . . . ,xn} on a 2-

sphere, i.e. xi ∈ R
3, ‖xi‖2 = 1, ∀i = 1 . . . n, choosing

α ≤ 1−
(

2π√
3N

)

, guarantees that [sij − α]+ ≥ 0 for some

pair i 6= j. Choosing α > 1 − 1

4

(

(

8π√
3N

)
1

2

− CN− 2

3

)2

,

guarantees the existence of an embedding with [sij−α]+ =
0 for all pairs i 6= j.

Proposition 2 gives the maximum margin for a separa-

tion of n groups of pixels in a three dimensional em-

bedding space (sphere). For example, if an image has

at most {4, 5, 6, 7} instances, α can be set as small as

{0.093, 0.274, 0.395, 0.482}, respectively.

For points in a higher dimension embedding space, it is

a non-trivial problem to establish a tight analytic bound for

the margin α. Despite its simple description, distributing n
points on a (D− 1)-dimensional hypersphere is considered

a serious mathematical challenge for which there is no gen-

eral solutions [76, 61]. We adopt a safe (trivial) strategy.

For n instances embedded in n/2 dimensions one can use

value of α = 0.5 which allows for zero loss by placing a

pair of groups antipodally along each of the n/2 orthogonal

axes. We adopt this setting for the majority of experiments

in the paper where the embedding dimension is set to 64.

4. Recurrent Mean-Shift Grouping

While we can directly train a model to predict embed-

dings using the loss described in the previous section, it is

not clear how to generate the final instance segmentation

from the resulting (imperfect) embeddings. One can uti-

lize heuristic post-processing [18] or utilize clustering algo-

rithms that estimate the number of instances [56], but these

are typically not differentiable and thus unsatisfying. In-

stead, we introduce a mean-shift grouping model (Fig. 3)

which operates recurrently on the embedding space in order

to condense the embedding vectors into a small number of

instance labels.

Mean-shift and closely related algorithms [25, 13, 14,

15] use kernel density estimation to approximate the proba-

bility density from a set of samples and then perform clus-

tering on the input data by assigning or moving each sample

to the nearest mode (local maxima). From our perspective,

Figure 3: Recurrent mean shift grouping module is unrolled

during training.

the advantages of this approach are (1) the final instance la-

bels (modes) live in the same embedding space as the initial

data, (2) the recurrent dynamics of the clustering process

depend smoothly on the input, allowing for easy backprop-

agation, (3) the behavior depends on a single parameter, the

kernel bandwidth, which is easily interpretable and can be

related to the margin used for the embedding loss.

4.1. Mean Shift Clustering

A common choice for non-parametric density estima-

tion is to use the isotropic multivariate normal kernel

K(x,xi) = (2π)−D/2 exp
(

− δ2

2
‖x − xi‖

2
2

)

and ap-

proximate the data density non-parametrically as p(x) =
1

N

∑

K(x, xi). Since our embedding vectors are unit

norm, we instead use the von Mises-Fisher distribution,

K(x,xi) ∝ exp(δxT
xi), which is the natural extension of

the multivariate normal to the hypersphere [24, 5, 64, 41].

The kernel bandwidth, δ determines the smoothness of the

kernel density estimate. While it is straightforward to learn

δ during training, we instead choose to tie it to the margin

used in the embedding loss. Specifically we set 1

δ = 1−α
3

throughout our experiments so that the cluster separation

(margin) in the learned embedding space is three standard

deviations of the kernel.

We write the mean shift algorithm compactly in matrix

form. Let X ∈ R
D×N denote the stacked embedding vec-

tors of an N -pixel image. The kernel matrix is given by

K = exp(δXT
X) ∈ R

N×N . Let D = diag(KT
1) de-

note the diagonal matrix of total affinities, referred to as

the degree when K is viewed as a weighted graph adja-

cency matrix. At each iteration, we compute the mean shift

M = XKD
−1−X, which is the difference vector between

X and the kernel weighted average of X. We then modify

the embedding vectors by moving them in the mean shift

direction with step size η:

X←X+ η(XKD
−1 −X)

←X(ηKD
−1 + (1− η)I)

(3)

Note that unlike standard mean-shift mode finding, we re-

compute K at each iteration. These update dynamics are

termed the explicit-η method and were analyzed by [9].

