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Abstract

We propose a robust approach for performing auto-
matic species-level recognition of fossil pollen grains in mi-
croscopy images that exploits both global shape and local
texture characteristics in a patch-based matching method-
ology. We introduce a novel criteria for selecting mean-
ingful and discriminative exemplar patches. We optimize
this function during training using a greedy submodular
function optimization framework that gives a near-optimal
solution with bounded approximation error. We use these
selected exemplars as a dictionary basis and propose a
spatially-aware sparse coding method to match testing im-
ages for identification while maintaining global shape cor-
respondence. To accelerate the coding process for fast
matching, we introduce a relaxed form that uses spatially-
aware soft-thresholding during coding. Finally, we carry
out an experimental study that demonstrates the effective-
ness and efficiency of our exemplar selection and classifica-
tion mechanisms, achieving 86.13% accuracy on a difficult
fine-grained species classification task distinguishing three
types of fossil spruce pollen.1

1. Introduction

As one of the most ubiquitous of terrestrial fossils, pollen
has an extraordinarily rich record and has been used to test
hypotheses from a broad cross-section of biological and ge-
ological sciences and a diverse array of disciplines. De-
tecting and classifying pollen grains in a collected sample
allows one to estimate the diversity of plant species in a
particular area, carry out paleoecological and paleoclimato-
logical investigations across hundreds to millions of years,
implement the identification of plant speciation and extinc-
tion events, calculate the correlation and biostratigraphic
dating of rock sequences, and conduct studies of long-term
anthropogenic impacts on plant communities and the study
of plant-pollinator relationships [25].

1This work was supported by NSF grants DBI-1262547 and IIS-
1253538.

While high-throughput microscopic imaging allows for
ready acquisition of large numbers of images of modern or
fossilized pollen samples, identifying and counting by eye
the number of grains of each species is painstaking work
and requires substantial expertise and training. In this paper,
we tackle the problem of performing automated species-
level classification of individual pollen grains using ma-
chine learning techniques based on sparse coding to capture
fine-grained distinctions in surface texture and shape.

A number of previous works have proposed to apply ma-
chine learning to pollen identification [15, 16, 8, 27, 17,
31, 35, 2, 5, 14, 9]. However, all of these methods have
largely avoided the difficult problem of species-level clas-
sification, which is significant to the reconstruction of pale-
oenvironments and discrimination of paleoecologically and
paleoclimatically significant taxa [25]. Recently, Punyasena
et al. proposed two different machine learning-based ap-
proaches to identify two pollen species of spruce [25, 30].
Their approach uses three categories of hand-crafted fea-
tures, including intensity distribution, gross shape, and tex-
ture features which are further enriched by varying the pa-
rameters for each feature computation. They show effec-
tiveness of the approach in identifying both modern and fos-
sil pollen grains as a three-way classification problem, and
suggest that the pollen grain size and texture are important
variables in pollen species discrimination. However, they
rely on leave-one-out validation to estimate performance
and leave open the question of generalization to held-out
test data and other species.

In this paper, we propose a robust framework to auto-
matically identify the species of fossil pollen grains in mi-
croscopy images. There are several difficulties that arise,
including the arbitrary viewpoint of the pollen grains im-
aged (see Fig. 1) and very limited amounts of expert-labeled
training data (relative to many modern computer vision
tasks). To address these problems, we introduce an exem-
plar matching strategy for identification based on local sur-
face patches through several novel technical components.
First, we propose a greedy method for selecting discrim-
inative exemplar patches based on optimizing a submod-
ular set function. We show our greedy algorithm is effi-

1

ar
X

iv
:1

60
5.

00
77

5v
1 

 [
cs

.C
V

] 
 3

 M
ay

 2
01

6



Figure 1. Example fossil pollen grains from three species of spruce, imaged via confocal fluorescence microscopy. The fine-grained
identification of pollen species is not a trivial task and depends on subtle differences in the overall pollen grain shape as well as local
surface texture. The arbitrary viewpoint, substantial intra-species shape variance and sample degradation of the grains poses further
difficulties.

cient and gives a near-optimal solution with a (1 − 1/e)-
approximation bound. Second, we use the selected ex-
emplar patches as a codebook dictionary and propose a
spatially aware sparse coding method to match test image
patches for classification. Finally, to accelerate the match-
ing process for classification, we introduce a relaxed form
of our weighted sparse coding method for fast matching.
Through experimental study on a dataset of spruce pollen
grains, we demonstrate the efficiency and effectiveness of
our patch selection and classification mechanisms. Our
method achieves 86.13% accuracy on a three-way classi-
fication task which is quite promising given the visual diffi-
culty of the task and the small training set size.

