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Abstract

We study the problem of hierarchical clustering on planar graphs. We formulate
this in terms of an LP relaxation of ultrametric rounding. To solve this LP effi-
ciently we introduce a dual cutting plane scheme that uses minimum cost perfect
matching as a subroutine in order to efficiently explore the space of planar parti-
tions. We apply our algorithm to the problem of hierarchical image segmentation.

1 Introduction

In this work, we formulate hierarchical image segmentation from the perspective of estimating an
ultrametric over the set of image pixels that agrees closely with an input set of noisy pairwise dis-
tances. An ultrametric is a metric space in which the triangle inequality is replaced by the ultramet-
ric inequality d(u, v) ≤ max{d(u,w), d(v, w)}. This inequality captures the transitive property of
clustering (if u and w are in the same cluster and v and w are in the same cluster, then u and v must
also be in the same cluster). Thresholding an ultrametric immediately yields a partition into sets
whose diameter is less than the given threshold and varying the threshold naturally produces a hier-
archical clustering in which clusters at high thresholds are composed of clusters at lower thresholds.

Inspired by the approach of [1], our method represents an ultrametric explicitly as a hierarchical
collection of segmentations. Determining the appropriate segmentation at a single distance threshold
is equivalent to finding a minimum-weight multicut in a graph with both positive and negative edge
weights [3, 14, 2, 11, 20, 21, 4, 19, 7]. Finding an ultrametric imposes the additional constraint
that these multicuts are hierarchically consistent across different thresholds. We focus on the case
where the input distances are specified by a planar graph which arises naturally in the domain of
image segmentation where elements are pixels or superpixels and distances are defined between
neighbors. This allows us to exploit fast combinatorial algorithms for partitioning planar graphs that
yield tighter LP relaxations than the local polytope relaxation [20].

This paper is organized as follows. We first introduce the ultrametric rounding problem and the
relation between multicuts and ultrametrics. We then introduce a LP relaxation that uses a delayed
column generation approach that exploits planarity to efficiently find cuts using the classic reduction
to minimum-weight perfect matching [13, 8, 9, 10]. We apply our algorithm to the task of natural
image segmentation on the Berkeley Segmentation Data Set benchmark [16]. We show compelling
visual results and demonstrate that our algorithm converges rapidly and produces near optimal or
optimal solutions in practice with guarantees.

∗JY acknowledges the support of Experian, CF acknowledges support of NSF grants IIS-1253538 and DBI-
1262547
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2 Ultrametric Rounding and Multicuts

Let G = (V,E) be a weighted graph with non-negative edge weights θ indexed by edges e =
(u, v) ∈ E. Our goal is to find an ultrametric distance d(u,v) over vertices of the graph that is
close to θ in the sense that the distortion

∑
(u,v)∈E ‖θ(u,v) − d(u,v)‖22 is minimized. We begin by

reformulating this rounding problem in terms of finding a set of nested multicuts in a family of
weighted graphs.

We specify a partitioning or multicut of the vertices of the graph G into components using a binary
vector X̄ ∈ {0, 1}|E| where X̄e = 1 indicates that the edge e = (u, v) is “cut” and that the vertices
u and v associated with the edge are in separate components of the partition. We use MCUT(G)
to denote the set of binary indicator vectors X̄ that represent valid multicuts of the graph G. For
notational simplicity, in the remainder of the paper we frequently omit the dependence on G which
is given as a fixed input.

A necessary and sufficient condition for an indicator vector X̄ to define a valid multicut in G is that
for every cycle of edges, if one edge on the cycle is cut then at least one other edge in the cycle must
also be cut. Let C denote the set of all cycles in G where each cycle c ∈ C is a set of edges and
c− ê is the set of edges in cycle c excluding edge ê. We can express MCUT in terms of these cycle
inequalities as:

MCUT =

{
X̄ ∈ {0, 1}|E| :

∑
e∈c−ê

X̄e ≥ X̄ê,∀c ∈ C, ê ∈ c

}
(1)

A hierarchical clustering of a graph can be described by a nested collection of multicuts. We denote
the space of valid hierarchical partitions with L layers by Ω̄L which we represent by a set of L
edge-indicator vectors X = (X̄1, X̄2, X̄3, . . . , X̄L) in which any cut edge remains cut at all finer
layers of the hierarchy.