When η = 1 and the kernel is Gaussian, this is also re-

ferred to as Gaussian Blurring Mean Shift (GBMS) and has

been shown to have cubic convergence [9] under appropri-

ate conditions. Unlike deep RNNs, the parameters of our
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Figure 4: Demonstration of mean-shift grouping on a synthetic

image and with ground-truth instance identities (left panel). Right

panel: the pixel embedding visualization at 3-dimensional embed-

ding sphere (upper row) and after 10 iterations of recurrent mean-

shift grouping (bottom row).

recurrent module are not learned and the forward dynam-

ics are convergent under general conditions. In practice, we

do not observe issues with exploding or vanishing gradients

during back-propagation through a (small) finite number of

iterations 2.

Fig. 4 demonstrates a toy example of applying the

method to perform digit instance segmentation on synthetic

images from MNIST [53]. We learn 3-dimensional embed-

ding in order to visualize the results before and after the

mean shift grouping module. From the figure, we can see

the mean shift grouping transforms the initial embedding

vectors to yield a small set of instance labels which are dis-

tinct (for negative pairs) and compact (for positive pairs).

4.2. Endtoend training for Instance Grouping

It’s straightforward to compute the gradients of the re-

current mean shift grouping module output w.r.t X so our

whole system is end-to-end trainable using standard back-

propagation. Details about the gradient computation can

be found in the supplementary material. To understand the

benefit of end-to-end training, we visualize the embedding

gradient with and without the grouping module (Fig. 5).

Interestingly, we observe that the gradient backpropagated

through mean shift results in large magnitude updates to the

embedding in uncertain regions (e.g., instance boundaries)

and small magnitude updates for those embedding vectors

that will be clustered correctly by the mean-shift iteration.

While we could simply apply the pairwise embedding

loss to the final output of the mean-shift grouping, in prac-

tice we accumulate the loss over all iterations (including

the initial embedding regression). We unroll the recurrent

grouping module into T loops, and accumulate the same

2Some intuition about stability of forward dynamics can be gained by

noting that the eigenvalues of KD
−1 lie in the interval [0, 1]. We have

not been able to prove useful corresponding bounds on the spectrum of the

Jacobian.

Figure 5: We compare the embedding vector gradients backprop-

agated through zero or one iteration of mean shift grouping. The

length of arrows in the projection demonstrates the gradient mag-

nitude (also depicted in maps as the second column). Backprop-

agating the loss through the grouping module serves to focus up-

dates on embeddings of ambiguous pixels near boundaries while

ignoring pixels with small errors that will be corrected by the sub-

sequent grouping process.

loss function at the unrolled loop-t:

ℓt =

N
∑

k=1

∑

i,j∈Sk

wk
i w

k
j

|Sk|

(

1{yi=yj}(1−stij)+1{yi 6=yj}[s
t
ij−α]+

)

We note that gradient magnitudes grow with the iteration

depth T . Though this indicates potential issue of gradient

explosion, we did not have such issues during training with

with fixed unrolling depth.

5. Experiments

We now describe experiments in training our frame-

work to deal a variety of pixel-labeling problems, includ-

ing boundary detection, object proposal detection, semantic

segmentation and instance-level semantic segmentation.

5.1. Tasks, Datasets and Implementation

We illustrate the advantages of the proposed modules

on several large-scale datasets. First, to illustrate the abil-

ity of the instance-aware weighting and uniform sampling

mechanism to handle imbalanced data and low embed-

ding dimension, we use the BSDS500 [1] dataset to train

a boundary detector for boundary detection (> 90% pix-

els are non-boundary pixels). We train with the standard

split [1, 89], using 300 train-val images to train our model

based on ResNet50 [34] and evaluate on the remaining 200

test images. Second, to explore instance segmentation and

object proposal generation, we use PASCAL VOC 2012
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Figure 6: Boundary detection performance on BSDS500

dataset [21] with additional instance mask annotations pro-

vided by [29]. This provides 10,582 and 1,449 images for

training and evaluation, respectively.

We implement our approach using the toolbox Mat-

ConvNet [83], and train using SGD on a single Titan X

GPU3. To compute calibrated cosine similarity, we uti-

lize an L2-normalization layer before matrix multiplica-

tion [44], which also contains random sampling with a

hyper-parameter to control the ratio of pixels to be sampled

for an image. In practice, we observe that performance does

not depend strongly on this ratio and hence set it based on

available (GPU) memory.