2. Discriminative Patch Selection

In order to allow robust matching of surface texture and
local shape features of pollen grains while maintaining in-
variance to arbitrary viewpoint (as shown in Figure 1),
we use a patch-based representation of appearance. Our
first step is to select a small number of exemplar patches
from the training dataset. The selected patches or exem-
plars should not only represent the pollen grains well in
the feature space, but also have the capability to distinguish
species-level characteristics by preserving the spatial struc-
ture of the grains. We use the selected patches as a dictio-
nary basis to match testing images for identification.

To this end, we formulate an objective function that
scores a set of candidate patches selected from the training
set based on several criteria including representational and
discriminative power, and balanced sampling across classes
and spatial locations. Selecting a subset of patches that op-
timizes this objective reduces to a well studied problem of
maximizing a submodular set function, which we introduce
briefly before describing the specific terms in our patch se-
lection objective function.

2.1. Submodular Function Optimization

Given a finite ground set V , a set function F : 2V → R
assigns a value to each possible subset of V . We say F is
monotonically increasing if F(A) ≤ F(B) for all A ⊆ B.
A set function F is submodular if F(A ∪ a) − F(A) ≥
F(A ∪ {a, b})− F(A ∪ b), for all A ⊆ V and a, b ∈ V/A.
This is often referred to as diminishing return property, as
the benefit of adding each additional element to the set de-
creases as the size of the set grows.

While maximizing submodular set functions is NP-hard
in general [4], a simple heuristic of greedy forward selection
works well in practice and can be shown to have a (1−1/e)-
approximation guarantee for monotonic functions [4, 23].

2.2. Patch Selection Objective Function

We generate a large set of candidate patches by sampling
randomly and uniformly over spatial locations across the
collection of training images. The patches could be repre-
sented by pixel values or other features such as SIFT [19].
In our experiments, we use activations from a pretrained
CNN as our feature descriptor [13, 29]. We assume the sub-
set of selected patches should be representative of all the
patches in the feature space and yield discriminative com-
pact clusters that are balanced across classes. In addition
patches should be spatially cover most regions of the pollen
grain. We now describe terms that encode each of these
criteria.

Representative in feature space: Given a set of M
patches which we denote V , we construct a K-nearest
neighbor weighted affinity graph specified by the matrix
S ∈ RM×M where Sij is the similarity (a non-negative
value) between patch i and patch j measured by the Eu-
clidean distance. Our aim is to select a subset A ⊆ V con-
sisting of patches that are representative in the sense that
every patch in V is similar to some patches in the set A. We



define the score of a set exemplars A as:

FR(A) =
∑
j∈V

max
i∈A

Sij , (1)

This function is a monotonically increasing submodular
function and can be seen as a special case of the facility
location problem [4] where the costs of all the nodes are the
same.

Spatially distributed in input space: Similar to the first
term FR which assures patches are representative in fea-
ture space, we would also like selected patches to be well
distributed spatially in the input training images. We con-
struct an affinity graph that stores the proximity of pairs
of patches according to their coordinates on the pollen sur-
face to assure that the selected exemplars to spread over the
whole pollen grain. We denote this graph similarity matrix
by L ∈ RM×M , and formulate it as the following

FS(A) =
∑
j∈V

max
i∈A

Lij (2)

Discriminative power: Inspired by [10], we adopt a dis-
criminative term to encourage selection of patches with dis-
criminative power. For a given exemplar patch i ∈ A,
we refer to the ith cluster as the set of all patches in V
which are more similar to i than to any other exemplar
Ci = {j ∈ V : Sij > Skj ∀k ∈ A/i}, breaking ties ar-
bitrarily. We measure the discriminative power of such a
clustering based on how pure the clusters are with respect
to the category labels, while favoring a smaller number of
clusters, given by:

FD(A) =
1

C

∑
i∈A

max
c
N i
c − |A|, (3)

whereN i
c is the number of exemplars from the cth class that

are assigned to the ith cluster, and C =
∑
i∈A Ci. Eq. 3 is

also a submodular function, and partial proof can be found
in [10].