Ω̄L = {(X̄1, X̄2, . . . X̄L) : X̄ l ∈ MCUT, X̄ l ≥ X̄ l+1 ∀l} (2)

Given a valid hierarchical clustering X , an ultrametric d can be specified over the vertices of the
graph by choosing a sequence of real values 0 = δ0 < δ1 < δ2 < . . . < δL that indicate a distance
threshold associated with each level l of the hierarchical clustering. The ultrametric distance d
specified by the pair (X , δ) assigns a distance to each pair of vertices d(u,v) based on the coarsest
level of the clustering at which they remain in separate clusters. For pairs corresponding to an edge
in the graph (u, v) = e ∈ E we can write this explicitly in terms of the multicut indicator vectors
as:

de = max
l∈{0,1,...,L}

δlX̄ l
e =

L∑
l=0

δl[X̄ l
e > X̄ l+1

e ] (3)

We assume by convention that X̄0
e = 1 and X̄L+1

e = 0. Pairs (u, v) that do not correspond to an
edge in the original graph can still be assigned a unique distance based on the coarsest level l at
which they lie in different connected components of the cut specified by X l.

To compute the quality of an ultrametric dwith respect to an input set of edge weights θ, we measure
the squared L2 difference between the edge weights and the ultrametric distance ‖θ− d‖22. To write
this compactly in terms of multicut indicator vectors, we construct a set of weights for each edge
and layer, denoted θle so that

∑m
l=0 θ

l
e = ‖θe − δm‖2. These weights are given explicitly by the

telescoping series:

θ0
e = ‖θe‖2 θle = ‖θe − δl‖2 − ‖θe − δl−1‖2 ∀l > 1 (4)

We use θl ∈ R|E| to denote the vector containing θle for all e ∈ E.
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For a fixed number of levels L and fixed set of thresholds δ, the problem of finding the nearest
ultrametric d can then be written as an integer linear program (ILP) over the edge cut indicators.

min
d

∑
e∈E
‖θe − de‖2 = min

X∈Ω̄L

∑
e∈E

∥∥∥∥∥θe −
L∑
l=0

δl[X̄ l
e > X̄ l+1

e ]

∥∥∥∥∥
2

= min
X∈Ω̄L

∑
e∈E

L∑
l=0

‖θe − δl‖2(X̄ l
e − X̄ l+1

e )

= min
X∈Ω̄L

∑
e∈E

(
‖θe‖2X̄0

e +

L∑
l=1

(
‖θe − δl‖2 − ‖θe − δl−1‖2

)
X̄ l
e + ‖θe − δL‖2X̄L+1

e

)

= min
X∈Ω̄L

L∑
l=0

∑
e∈E

θleX̄
l
e

= min
X∈Ω̄L

L∑
l=0

θl · X̄ l (5)

This optimization corresponds to solving a collection of minimum-weight multicut problems where
the multicuts are constrained to be hierarchically consistent.

Computing minimum-weight multicuts (also known as correlation clustering) is NP hard even in the
case of planar graphs [6]. A direct approach to finding an approximate solution to Eq 5 is to relax
the integrality constraints on X̄ l and instead optimize over the whole polytope defined by the set of
cycle inequalities. We write CYC to indicate the polytope of real valued indicator vectors X that
satisfying the cycle inequalities

CYC =

{
X ∈ [0, 1]|E| :

∑
e∈c−ê

Xe ≥ Xê,∀c ∈ C, ê ∈ c

}
(6)

and use ΩL to denote the corresponding relaxation of Ω̄L given by

ΩL = {(X1, X2, . . . XL) : X l ∈ CYC, X l ≥ X l+1 ∀l}

While the polytope CYC contains non-integral vertices (it is not the convex hull of MCUT), the
integral vertices of CYC do correspond exactly to the set of valid multicuts [12].

In practice, we found that applying a straightforward cutting-plane approach that successively adds
violated cycle inequalities to this relaxation of Eq 5 requires far too many constraints and is too
slow to be useful. Instead, we develop a column generation approach tailored for planar graphs that
allows for efficient and accurate approximate inference.