While our modules are architecture agnostic, we use the

ResNet50 and ResNet101 models [34] pre-trained over Im-

ageNet [19] as the backbone. Similar to [10], we increase

the output resolution of ResNet by removing the top global

7×7 pooling layer and the last two 2×2 pooling layers, re-

placing them with atrous convolution with dilation rate 2

and 4, respectively to maintain a spatial sampling rate. Our

model thus outputs predictions at 1/8 the input resolution

which are upsampled for benchmarking.

We augment the training set using random scaling by s ∈
[0.5, 1.5], in-plane rotation by [−10◦, 10◦] degrees, random

left-right flips, random crops with 20-pixel margin and of

size divisible by 8, and color jittering. When training the

model, we fix the batch normalization in ResNet backbone,

using the same constant global moments in both training

and testing. Throughout training, we set batch size to one

where the batch is a single input image. We use the “poly”

learning rate policy [10] with a base learning rate of 2.5e−4
scaled as a function of iteration by (1− iter

maxiter )
0.9.

5.2. Boundary Detection

For boundary detection, we first train a model to group

the pixels into boundary or non-boundary groups. Similar

to COB [63] and HED [89], we include multiple branches

over ResBlock 2, 3, 4, 5 for training. Since the number of

3The code and trained models can be found at

https://github.com/aimerykong/Recurrent-Pixel-Embedding-for-Instance-

Grouping

Figure 7: Visualization of boundary detection embeddings. We

show the 3D embedding as RGB images (more examples in sup-

plement). The upper and lower row in the right panel show em-

bedding vectors at different layers from the model before and after

fine-tuning using logistic loss. After fine-tuning, embeddings not

only predict the boundary pixels, but also encode boundary orien-

tation and signed distance to the boundary, similar to supervised

embedding approaches [79, 81, 3]

instances labels is 2, we learn a simple 3-dimensional em-

bedding space which has the advantage of easy visualization

as an RGB image. Fig. 7 shows the resulting embeddings in

the first row of each panel. Note that even though we didn’t

utilize mean-shift grouping, the trained embedding already

produces compact clusters. To compare quantitatively to

the state-of-the-art, we learn a fusion layer that combines

embeddings from multiple levels of the feature hierarchy

fine-tuned with a logistic loss to make a binary prediction.

Fig. 7 shows the results in the second row. Interestingly,

we can see that the fine-tuned model embeddings encode

not only boundary presence/absence but also the orientation

and signed distance to nearby boundaries.

Quantitatively, we compare our model to COB [63],

HED [89], LEP [65], UCM [1], ISCRA [74], NCuts [77],

EGB [23], and the original mean shift (MShift) segmen-

tation algorithm [15]. Fig. 6 shows standard benchmark

precision-recall for all the methods, demonstrating our

model achieves state-of-the-art performance. Our model

has the same architecture of COB [63] except with a dif-

ferent loss and no explicit branches to compute boundary

orientation. Note that it is possible to surpass human perfor-

mance with several sophisticated techniques [43], we don’t

pursue this as it is out the scope of this paper.

5.3. Object Proposal Detection

Object proposals are an integral part of current object

detection and semantic segmentation pipelines [73, 33], as

they provide a reduced search space of locations, scales and

shapes for subsequent recognition. State-of-the-art methods

usually involve training models that output large numbers

of proposals, particularly those based on bounding boxes.

Here we demonstrate that by training our framework with

64-dimensional embedding space on the object instance

level annotations, we are able to produce very high qual-
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Figure 8: Segmented object proposal evaluation on PASCAL

VOC 2012 validation set measured by Average Recall (AR) at IoU

from 0.5 to 0.95 and step size as 0.5. We also plot the curve for

our method at IoU=0.5.

#prop. SCG [70] MCG [70] COB [63] inst-DML [22] Ours

10 - - - 0.558 0.769

60 0.624 0.652 0.738 0.667 0.814

Table 1: Object instance proposal evaluation on PASCAL VOC

2012 validation set measured by total Average Recall (AR) at

IoU=0.50 and various number of proposals per image.

ity object proposals by grouping the pixels into instances.

It is worth noting that due to the nature of our grouping

module, far fewer number of proposals are produced with

much higher quality. We compare against the most recent

techniques including POISE [38], LPO [51], CPMC [8],

GOP [50], SeSe [82], GLS [71], RIGOR [37].