Class balance: We further adopt the balancing term intro-
duced in [11] to balance the number of exemplars belonging
to different classes:

FB(A) =
∑
c

log(|Ac|+ 1) (4)

where Ac is the subset of exemplars in A belonging to class
c. The proof can be found in [11] that the above term is
monotonically increasing and a submodular function.

Cluster compactness: In addition to balancing the size of
exemplars of different classes, we would also like the clus-
ters to be compact so that the total number of clusters is
small and each exemplar represents roughly the same num-
ber of patches. We utilize the compactness term introduced
in [18] as below:

FC(A) = −
∑
i∈A

p(i) log(p(i))− |A| (5)

where p(i) = |Ci|
|V| is the prior probability of a patch belong-

ing to the ith exemplar cluster. This is also a submodular
function as shown in [18]. The above term will also favor a
smaller number of clusters.

By combining these terms, our final objective function
for selecting patches is given by:

F(A) ≡
M∑
j=1

max
i∈A

Sij + λS

M∑
j=1

max
i∈A

Lij

+ λD

(
1

C

∑
i∈A

max
c
N i
c − |A|

)
+ λB

∑
c

log(|Ac|+ 1)

+ λC

(
−
∑
i∈A

p(i) log(p(i))− |A|

)
(6)

where {λS , λD, λB , λC} are hyperparameters that weigh
the relative contribution of each term. We note thatF(∅) =
0. As each term is a submodular function, our objective
summing up all the five terms is also a submodular func-
tion. Therefore, we can easily use standard greedy approxi-
mation algorithms to approximately maximize the objective
function.

2.3. Greedy Lazy Forward Selection

We sketch the naive greedy forward selection algorithm
in Algorithm 1 to maximize our objective function. It is
well known in literature that solving the submodular func-
tion by the greedy algorithm can yield near-optimal solution
with a (1−1/e)-approximation bound [22]. However, while
the complexity of this algorithm is linear in the number of
exemplars selected and bounded by K, the computation in
each iteration can be very time consuming. Each update has
to recalculate the gains ∆ for all the unselected patches re-
maining in V which makes direct application of the greedy
method infeasible in practice.

Instead, we utilize the lazy greedy algorithm introduced
in [22] using a max heap structure. The lazy greedy algo-
rithm, sketched in Algorithm 2, maintains an expected gain
for selecting each patch but only recomputes this gain when
a patch becomes a candidate for selection. This avoids up-
dating many of the gains associated with patches in V which



Algorithm 1 Greedy Selection Algorithm
Input: V,F ,K
Output: a subset A with |A| ≤ K

initialize A = ∅, k = 0
while k ≤ K do

for all i ∈ V/A do
compute ∆(i) = F(A ∪ {i})−F(A)

end for
i∗ = arg maxi∈V/A ∆(i)
if ∆(i∗) < 0 then

return A
else
A = A ∪ {i∗}, k = k + 1

end if
end while
return A

Algorithm 2 Lazy Greedy Selection Algorithm
Input: V,F ,K
Output: a subset A with |A| ≤ K

initialize A = ∅, iteration k = 0
for all i ∈ V , compute ∆(i) = F({i})
while k ≤ K do
i∗ = arg maxi∈V/A ∆(i)
compute ∆(i∗) = F(A ∪ {i∗})−F(A)
if ∆(i∗) ≥ maxi∈V/A ∆(i) then

if ∆(i∗) < 0 then
return A

else
A = A ∪ {i∗}, k = k + 1

end if
end if

end while

are already “covered” by an exemplar. This greedy algo-
rithm with lazy updates is analyzed in [22] and provides a
good approximation to the optimal solution of the NP-hard
optimization problem. In our experiments, the lazy greedy
Algorithm 2 yields good solutions and is hundreds of times
faster than the naive greedy Algorithm 1. Specifically, the
run time is less than ten minutes to select K = 600 exem-
plars from a pool of 10, 000 candidates on a single CPU.

3. Spatially Aware Coding for Fast Matching
The framework of sparse coding has been exploited for

a number of computer vision tasks [33], e.g. image classi-
fication [12] and face recognition [34]. In standard coding-
based classification, the individual patch appearance is rep-
resented by an abstract code vector while the spatial loca-
tion of the patch in a test image is typically ignored. How-
ever, the spatial coordinates of a patch can be useful to en-
code information about the overall shape of a pollen grain
and limit comparisons of local texture between grains to
corresponding locations. Therefore, we propose to make

use of the coordinates in the sparse coding procedure.