3 The Cut Cone and Planar Multicuts

Consider a partition of a planar graph into two disjoint sets of nodes. We denote the space of
indicator vectors corresponding to such two-way cuts by CUT. A cut may yield more than two
connected components but it can not produce every possible multicut (e.g., it can not split a triangle
of three nodes into three separate components). Let Z ∈ {0, 1}|E|×|CUT| be an indicator matrix
where each column specifies a valid two-way cut with Zek = 1 if and only if edge e is cut in two-
way cut k. The indicator vector of any multicut in a planar graph can be generated by a suitable
linear combination of of cuts (columns of Z) that isolate the individual components from the rest of
the graph where the weight of each such cut is 1

2 .

Let γ ∈ R|CUT| be a vector specifying a positive weighted combination of cuts. The set CUT4 =
{Zγ : γ ≥ 0} is the conic hull of CUT or “cut cone”. Since any multicut can be expressed as a
superposition of cuts, the cut cone is identical to the conic hull of MCUT. This equivalence suggests
an LP relaxation of the minimum-cost multicut given by

min
γ≥0

θ · Zγ s.t. Zγ ≤ 1 (7)
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(a) Linear combination of cut vectors (b) Hierarchical cuts

Figure 1: (a) Any partitioning X can be represented as a linear superposition of cuts Z where
each cut isolates a connected component of the partition and is assigned a weight γ = 1

2 [20]. By
introducing an auxiliary slack variables β, we are able to represent a larger set of valid indicator
vectors X using fewer columns of Z. (b) By introducing additional slack variables at each layer of
the hierarchical segmentation, we can efficiently represent many hierarchical segmentations (here
{X1, X2, X3}) that are consistent from layer to layer while using only a small number of cut indi-
cators as columns of Z.

where the vector θ ∈ R|E| specifies the edge weights. For the case of planar graphs, any solution to
this LP relaxation satisfies the cycle inequalities (see Appendix A and [12, 18, 10]).

Expanded Multicut Objective: Since the matrix Z contains an exponential number of cuts, Eq. 7
is still intractable. Instead we consider an approximation using a constraint set Ẑ which is a subset
of columns of Z. In previous work [20], we showed that since the optimal multicut may no longer
lie in the span of the reduced cut matrix Ẑ, it is useful to allow some values of Ẑγ exceed 1 (see
Figure 1(a) for an example).

We introduce a slack vector β ≥ 0 that tracks the presence of any “overcut” edges and prevents
them from contributing to the objective when the corresponding edge weight is negative. Let θ−e =
min(θe, 0) denote the non-positive component of θe. The expanded multi-cut objective is given by:

min
γ≥0
β≥0

θ · Ẑγ − θ− · β s.t. Ẑγ − β ≤ 1 (8)

For any edge e such that θe < 0, any decrease in the objective from overcutting by an amount βe it
is exactly compensated for in the objective by the term −θ−e βe.

When Ẑ contains all cuts (i.e., Ẑ = Z) then Eq 7 and Eq 8 are equivalent [20]. Further, if γ? is the
minimizer of Eq 8 when Ẑ only contains a subset of columns, then the edge indicator vector given
by X = min(1, Ẑγ?) still satisfies the cycle inequalities (see Appendix A for details).

4 Relaxing Ultrametric Rounding

To relax the ultrametric rounding problem, we replace the multicut problem at each layer l us-
ing the expanded multicut objective described by Eq 8. We let γ = {γ1, γ2, γ3 . . . γL} and
β = {β1, β2, β3 . . . βL} denote the collection of weights and slacks for the levels of the hierar-
chy and let θ+l

e = max(0, θle) and θ−le = min(0, θle) denote the positive and negative components
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of θl. We write the relaxed ultrametric rounding problem as:

min
γ≥0
β≥0

L∑
l=1

(
θl · Zγl − θ−l · βl

)
(9)

s.t. Zγl+1 ≤ Zγl ∀l < L

Zγl − βl ≤ 1 ∀l (10)

where we have dropped the l = 0 term from Eq 5 which is a constant.

Expanded Ultrametric Cut Cone Objective: As with Eq 8, it is computationally useful to in-
troduce an additional slack vector associated with each level l and edge e which we denote as
α = {α1, α2, α3 . . . αL−1}. The introduction of αle allows for cuts represented by Zγl to vio-
late the hierarchical constraint Zγle ≥ Zγl+1

e . However we modify the objective so that violations
to the original hierarchy constraint are paid for in proportion to θ+l

e . The introduction of α allows
us to find valid ultrametrics while using a smaller number of columns of Z to be used than would
otherwise be required (illustrated in Figure 1(b)). We call this relaxed ultrametric rounding problem
including the slack variable α the expanded ultrametric rounding objective, written as:

min
γ≥0
β≥0
α≥0

L∑
l=1

θl · Zγl +

L∑
l=1

−θ−l · βl +

L−1∑
l=1

θ+l · αl (11)

s.t. Zγl+1 + αl+1 ≤ Zγl + αl ∀l < L

Zγl − βl ≤ 1 ∀l (12)

where by convetion we define αL = 0.