Fig. 8 shows the Average Recall (AR) [35] with respect

to the number of object proposals4. Our model performs re-

markably well compared to other methods, achieving high

average recall of ground-truth objects with two orders of

magnitude fewer proposals. We also plot the curves for

SharpMask [68] and DeepMask [69] using the proposals

released by the authors. Despite only training on PAS-

CAL, we outperform these models which were trained on

the much larger COCO dataset [58]. In Table 1 we report

the total average recall at IoU=0.5 for some recently pro-

posed proposal detection methods, including unpublished

work inst-DML [22] which is similar in spirit to our model

but learns a Euclidean distance based metric to group pixels.

We can clearly see that our method achieves significantly

better results than existing methods.

5.4. Semantic Instance Detection

As a final test of our method, we also train it to produce

semantic labels which are combined with our instance pro-

posal method to recognize the detected proposals.

For semantic segmentation which is a k-way classifica-

tion problem, we train a model using cross-entropy loss

alongside our embedding loss. Similar to our proposal de-

tection model, we use a 64-dimension embedding space in-

4Our basic model produces ∼10 proposals per image. In order to plot a

curve for our model for larger numbers of proposals, we run the mean shift

grouping with multiple smaller bandwidth parameters, pool the results, and

remove redundant proposals.

Figure 9: Semantic segmentation performance as a function of

distance from ground-truth object boundaries comparing a base-

line model trained with cross-entropy loss versus a model which

also includes embedding loss.

Figure 10: The proposed embedding loss improves semantic

segmentation by forcing the pixel feature vectors to be similar

within the segments. Randomly selected images from PASCAL

VOC2012 val

side DeepLab model [11] as our model. While there are

more complex methods in literature such as PSPNet [91]

and which augment training with additional data (e.g.,

COCO [58] or JFT-300M dataset [80]) and utilize ensem-

bles and post-processing, we focus on a simple experiment

training the base model with/without the proposed pixel pair

embedding loss to demonstrate the effectiveness.

In addition to reporting mean intersection over union

(mIoU) over all classes, we also computed mIoU restricted

to a narrow band of pixels around the ground-truth bound-

aries. This partition into figure/boundary/background is

sometimes referred to as a tri-map in the matting litera-

ture and has been previously utilized in analyzing semantic

segmentation performance [42, 10, 27]. Fig. 9 shows the

mIoU as a function of the width of the tri-map boundary

zone. This demonstrates that training with embedding loss

yields performance gains over cross-entropy loss primarily

far from ground-truth boundaries where it successfully fills

in holes in the segments output (see also qualitative results

in Fig. 10). This is similar in spirit to the model in [32],

which considers local consistency to improve spatial preci-

sion. However, our uniform sampling allows for long-range

interactions between pixels.

To label detected instances with semantic labels, we use

the semantic segmentation model described above to gener-

ate labels and then use a simple voting strategy to transfer

these predictions to the instance proposals. In order to pro-

duce a final confidence score associated with each proposed
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Figure 11: Visualization of generic/instance-level semantic segmentation on random PASCAL VOC 2012 validation images.
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SDS [30] 58.8 0.5 60.1 34.4 29.5 60.6 40.0 73.6 6.5 52.4 31.7 62.0 49.1 45.6 47.9 22.6 43.5 26.9 66.2 66.1 43.8

Chen et al. [12] 63.6 0.3 61.5 43.9 33.8 67.3 46.9 74.4 8.6 52.3 31.3 63.5 48.8 47.9 48.3 26.3 40.1 33.5 66.7 67.8 46.3

PFN [56] 76.4 15.6 74.2 54.1 26.3 73.8 31.4 92.1 17.4 73.7 48.1 82.2 81.7 72.0 48.4 23.7 57.7 64.4 88.9 72.3 58.7

MNC [17] - - - - - - - - - - - - - - - - - - - - 63.5

Li et al. [54] - - - - - - - - - - - - - - - - - - - - 65.7

R2-IOS [55] 87.0 6.1 90.3 67.9 48.4 86.2 68.3 90.3 24.5 84.2 29.6 91.0 71.2 79.9 60.4 42.4 67.4 61.7 94.3 82.1 66.7

Assoc. Embed. [66] - - - - - - - - - - - - - - - - - - - - 35.1

inst-DML [22] 69.7 1.2 78.2 53.8 42.2 80.1 57.4 88.8 16.0 73.2 57.9 88.4 78.9 80.0 68.0 28.0 61.5 61.3 87.5 70.4 62.1

Ours 85.9 10.0 74.3 54.6 43.7 81.3 64.1 86.1 17.5 77.5 57.0 89.2 77.8 83.7 67.9 31.2 62.5 63.3 88.6 74.2 64.5

Table 2: Instance-level segmentation comparison using APr metric at 0.5 IoU on the PASCAL VOC 2012 validation set.

object, we train a linear regressor to score each object in-

stance based on its morphology (e.g., size, connectedness)

and the consistency w.r.t. the semantic segmentation predic-

tion. We note this is substantially simpler than approaches

based, e.g. on Faster-RCNN [73], which use much richer

convolutional features to classify segmented instances [33].