3.1. Spatially-aware Sparse Coding

Given a dictionary D ∈ Rp×m, one can compute a
sparse representation â ∈ Rm of a given input x ∈ Rp over
that dictionary by solving a sparse reconstruction problem:

a∗ = argmin
a
‖x−Da‖22 + λ‖a‖0. (7)

The `0 norm ‖ · ‖0 counts the number of non-zeros in a
vector. We follow the standard approach of replacing this
by an `1 norm ‖ · ‖1 which yields a convex relaxation [1].

When learning a sparse coding model, it is common
practice to learn a dictionary that is adapted to the dataset
by minimizing the reconstruction error or other discrimi-
native performance measures with respect to the dictionary
elements [1, 33]. In our setup, we use the selected set of dis-
criminative patch exemplars, as described in the previous
section, directly as dictionary elements for sparse coding-
based classification. One can thus view the selection pro-
cess as a discriminative dictionary learning method (see,
e.g. [12, 26, 20]).

In order to make use of patch coordinates, we modify the
standard sparse coding objective by including a weight wi
associated with each dictionary element which encourages
codes that are spatially coherent with respect to the training
data. This weighting can be incorporated into the `1 sparsity
term

a∗ = argmin
a
‖x−Da‖22 + λ1‖diag(w)a‖1, (8)

or alternately by an additional weighted `2-norm penalizer

a∗ = argmin
a
‖x−Da‖22+λ2‖diag(w)a‖22+λ1‖a‖1. (9)

The weight vector w will depend on the spatial location of
the patch x in the test image. In particular, wi depends on
the difference in relative spatial location of the patch x and
the location of the dictionary atom (exemplar patch) i in the
training image. Dictionary atoms that were selected from a
very different part of the pollen grain than the patch being
coded are thus more heavily penalized for taking part in the
reconstruction.

3.2. Fast Spatially-aware Coding

The spatially-aware sparse coding described above
works quite well for performing classification. However,
as the number of patches sampled in a test image increases,
which will be a case if we desire better classification perfor-
mance, the sparse coding process becomes computationally
intensive. To address this problem, we propose a fast (re-
laxed) version of spatially aware sparse coding, which we
term SACO for short.



randomly matching patches

Figure 2. The success of our patch-based matching methodol-
ogy requires that the two images are reasonably well aligned w.r.t
viewpoint. We perform alignment to remove in-plane rotation and
use k-medoids clustering to group training examples into canoni-
cal viewpoints. After alignment, the comparison of patches at cor-
responding spatial locations between a training (center) and test
image (right) provides much stronger discriminative information
than with an unaligned image (left). We exploit this alignment by
utilizing a spatially adaptive sparse coding scheme we term SACO.

To motivate our approach, suppose we have an under-
complete dictionary2 D ∈ Rp×m, p ≥ m. With-
out the sparsity regularization, the reconstruction problem
argmina ‖x − Da‖22 has a simple least-squares solution
given by:

a∗ = Ωx,where Ω ≡ (DTD)−1DT . (10)

We thus consider an alternate cost function that seeks a
sparse approximation to the (dense) least-squares code:

a∗ = argmin
a
‖Ωx− a‖22 + λ1‖a‖1 (11)

For orthonormal dictionaries, e.g. as used in wavelet de-
noising [7, 28], Ω = D−1 and this problem is equivalent
to the sparse reconstruction problem. In general, it provides
an upper-bound on sparse reconstruction since

‖Ω(x−Da)‖2 ≥ σ(Ω)‖x−Da‖2 (12)

where σ(Ω) is a constant that depends on the dimension and
smallest singular value of D.

The primary appeal of this relaxed formulation is that we
can easily obtain the optimal solution by applying a simple
soft-thresholding or “shrinkage” function independently to
each element of the least squares solution:

a∗i = sgn(ui) ·max(0, |ui| − λ1),where u = Ωx. (13)

Spatial weighting In our problem, suppose we have an
under-complete dictionary D ∈ Rp×m consisting of the
selected patches and precompute corresponding pseudo-
inverse Ω. We then solve the spatially-weighted variant cor-
responding to Eq. 8 by

a∗ = argmin
a
‖Ωx− a‖22 + λ1‖diag(w)a‖1, (14)

2In our experiments this is indeed the case since the patch feature di-
mension is larger than the number of exemplar patches

The solution is then given by a∗ whose ith element is the
following:

a∗i = sgn(ui) ·max(0, |ui| − λ1wi),where u = Ωx (15)

We term this scheme SACO-I.
Alternatively, for the counterpart of the `2 weighting

used in Eq.9 we have

Ω ≡(DTD + λ2diag(w)2)−1DT

u =Ωx

a∗i =sgn(ui) ·max(0, |ui| − λ1)

a∗ =[a∗1, . . . , a
∗
i , . . . , a

∗
m]T .