Given a solution (α, β, γ) we can recover a relaxed solution to the ultrametric rounding problem
(Eq. 9) over ΩL by setting X l

e = min(1,maxm≥l (Zγm)e). In Appendix B, we demonstrate that
for any (α, β, γ) that obeys the constraints in Eq 11, this thresholding operation yields a solution X
that lies in ΩL and achieves the same or lower objective value.

5 The Dual Objective

We optimize the dual of the objective in Eq 11 using an an efficient column generation approach
based on perfect matching. A detailed derivation is given in Appendix C. Briefly, We introduce two
sets of Lagrange multipliers ω = {ω1, ω2, ω3 . . . ωL−1} and λ = {λ1, λ2, λ3 . . . λL} corresponding
to the between and within layer constraints respectively. For notational convenience, let ω0 = 0.
The dual objective can then be written as

max
ω≥0,λ≥0

L∑
l=1

−λl · 1 (13)

θ−l ≤ −λl ∀l
− (ωl−1 − ωl) ≤ θ+l ∀l
(θl + λl + ωl−1 − ωl) · Z ≥ 0 ∀l

The dual LP can be interpreted as finding a small modification of the original edge weights θl so
that every possible two-way cut of each resulting graph at level l has non-negative weight. Observe
that the introduction of the two slack terms α and β in the primal problem (Eq 11) results in bounds
on the Lagrange multipliers λ and ω in the dual problem in Eq 13. In practice these dual constraints
turn out to be essential for efficient optimization and constitute the core contribution of this paper.

6 Solving the Dual via Cutting Planes

The chief complexity of the dual LP is contained in the constraints including Z which encodes
non-negativity of an exponential number of cuts of the graph represented by the columns of Z. To
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circumvent the difficulty of explicitly enumerating the columns of Z, we employ a cutting plane
method that efficiently searches for additional violated constraints (columns of Z) which are then
successively added.

Let Ẑ denote the current working set of columns. Our dual optimization algorithm iterates over
the following three steps: (1) Solve the dual LP with Ẑ, (2) find the most violated constraint of the
form (θl + λl + ωl−1 − ωl) · Z ≥ 0 for layer l, (3) Append a column to the matrix Ẑ for each
such cut found. We terminate when no violated constraints exist or a computational budget has been
exceeded.

6.1 Finding Violated Constraints

Identifying columns to add to Ẑ is carried out for each layer l separately. Finding the most violated
constraint of the full problem corresponds to computing the minimum-weight cut of a graph with
edge weights θl + λl + ωl−1 − ωl. If this cut has non-negative weight then all the constraints are
satisfied, otherwise we add the corresponding cut indicator vector as an additional column of Z.

To generate a new constraint for layer l based on the current Lagrange multipliers, we solve

zl = arg min
z∈CUT

∑
e∈E

(θle + λle + ωl−1
e − ωle)ze (14)

and subsequently add the new constraints from all layers to our LP, Ẑ ← [Ẑ, z1, z2, . . . zL].
Unlike the multicut problem, finding a (two-way) cut in a planar graph can be solved exactly by a
reduction to minimum-weight perfect matching. This is a classic result that, e.g. provides an exact
solution for the ground state of a 2D lattice Ising model without a ferromagnetic field [13, 8, 9, 10]
in O(N

3
2 logN) time [15].

Computing a lower bound: At a given iteration, prior to adding a newly generated set of constraints
we can compute the total residual constraint violation over all layers of hierarchy by ∆ =

∑
l(θ

l +
λl + ωl−1 − ωl) · zl. In Appendix D we demonstrate that the value of the dual objective plus 3

2∆
is a lower-bound on the relaxed ultrametric rounding problem in Eq 11. Thus, as the costs of the
minimum-weight matchings approaches zero from below, the objective of the reduced problem over
Ẑ approaches an accurate lower-bound on optimization over Ω̄L

6.2 Implementation Details

Expanding generated cut constraints: When a given cut zl produces more than two connected
components, we found it useful to add a constraint corresponding to each component, following the
approach of [20]. Let the number of connected components of zl be denoted M . For each of the M
components then we add one column to Z; one corresponding to the cut that isolates each connected
component from the rest. This allows more flexibility in representing the final optimum multicut as
superpositions of these components. In addition, we also found it useful in practice to maintain a
separate set of constraints Ẑl for each layer l. Maintaining independent constraints Ẑ1, Ẑ2, . . . , ẐL

can result in a smaller overall LP.