Comparison of instance detection performance are dis-

played in Table 2. We use a standard IoU threshold of 0.5 to

identify true positives, unless an ground-truth instance has

already been detected by a higher scoring proposal in which

case it is a false positive. We report the average precision

per-class mean over all classes (as in [29]). Our approach

yields competitive performance on VOC validation despite

our simple re-scoring. Among the competing methods, the

one closest to our model is inst-DML [22], that learns Eu-

clidean distance based metric with logistic loss. The inst-

DML approach relies on generating pixel seeds to derive

instance masks. The pixel seeds may fail to correctly de-

tect thin structures which perhaps explains why this method

performs 10× worse than our method on the bike category.

In contrast, our mean-shift grouping approach doesn’t make

strong assumptions about the object shape or topology.

For visualization purposes, we generate three random

projections of the 64-dimensional embedding and display

them in the spatial domain as RGB images. Fig. 11 shows

the embedding visualization, as well as predicted seman-

tic segmentation and instance-level segmentation. From the

visualization, we can see the instance-level semantic seg-

mentation outputs complete object instances even though

semantic segmentation results are noisy, such as the bike in

the first image in Fig. 11. The instance embedding provides

important details that resolve both inter- and intra-class in-

stance overlap which are not emphasized in the semantic

segmentation loss.

6. Conclusion and Future Work

We have presented an end-to-end trainable framework

for solving pixel-labeling vision problems based on two

novel contributions: a pixel-pairwise loss based on spher-

ical max-margin embedding and a variant of mean shift

grouping embedded in a recurrent architecture. These two

components mesh closely to provide a framework for ro-

bustly recognizing variable numbers of instances without

requiring heuristic post-processing or hyperparameter tun-

ing to account for widely varying instance size or class-

imbalance. The approach is simple and amenable to theoret-

ical analysis, and when coupled with standard architectures

yields instance proposal generation which substantially out-

performs state-of-the-art. Our experiments demonstrate the

potential for instance embedding and open many opportuni-

ties for future work including learn-able variants of mean-

shift grouping, extension to other pixel-level domains such

as encoding surface shape, depth and figure-ground and

multi-task embeddings.
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In this supplementary material, we provide proofs of the

propositions introduced in the main paper for understanding

our objective function and grouping mechanism. Then, we

provide the details of the mean-shift algorithm, computation

of gradients and how it is adapted for recurrent grouping.

We illustrate how the gradients are back-propagated to the

input embedding using a toy example. Finally, we include

more qualitative results on boundary detection and instance

segmentation.

1. Analysis of Pairwise Loss for Spherical Em-

bedding

In this section, we provide proofs for the propositions

presented in the paper which provide some analytical under-

standing of our proposed objective function, and the mech-

anism for subsequent pixel grouping mechanism.

Proposition 1 For n vectors {x1, . . . ,xn}, the total

intra-pixel similarity is bounded as
∑

i 6=j x
T
i xj ≥

−∑n
i=1
‖xi‖22. In particular, for n vectors on the hyper-

sphere where ‖xi‖2 = 1, we have
∑

i 6=j x
T
i xj ≥ −n.

Proof 1 First note that ‖x1 + · · · + xn‖22 ≥ 0. We

expand the square and collect all the cross terms so

we have
∑

i x
T
i xi +

∑

i 6=j x
T
i xj ≥ 0. Therefore,

∑

i 6=j x
T
i xj ≥ −

∑n
i=1
‖xi‖22. When all the vectors are

on the hyper-sphere, i.e. ‖xi‖2 = 1, then
∑

i 6=j x
T
i xj ≥

−∑n
i=1
‖xi‖22 = −n. �

Proposition 2 Given N vectors {x1, . . . ,xn} on a 2-

sphere, i.e. xi ∈ R
3, ‖xi‖2 = 1, ∀i = 1 . . . n, choosing

α ≤ 1−
(

2π√
3N

)

, guarantees that [sij − α]+ ≥ 0 for some

pair i 6= j. Choosing α > 1 − 1

4

(

(

8π√
3N

)
1

2 − CN− 2

3

)2

,

guarantees the existence of an embedding with [sij−α]+ =
0 for all pairs i 6= j.