(16)

We term this scheme SACO-II.
Both versions of spatial structure aware shrink coding

(SACO) enable us to do the coding in a feed-forward way
without iterative optimization required by sparse recon-
struction. This makes the classification process signifi-
cantly more efficient than full reconstructive sparse cod-
ing. We find that in practice, using a non-overcomplete
dictionary is not a limitation and that the SACO approxi-
mation leads to very good classification performance in our
experiments. SACO-I has additional computational advan-
tage over SACO-II as it avoids inverting a different matrix
at each patch location. This makes it feasible to perform
coding densely over the whole image by performing corre-
lation over the whole image feature map with each element
of Ω followed by application of a spatially varying shrink-
age function. Beyond SACO, we utilize global pooling and
linear SVM for classification, as detailed in the next section.

4. Implementation Details
4.1. k-medoids Clustering for Viewpoint Alignment

As demonstrated by Figure 2, the success of our
spatially-aware patch-based matching methodology lies in
that the images are well aligned w.r.t viewpoint. To align the
images, we perform unsupervised pre-processing of both
training and test images in order to automatically improve
alignment.

We use the all the training images (ignoring the species
labels) to build an affinity graph, where the similarity of
image IA and IB is measured by

similarity(IA, IB) =
1

minθ ‖IA −Rθ(IB)‖
, (17)

where Rθ(IB) is an operator that rotates image IB by θ
degrees. We resize all images and rotated intermediates to
40×40 pixel resolution, and calculate the distance between
two images as the sum of squared pixel-wise differences.
We use the resulting similarity graph to perform k-medoids
clustering. Empirically, we find that once in-plane rota-
tion is removed, clustering the images into two canonical



Figure 3. Rotated images according to two canonical viewpoints
determined by k-medoids clustering.

viewpoints is enough to achieve good performance. Fig-
ure 3 shows two viewpoint clusters with examples from all
three species. Equatorial views of pollen grains appear in
the first cluster while top-down views are assigned to the
second cluster.

4.2. Classification Pipeline

Using the dictionary D ∈ Rp×m constructed by the se-
lected exemplar patches from training images, we perform
spatially-aware aware coding (SACO) for patches of the test
image, resulting in m-dimensional sparse codes for each
patch. For each test image we use 50 patches sampled at
random. We pool the m-dimensional code vectors over the
entire set of test patches using average pooling to produce a
finalm-dimensional feature vector which is fed into a linear
SVM classifier to predict the species.

Rather than using raw image pixel values, we use a
feature vector extracted via the pretrained VGG19 model
of [29]. We found that using the features at layer-conv4 3
of VGG19 performed best. We also analyzed the perfor-
mance of SIFT and features at other layers of VGG19 in
our experiments (Section 5). The receptive field at this layer
spans a patch of 52 × 52 pixels in the original image. Fig-
ure 2 shows a visualization of these selected patches relative
to the scale of the pollen grain and shows qualitatively that
patches capture meaningful local textures.

5. Experiments
In this section, we introduce our dataset, show the effec-

tiveness of the proposed exemplar selection method on syn-
thetic data, study different features used for classification
and several hyper-parameters in our pipeline, and report the
classification performance of our models and comparisons
to several strong baselines.

5.1. Dataset

We test our method on samples of fossil pollen from
three species of spruce, Picea critchfieldii, Picea glauca,
and Piciea mariana. Samples were chemically extracted
from lake sediments as detailed in [25, 21] and imaged
using a Zeiss Apotome fluorescence microscope (a form
of structured illumination) [32] to produce high-resolution,
three-dimensional image stacks. Imaging was carried out

Table 1. Statistics of our fossil pollen grain dataset.
#train #test #total

P. critchfieldii 65 43 108
P. glauca 65 355 420
P. mariana 65 287 352
Summary 195 685 880

by multiple operators, with no single person responsible for
a single species. The full shape of the grain was captured by
multiple z-focal planes at intervals of half the Nyquist fre-
quency [25]. Grains were cropped manually, using a bound-
ing box that reached from the maximum width of the grain
in the x axis and the maximum length of the grain in the
y-axis. The z-stack is limited to the uppermost and lower-
most in-focus planes of the grain. Details of the imaging
procedure can be found in [anon]. For each grain, we use
maximum intensity projection over the top half of the grain
to produce a single in focus 2D image. Some examples are
show in Figure 1.