Speeding convergence of ω: We found that adding an explicit penalty term to the objective that
encourages small values of ω speeds up convergence dramatically with no loss in solution quality.
This penalty is scaled by a parameter ε = 10−4 which is chosen to be extremely small in magnitude
relative to the values of θ so that it only has an influence when other no other “forces” are acting on a
given term in ω. With this refinement, the LP solved at each iteration of the cutting plane algorithm
is given as follows.

max
ω≥0,λ≥0

L∑
l=1

−λl1− ε‖ω‖1 (15)

s.t. θ−l ≤ −λl ∀l
− (ωl−1 − ωl) ≤ θ+l ∀l
(θl + λl + ωl−1 − ωl)Z ≥ 0 ∀l
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Algorithm 1 Dual Ultrametric Rounding via Cutting Planes

Ẑl ← {} ∀l, residual← −∞
while residual < 0 do
{ω}, {λ} ← Solve Eq 15 given Ẑ
residual = 0
for l = 1 : L do
zl ← arg minz∈CUT(θl + λl + ωl−1 − ωl) · z
residual← residual + 3

2 (θl + λl + ωl−1 − ωl) · zl
{z(1), z(2), . . . , z(M)} ← isocuts(zl)
Ẑl ← Ẑl ∪ {z(1), z(2), . . . , z(M)}

end for
end while

6.3 Primal Decoding

Algorithm 1 gives a summary of the dual solver which at termination produces a lower-bound as
well as a set of cuts described by the constraint matrices Ẑl. The subroutine isocuts(zl) computes
the set of cuts that isolate each connected component of zl

To generate a hierarchical clustering, we solve the primal, Eq 11, using this reduced set Ẑ in order to
recover a fractional solution X l

e = min(1,maxm≥l(Ẑ
mγm)e). We use an LP solver (IBM CPLEX)

which provides this primal solution “for free” when solving the dual in Algorithm 1.

We round this fractional solution to a discrete hierarchical clustering using a simple thresholding
strategy. We threshold the fractional X as follows: X̄ l

e ← [X l
e > t]. We then repair any cut edges

that lie inside a connected component by setting them to zero to assure that X̄ l ∈ MCUT. In our
implementation we test a few discrete thresholds t ∈ {0, 0.2, 0.4, 0.6, 0.8} and take that threshold
that yields X̄ with the lowest cost. After each pass through the loop of Alg. 1 we compute these
upper-bounds and retain the optimum solution observed thus far.

7 Experiments

We applied our algorithm on segmentation problems based on images from the Berkeley Segmen-
tation Data set (BSDS) [16]. To construct our input graph we use superpixels generated by per-
forming an oriented watershed transform on the output of the global probability of boundary (gPb)
edge detector [17]. The vertices of the graph are superpixels and edges connect superpixels that are
neighbors in the image, yielding a planar graph.

We construct base distance costs θ by using the log-odds ratio of the local estimate of boundary
contrast given by averaging gPb classifier output over the boundary between neighboring super-
pixels to yield a value gPbe. We truncated extreme values to enforce that gPbe ∈ [ε, 1 − ε] with
ε = 0.001. We set θe = log

(
1−gPbe
gPbe

)
+ log

(
1−ε
ε

)
The additive offset assures that θe ≥ 0. In our

experiments we use a fixed set of eleven distance threshold levels {δl} that uniformly spanned the
useful range of threshold values [9.6, 12.6]. We weighted edges proportionally to the length of the
corresponding boundary in the image. We performed dual cutting plane iterations until convergence
or 2000 seconds had passed. Lower-bounds for the BSDS segmentations were on the order of −103

or −104. We terminate when the total residual is greater than −2× 10−4. All codes were written in
MATLAB using the Blossom V implementation of minimum-weight perfect matching [15] and the
IBM ILOG CPLEX LP solver with default options.