We treat all the n vectors as representatives of n different

instances in the image and seek to minimize pairwise simi-

larity, or equivalently maximize pairwise distance (referred

to as Tammes’s problem, or the hard-spheres problem [14]).

Proof 2 Let d = max
{xi}

min
i 6=j
‖xi − xj‖2 be the distance be-

tween the closest point pair of the optimally distributed

points. Asymptotic results in [10] show that, for some con-

stant C > 0,

( 8π√
3n

)
1

2 − Cn− 2

3 ≤ d ≤
( 8π√

3n

)
1

2

(1)

Since ‖xi − xj‖22 = 2− 2xT
i xj , we can rewrite this bound

in terms of the similarity sij =
1

2

(

1 +
x
T
i xj

‖xi‖2‖xj‖2

)

, so that

for any i 6= j:

1−
( 2π√

3N

)

≤ sij ≤ 1− 1

4

(

( 8π√
3N

)
1

2 −CN− 2

3

)2

(2)

Therefore, choosing α ≤ 1 −
(

2π√
3N

)

, guarantees that

[sij − α]+ ≥ 0 for some pair i 6= j. Choosing α >

1− 1

4

(

(

8π√
3N

)
1

2 − CN− 2

3

)2

, guarantees the existence of

an embedding with [sij − α]+ = 0. �

2. Details of Recurrent Mean Shift Grouping

There are two commonly used multivariate kernels in

mean shift algorithm. The first, Epanechnikov kernel [7, 5],

has the following profile

KE(x) =

{

1

2
c−1

d (d+ 2)(1− ‖x‖22), if ‖x‖2 ≤ 1

0, otherwise
(3)

where cd is the volume of the unit d-dimensional sphere.

The standard mean-shift algorithm computes the gradient

1
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Figure 1: Distribution of calibrated cosine similarity between pairs of pixels. After 10 iterations of mean-shift grouping.

Margin is 0.5 for negative pairs. From the figures, we believe that the mean shift grouping mechanism forces learning to

focus on those pixel pairs that will not be corrected by mean shift grouping itself if running offline, and thus pushing down

to parameters in the the deep neural network to learn how to correct them during training.

of the kernel density estimate given by

p(x) =
1

N

N
∑

i=1

KE(
x− xi

b
)

and identifies modes (local maxima) where ∇p(x) = 0.

The scale parameter b is known as the kernel bandwidth and

determines the smoothness of the estimator. The gradient of

p(x) can be elegantly computed as the difference between

x and the mean of all data points with ‖x− xi‖ ≤ b, hence

the name “mean-shift” for performing gradient ascent.

Since the Epanechnikov profile is not differentiable

at the boundary, we use the squared exponential kernel

adapted to vectors on the sphere:

K(x,xi) ∝ exp(δ2xT
xi) (4)

which can be viewed as a natural extension of the Gaussian

to spherical data (known as the von Mises Fisher (vMF)

distribution [9, 3, 13, 12]). In our experiments we set the

bandwidth δ based on the margin α so that 1

δ
= 1−α

3
.

Our proposed algorithm also differs from the standard

mean-shift clustering (i.e., [6]) in that rather than perform-

ing gradient ascent on a fixed kernel density estimate p(x),
at every iteration we alternate between updating the embed-

ding vectors {xi} using gradient ascent on p(x) and re-

estimating the density p(x) for the updated vectors. This

approach is termed Gaussian Blurring Mean Shift (GBMS)

in [4] and has converge rate guarantees for data which starts

in compact clusters.

In the paper we visualized embedding vectors after

GBMS for specific examples. Figure 1 shows aggregate

statistics over a collection of images (in the experiment of

instance segmentation). We plot the distribution of pairwise

similarities for positive and negative pairs during forward

propagation through 10 iterations. We can observe that the

mean shift module produces sharper distributions, driving

the similarity between positive pairs to 1 making it trivial to

identify instances.

2.1. Gradient Calculation for Recurrent Mean Shift

To backpropagate gradients through an iteration of

GBMS, we break the calculation into a sequence of steps

below where we assume the vectors in the data matrix X

have already been normalized to unit length for its columns.