Experts provided a nominal species label for each grain
along with a confidence score. We note that unlike some
other image classification tasks, there is no “ground-truth”
for species identification. However, fossil pollen grains
were taken from strata containing other macro-fossil evi-
dence (e.g., leaves) of these species and we restricted our
analysis to samples with high-confidence labels. We ran-
domly split the dataset into training and testing (validation)
sets (statistics are listed in Table 1). The dataset will be
released to public in the near future.

5.2. Exemplar Selection on Synthetic Data

We first verified the effectiveness of the proposed exem-
plar selection method using synthetic toy data for which we
can easily visualize the results qualitatively. In this setting
we merge term FR and FS in the objective function (Eq. 6)
to simplify our analysis as the 2D data themselves are both
features and spatial coordinates. As can be seen in Figure 4,
the greedy lazy algorithm selects representative exemplars
that cover the data points from each class while maintaining
discriminative power by sampling near class boundaries but
avoid non-discriminative areas of feature space with high
inter-class overlap.

5.3. Choice of Feature Representation

To study the choice of feature representation, we com-
pare the performance of SIFT descriptors [19] and features
extracted at different layers of VGG19 model [29]. Using
SACO-I with SIFT feature yields 54.40% classification ac-
curacy while CNN features perform much better. Figure 5
shows performance of features extracted at different layers
of the VGG19 hierarchy with layer conv4 3 achieving a
performance at 77.62% classification accuracy. Receptive
fields at this layer span 52 × 52 pixel patches in the origi-
nal image and are visualized in in Figure 2. We use these
features in our remaining classification experiments.



Figure 4. Qualitative demonstration of the effectiveness of the pro-
posed method in exemplar selection on synthetic data (best seen in
color and zoom-in)

Figure 5. Classification accuracy vs. layer index in VGG19 model.
We use features extracted from conv4 3 in the remainder of our
experiments.

dictionary size 300 512 600
Random Selection 77.66 76.49 77.23

Discriminative Selection 81.75 81.60 82.34

Table 2. Classification accuracy (%) for different sized dictio-
naries constructed by our discriminative exemplar selection algo-
rithm. Our method consistently outperforms a baseline that selects
patches at random from the training set.

5.4. Evaluation of Dictionary Learning

In addition to the synthetic tests in Section 5.2, we ver-
ify the effectiveness of our exemplar selection method in
the pollen identification task by comparing the classification
performance of dictionaries consisting of randomly sam-
pled patches. We also report the performance as a function
of varying dictionary size.

Figure 6. To visualize the selected patches, we paste patches se-
lected from the same species on a black background to the places
according to their coordinates. The two panels show the 300 and
600 patches respectively. Our dictionary selection approach fa-
vors patches that cover the pollen grain spatially, focusing on more
discriminative regions when the number of dictionary elements is
limited (300 patches) but eventually covering the whole grain at
larger dictionary sizes (600 patches).

SRC VGG19+SVM FV+SVM SACO-I SACO-II
62.04 65.11 61.46 83.21 86.13

Table 3. Performance of baselines and our SACO methods mea-
sured by classification accuracy (%).

We use SACO-I for this experiment, and vary the dictio-
nary size by (randomly) selecting 300, 512 and 600 patches.
The results are listed in Table 2. First, it is clear that a dic-
tionary built from our selected exemplars performs much
better than the counterpart consisting of randomly sampled
patches. Second, a smaller dictionary of 300 atoms is suffi-
cient for our classification task. However, it appears larger
dictionaries do not harm performance. We expect that some
hyper-parameters will have an important impact on the per-
formance for larger dictionaries, in particular regularization
of the SVM. We study the effect of hyper-parameters in Sec-
tion 5.6. We use a 300-basis dictionary for the rest of our
experiments.

To visualize the selected patches in the dictionary, we
paste them on a black panel according to their coordinates.
Figure 6 shows the patches of the three species. We can see
that these patches not only capture local texture informa-
tion, but also convey a global shape and average size of the
three species.