7.1 Qualitative and Quantitative Results on Images

Figs 2, 3 show qualitative results for two images from the BSDS test data set. We display segmenta-
tions at eleven thresholds and color connected components of the segmentation at each layer with the
average pixel color over that component. In Fig 4 we show the comparison of our ultrametric round-
ing algorithm (Alg 1,denoted UM) with the baseline ultrametric contour maps algorithm (UCM)

7



Figure 2: Top left to bottom right: A hierarchical image segmentation for a BSDS test set image
showing eleven layers listed from fine to coarse. The original image is in the top left.

with and without length weighting [5]. UCM performs agglomerative clustering algorithm, succes-
sively merging segments with small boundary strengths to produce a hierarchical segmentation. We
display a precision recall plot on the Berkeley Segmentation Data Set test set.

In terms of segmentation accuracy, UM rounding performs nearly identically to the state of the
art UCM algorithm with regards to precision recall which is the standard measure employed in
the literature. However we show some improvements in high precision range of the curve which
corresponds to the coarse segmentations. It is worth noting that the BSDS benchmark does not
provide strong penalties for small leaks between two segments when the total number of boundary
pixels involved is small. Our algorithm may find strong application in domains where the local
boundary signal is noisier (e.g., biological imaging) or when under-segmentation is more heavily
penalized.

7.2 Objective Cost and Timing Experiments

In Fig 5,6,we display plots demonstrating the performance of the optimization routine according to
eight different measures. The most interesting is the quality of the integer solution. We found the
upper-bound given by the cost of the decoded integer solution and the lower-bound estimated by the
dual LP are very close. The integrality gap is typically within .01% of the lower-bound and never
more than .04 %. Convergence of the dual is achieved quite rapidly; most instances require less than
100 iterations to converge with roughly linear growth in the size of the LP at each iteration as cutting
planes are added.

7.3 Cost Comparison with Ultrametric Contour Maps

We also compared the ultrametric rounding cost of solutions generated by our approach with costs
associated with hierarchical clusterings produced by the Ultrametric Contour Map (UCM) length-
weighted clusterings. This test is perhaps unfair as UCM was not necessarily designed to minimize
the ultrametric rounding cost but provides a baseline for understanding the rounding objective.

UCM provides an ultrametric solution denoted U ∈ R|E| where U is indexed by e and scaled to lie
in the range [0, 1] with smaller values indicating lower likelihood of a boundary. For each level l, we
select a threshold q ∈ [0, 1] which is used to threshold the UCM ultrametric U . We choose a value
for q which minimizes the ultrametric rounding error, formally written as:

min
ql

∑
e∈E

θle[Ue > ql] (16)

8



Figure 3: Top left to bottom right: A hierarchical image segmentation for a BSDS test set image
showing eleven layers listed from fine to coarse. The original image is in the top left.
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Figure 4: We show the comparison of our ultrametric rounding algorithm (UM) with the baseline
ultrametric contour maps algorithm (UCM) with and without length weighting [5]. We display
precision recall plots on the Berkeley Segmentation Data Set (BSDS), Observe that UM performs
nearly identically to the state of the art UCM algorithm with regards to precision recall. However
we do observe small but significant improvements in high precision range of the curve. We note the
points plotted on the precision recall curve for UM with black dots. Use of length weighted costs
are indicated by +L.

Thus the total cost for a given image is:
L∑
l=1

min
ql

∑
e∈E

θle[Ue > ql] (17)

Observe that θle < θl+1
e and thus we are guaranteed qle ≤ ql+1

e .

In Fig 7 we display a histogram, computed over test image problem instances, of the cost of UCM
solutions relative to those produced by UM rounding. A value of 1 indicates equality. A value of
greater than 1 indicates UCM providing lower cost while a value less than 1 indicated UM providing
lower cost. In no instance did UCM outperform our UM algorithm though our UM algorithm often
outperformed UCM.

7.4 Segmentation performance and running time

While our cutting-plane approach is slower than agglomerative clustering, it is not necessary to wait
for convergence in order to produce high quality results. We found that while the upper and lower
bounds decrease as a function of time the clustering performance as measured by precision-recall
stabilized is often nearly optimal after only ten seconds and is very stable after that. We show PR
curves at several time points in Fig 8. In Fig 9 we shows a plot of the maximum f-measure of UM
rounding as a function of time relative to the final values of UCM with and without length weighting.