S =X
T
X

K =exp(δ2S) ,

d =K
T
1

q =d
−1

P = (1− η)I+ ηKdiag(q)

Y =XP

(5)

where Y is the updated data after one iteration which is

subsequently renormalized to project back onto the sphere.

Let ℓ denote the loss and ⊙ denote element-wise product.



Backpropagation gradients are then given by:

∂ℓ

∂X
= 2X

∂ℓ

∂S

∂ℓ

∂S
= δ

2 exp(δ2S)⊙
∂ℓ

∂K
∂ℓ

∂δ
= 2δ

∑

ij

(

(sij)⊙ exp(δ2sij)⊙
∂ℓ

∂kij

)

∂ℓ

∂K
= 1

( ∂ℓ

∂d

)T

∂ℓ

∂d
=

∂ℓ

∂q
⊙ (−d

−2)

∂ℓ

∂K
= η

( ∂ℓ

∂P

)

(q1T )

∂ℓ

∂q
= η

( ∂ℓ

∂P

)T

K1

∂ℓ

∂X
=

∂ℓ

∂Y
P

T

∂ℓ

∂P
= X

T ∂ℓ

∂Y

(6)

2.2. Toy Example of Mean Shift Backpropagation

In the paper we show examples of the gradient vec-

tors backpropagated through recurrent mean shift to the ini-

tial embedding space. Backpropagation through this fixed

model modulates the loss on the learned embedding, in-

creasing the gradient for initial embedding vectors whose

instance membership is ambiguous and decreasing the gra-

dient for embedding vectors that will be correctly resolved

by the recurrent grouping phase.

Figure 2 shows a toy example highlighting the difference

between supervised and unsupervised clustering. We gener-

ate a set of 1-D data points drawn from three Gaussian dis-

tributions with mean and standard deviation as (µ = 3, σ =
0.2), (µ = 4, σ = 0.3) and (µ = 5, σ = 0.1), respectively,

as shown in Figure 2 (a). We use mean squared error for the

loss with a fixed linear regressor yi = 0.5∗xi−0.5 and fixed

target labels. The optimal embedding would set xi = 3 if

yi = 1, and xi = 5 if yi = 2. We perform 30 gradient

updates of the embedding vectors xi ← xi − α∇xi
ℓ with

a step size α as 0.1. We analyze the behavior of Gaussian

Blurring Mean Shift (GBMS) with bandwidth as 0.2.

If updating the data using gradient descent without

GBMS inserted, as shown in Figure 2 (b), we can see the

data move towards the ideal embedding in terms of classi-

fication and they are squeezed in shape yet still falling into

three visible clusters. Figure 2 (c) depicts the trajectories

of 100 random data points during the 30 updates. However,

if running GBMS for unsupervised clustering on these data

with the default setting (bandwidth is 0.2), we can see they

are grouped into three piles, as shown in Figure 2 (d).

Now we insert the GBMS module to update these data

with different loops, and compare how this effects the per-

formance. We show the updated data distributions and those

after five loops of GBMS grouping in column (e) and (f)

of Figure 2, respectively. We notice that, with GBMS, all

the data are grouped into two clusters; while with GBMS

grouping they become more compact and are located ex-

actly on the “ideal spot” for mapping into label space (i.e.

3 and 5) and achieving zero loss. On the other hand, we

also observe that, even though these settings incorporates

different number of GBMS loops, they achieve similar vi-

sual results in terms of clustering the data. To dive into the

subtle difference, we randomly select 100 data and depict

their trajectories in column (g) and (h) of Figure 2, using a

single loss on top of the last GBMS loop or multiple losses

over every GBMS loops, respectively. We have the follow-

ing observations:

1. By comparing with Figure 2 (c), which depicts update

trajectories without GBMS, GBMS module provides

larger gradient to update those data further from their

“ideal spot” under both scenarios.

2. From (g), we can see the final data are not updated into

tight groups. This is because that the updating mech-

anism only sees data after (some loops of) GBMS,

and knows that these data will be clustered into tight

groups through GBMS.

3. A single loss with more loops of GBMS provides

greater gradient than that with fewer loops to update

data, as seen in (g).

4. With more losses over every loops of GBMS, the gra-

dients become even larger that the data are grouped

more tightly and more quickly. This is because that

the updating mechanism also incorporates the gradi-

ents from the loss over the original data, along with

those through these loops of GBMS.