5.5. Comparison of SACO Methods and Baselines

We report the classification performance of our proposed
two variants of SACO along with several baselines in Ta-
ble 3. “SRC” is the sparse-representation based classifica-
tion method of [34] using the reconstruction error to iden-
tify species. “VGG19+SVM” is a standard CNN-based im-
age classification approach that applies the VGG19 model
to the whole image and performs classification using a lin-



Figure 7. The effect of sparisty (λ1 in Eq. 16), spatial weighting (λ2 in Eq. 16), and SVM regularization (C) parameter on performance.

ear SVM applied to features from a high-level layer [6].
“FV+SVM” uses Fisher Vector [24] to pool features at a
specific layer of VGG19 to represent the entire image, and
applies an SVM classifier [3]. For the VGG19 baselines, we
tried features at different layers of VGG19, and report the
best result here.

VGG19+SVM provides a strong baseline for shape-
based object recognition while FV+SVM has shown strong
performance on texture classification [3]. However, neither
of these standard methods is competitive with SACO. It is
worth noting that, if fine-tuning the VGG model with soft-
max loss, we only obtain 52.41% accuracy. We posit two
reasons. First the original images are of high resolution, so
it is easy to overfit the training set. Second, if we down
size the images, the valuable textural characteristics will be
eliminated. SRC is closer to our approach but also performs
significantly worse. When using random patches without
the spatial information as a dictionary in SRC, we only
achieve an accuracy of 57.12%. Adding spatial information
and using selected patches in SRC improves performance to
62.04%. Performing average pooling over the sparse codes,
i.e. using our SACO-I method, provides a substantial im-
provement in performance, reaching 83.21% classification
accuracy. The alternative method SACO-II yields even bet-
ter performance, 86.13%. This shows the importance of the
spatial information of patches in our task and the need to
fuse both shape and texture cues.

5.6. Parameter sensitivity

There are several important hyper-parameters in our
pipeline, including the sparsity λ1, spatial weighting λ2
(see Eq. 16), and regularization parameter C in the linear
SVM. Figure 7 shows accuracy as a function of each of
these hyper-parameters. The curve showing accuracy as a
function of λ1 shows that inducing sparsity improves clas-
sification performance notably. The second curve showing
accuracy vs. λ2, makes it clear that incorporating spatially-
varying weights on the dictionary elements also improves
the classification performance remarkably. However, it is
necessary to jointly tune both λ1 and λ2 for best perfor-
mance. Last, we note the performance is stable w.r.t the
parameter C in linear SVM over a large range.

5.7. Dense convolutional SACO

An intriguing aspect of the SACO-I formulation is that it
is amenable to a dense implementation that performs cod-
ing at every patch location in the test image. This is im-
plemented by first correlating the input image or feature
map with each element of the pseudo-inverse dictionary Ω
followed by soft-thresholding of each response map with a
spatially varying threshold and pooling the result. In theory
SACO-II could also be applied densely but demands signif-
icantly more computation since Ω is spatially varying and
would require computing the matrix inverse (Eq. 16) at ev-
ery location.

Using a fully convolutional implementation of SACO-
I achieved 83.86% classification accuracy. Although we do
not see significant improvement over the sparse sampling of
test patches, we believe better performance may ultimately
be achieved in the dense evaluation by incorporating au-
tomatic segmentation of the pollen grain from background
noise and masking of uninformative damaged areas. We
plan to explore these possibilities in future work.

6. Conclusion and Future Work

We propose a robust framework for pollen grain identifi-
cation by matching testing images with a set of discrimina-
tive patches selected beforehand from a training set. To se-
lect the discriminative patches, we introduce a novel selec-
tion approach based on submodular maximization, which is
very efficient and effective in practice. To identify pollen
grains using the selected patches as a dictionary, we present
two spatially-aware sparse coding methods. We further ac-
celerate these two methods using a relaxed formulation that
can be computed in an efficient non-iterative manner.

As our experiments show, this spatially aware exemplar-
based coding approach significantly outperforms strong
baselines built on state-of-the-art CNN features. We leave
open as future work the question of how such a matching
mechanism could be fully embedded in a neural network ar-
chitecture, how to exploit confidence scores provided with
expert labels, and extending the approach to perform cross-
domain matching of fossil and modern pollen samples.
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