7.5 Importance of enforcing hierarchical constraints

Although independently finding multicuts at different thresholds often produces hierarchical cluster-
ings, this is by no means guaranteed. We ran Algorithm 1 while enforcing that ωle = 0 ∀[e ∈ E, l].
This allows the multicut problem for each layer to be solved independently as if the others did not
exist. To solve these multicut problem instances we used the solver of [20]. In our data set of 200
images and 11 layers per problem results in 2200 total multicut instances. The less constrained
single-layer solver produced a lower or equal cost multicut compared to the hierarchical solver in
99.77 percent of problem instances. In Fig 10 we show examples of hierarchy constraints being vio-
lated severely on multiple images when solving with ω forced to zero. Introduction of the hierarchy
constraint fixes such errors.
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Figure 5: (a) We display the portion of the problems that have not terminated as a function of
cutting-plane iteration. We observe that dual optimization always requires the solution of at least
a few LP’s for most problems to converge. (b) We display the portion of the problems that have
not terminated as a function of time. We observe that dual optimization terminates rapidly for most
problem instances. (c) We plot the value of the average residual constraint violation as a function of
time averaged over images that have yet to terminate. Instances that terminated before 2000 seconds
passed have residuals on the order of 10−6 or less. We plot the best observed value in solid blue
and the current value with dotted blue. We normalize the residual for a given instance by dividing
by the magnitude of the tightest lower bound for that instance. We indicate the portion of instances
that have yet to terminate using black bars. The bars are associated with the percent of instances
incomplete with the bars from left to right being [95,85,75,65,.....5]. Observe that the value of the
residual decays rapidly. (d) We plot the average amount of time per cutting-plane iteration. This
includes solving one LP and finding the most violated constraint and extracting cuts for each layer.
We use black bars as in (c) to indicate the percent of problems instances that have not terminated
after a given time point.
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Figure 6: (a) We show a histogram plot over image problem instances that describes the gap between
the maximum lower bound computed for that image and the final rounded integral solution. To
normalize the energy gap, we scale by the value of the maximum lower bound identified for that
problem instance. We observe that the rounded integer solutions are near exact or exact on all
images. (b) Scatter plot of the run time in (sec) versus the minimum magnitude residual (residual is
always non-positive). We normalize this by dividing by the maximum lower bound over the coarse
optimization (denoted LB) of the problem instance. Residual was negligible for all except 1 of
200 problem instances which did not terminate within 2000 seconds. (c): We show the value of
the integer solution and lower bound as a function of time averaged over problem instances. We
normalize by computing the absolute value of the gap between each bound and the magnitude of the
maximum lower bound discovered. We plot the value of the upper/lower bounds in blue/red. We
plot in green the value of the integer solution but include time for rounding the solution after each
iteration. We use dotted/solid lines to indicate the current/best value observed thus far. We indicate
the percentage of instances that have yet to terminate using black bars marking [95, 85, 75, 65, .....5]

percent. (d) We show the number of constraints (columns of Ẑl summed over layers and averaged
over problem instances) as a function of running time. We use black bars as in c to indicate the
proportion of the problems instances that have not converged at a given time point.
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Figure 7: We compare the quality of the ultrametric rounding produced by our ultrametric round-
ing (UM) with the baseline ultrametric contour maps algorithm (UCM) in terms of the ultrametric
rounding objective. We plot a histogram of the ratio of objective values of UCM and UM. All ratios
were less than 1 showing that in no instances did UM produce a worse solution than UCM
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(a) Precision Recall Curve after 5 seconds
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(b) Precision Recall Curve after 10 seconds
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(c) Precision Recall Curve after 15 seconds
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(d) Precision Recall Curve after 30 seconds

Figure 8: Anytime performance: We show the precision-recall curve of for segmentations derived
from the lowest-cost solution decoded at a particular amount of execution time (green curves), stop-
ping at T=5,10,15 and 30 seconds respectively. We conclude that high-tolerance numerical conver-
gence is not necessary to achieve good quality segmentations. For comparison, we plot the UCM
with and without length weighting in red and blue respectively and the UM results after all problems
terminate in black.
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Figure 9: Anytime performance: We plot the maximum F-measure on the BSDS benchmark as
a function of run-time. Clock time includes lower-bound optimization and upper-bound decoding
after each iteration. We also include the maximum F-measure produced by UCM with and without
length weighting. The final F-measures achieved by UCM, UCM+L and UM are 0.728, 0.726, 0.718
respectively.