To summarize, our GBMS based recurrent grouping

module indeed provides meaningful gradient during train-

ing with back-propagation. With the convergent dynamics

of GBMS, our grouping module becomes especially more

powerful in learning to group data with suitable supervi-

sion.

3. Additional Boundary Detection Results

We show additional boundary detection results on

BSDS500 dataset [1] based on our model in Figure 4, 5, 6,

7 and 8. Specifically, besides showing the boundary detec-

tion result, we also show 3-dimensional pixel embeddings

as RGB images before and after fine-tuning using logistic

loss. From the consistent colors, we can see (1) our model

essentially carries out binary classification even using the



Figure 2: Trajectory of updating data using back-propagation without mean shift module (top row), and with the Gaussian

Blurring Mean Shift (GBMS). To compare the results, we vary the number of GBMS loops in the grouping module, and

use either a single loss at the final GBMS loop or multiple losses on all GBMS loops. All the configurations can shift data

towards the “ideal spots” (3 or 5 depending on the label) in terms of the fixed regressor.



pixel pair embedding loss; (2) after fine-tuning with logis-

tic loss, our model captures also boundary orientation and

signed distance to the boundary. Figure 3 highlights this

observation for an example image containing round objects.

By zooming in one plate, we can observe a “colorful Mo-

bius ring”, indicating the embedding features for the bound-

ary also capture boundary orientation and the signed dis-

tance to the boundary.

4. Additional Results on Instance-Level Se-

mantic Segmentation

We show more instance-level semantic segmentation re-

sults on PASCAL VOC 2012 dataset [8] based on our model

in Figure 9, 10 and 11. As we learn 64-dimensional embed-

ding (hyper-sphere) space, to visualize the results, we ran-

domly generate three matrices to project the embeddings to

3-dimension vectors to be treated as RGB images. Besides

showing the randomly projected embedding results, we also

visualize the semantic segmentation results used to prod-

uct instance-level segmentation. From these figures, we ob-

serve the embedding for background pixels are consistent,

as the backgrounds have almost the same color. Moreover,

we can see the embeddings (e.g. in Figure 9, the horses in

row-7 and row-13, and the motorbike in row-14) are able to

connect the disconnected regions belonging to the same in-

stance. Dealing with disconnected regions of one instance

is an unsolved problem for many methods, e.g. [2, 11], yet

our approach has no problem with this situation.
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Figure 3: An image highlighting the structure of the embedding for an image with circular boundaries. We observe a “Mobius

effect” where the embedding encodes both the orientation and distance to the boundary.



Figure 4: Visualization for boundary detection (part-1/5). Images are randomly selected from BSDS500 test set. For each

image, we show the embedding vectors at different layers from the model before and after fine-tuning using logistic loss. We

can see that the boundary embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures to

some extent the edge orientation and distance from the colors conveyed.



Figure 5: Visualization for boundary detection (2/5). Images are randomly selected from BSDS500 test set. For each image,

we show the embedding vectors at different layers from the model before and after fine-tuning using logistic loss. We can

see that the boundary embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures to some

extent the edge orientation and distance from the colors conveyed.



Figure 6: Visualization for boundary detection (3/5). Images are randomly selected from BSDS500 test set. For each image,

we show the embedding vectors at different layers from the model before and after fine-tuning using logistic loss. We can

see that the boundary embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures to some

extent the edge orientation and distance from the colors conveyed.



Figure 7: Visualization for boundary detection (4/5). Images are randomly selected from BSDS500 test set. For each image,

we show the embedding vectors at different layers from the model before and after fine-tuning using logistic loss. We can

see that the boundary embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures to some

extent the edge orientation and distance from the colors conveyed.



Figure 8: Visualization for boundary detection (5/5). Images are randomly selected from BSDS500 test set. For each image,

we show the embedding vectors at different layers from the model before and after fine-tuning using logistic loss. We can

see that the boundary embedding vectors after fine-tuning not only highlights the boundary pixels, but also captures to some

extent the edge orientation and distance from the colors conveyed.



Figure 9: Visualization of generic and instance-level semantic segmentation with random projection of the embedding vectors

(part-1/3).



Figure 10: Visualization of generic and instance-level semantic segmentation with random projection of the embedding

vectors (part-2/3).



Figure 11: Visualization of generic and instance-level semantic segmentation with random projection of the embedding

vectors (part-3/3).