8 Conclusion

We have introduced a new method for ultrametric rounding on planar graphs that is applicable to
hierarchical image segmentation. Our contribution is a dual cutting plane approach that exploits
the introduction of novel slack terms that allow for representing a much larger space of solutions
with relatively few cutting planes. This yields an efficient algorithm that provides rigorous bounds
on the quality the resulting solution. We empirically observe that our algorithm rapidly produces
compelling image segmentations along with lower- and upper-bounds that are nearly tight on the
benchmark BSDS test data set.

References

[1] Nir Ailon and Moses Charikar. Fitting tree metrics: Hierarchical clustering and phylogeny. In
Foundations of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on, pages
73–82. IEEE, 2005.

[2] Bjoern Andres, Joerg H. Kappes, Thorsten Beier, Ullrich Kothe, and Fred A. Hamprecht. Prob-
abilistic image segmentation with closedness constraints. In Proceedings of the Fifth Interna-
tional Conference on Computer Vision (ICCV-11), pages 2611–2618, 2011.

[3] Bjoern Andres, Thorben Kroger, Kevin L. Briggman, Winfried Denk, Natalya Korogod, Gra-
ham Knott, Ullrich Kothe, and Fred. A. Hamprecht. Globally optimal closed-surface segmen-
tation for connectomics. In Proceedings of the Twelveth International Conference on Computer
Vision (ECCV-12), 2012.

[4] Bjoern Andres, Julian Yarkony, B. S. Manjunath, Stephen Kirchhoff, Engin Turetken, Char-
less Fowlkes, and Hanspeter Pfister. Segmenting planar superpixel adjacency graphs w.r.t.
non-planar superpixel affinity graphs. In Proceedings of the Ninth Conference on Energy Min-
imization in Computer Vision and Pattern Recognition (EMMCVPR-13), 2013.

[5] Pablo Arbelaez, Michael Maire, Charless Fowlkes, and Jitendra Malik. Contour detection and
hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell., 33(5):898–916,
May 2011.

[6] Yoram Bachrach, Pushmeet Kohli, Vladimir Kolmogorov, and Morteza Zadimoghaddam. Op-
timal coalition structures in graph games. CoRR, abs/1108.5248, 2011.

14



UM

CC

UM

CC

UM

CC

Figure 10: Examples where hierarchically nested segmentations give more semantically meaningful
groupings of the image. The proposed ultrametric rounding (UM) enforces consistency across levels
while performing independent correlation clustering (CC) at each threshold does not guarantee a
hierarchical segmentation (c.f. first image). In the second image, hierarchical segmentation (UM)
preserves semantic parts of the two birds while merging the background regions. In the third image,
CC merges the background clutter into foreground leaf region at a very low threshold due to a single
weak edge.

15



[7] Shai Bagon and Meirav Galun. Large scale correlation clustering. In CoRR, abs/1112.2903,
2011.

[8] F Barahona. On the computational complexity of ising spin glass models. Journal of Physics
A: Mathematical, Nuclear and General, 15(10):3241–3253, april 1982.

[9] F Barahona. On cuts and matchings in planar graphs. Mathematical Programming, 36(2):53–
68, november 1991.

[10] F Barahona and A Mahjoub. On the cut polytope. Mathematical Programming, 60(1-3):157–
173, September 1986.

[11] Thorsten Beier, Thorben Kroeger, Jorg H Kappes, Ullrich Kothe, and Fred A Hamprecht. Cut,
glue, and cut: A fast, approximate solver for multicut partitioning. In Computer Vision and
Pattern Recognition (CVPR), 2014 IEEE Conference on, pages 73–80, 2014.

[12] Michel Deza and Monique Laurent. Geometry of cuts and metrics, volume 15. Springer
Science & Business Media, 1997.

[13] Michael E. Fisher. On the dimer solution of planar ising models. Journal of Mathematical
Physics, 7(10):1776–1781, 1966.

[14] Sungwoong Kim, Sebastian Nowozin, Pushmeet Kohli, and Chang Dong Yoo. Higher-order
correlation clustering for image segmentation. In Advances in Neural Information Processing
Systems,25, pages 1530–1538, 2011.

[15] Vladimir Kolmogorov. Blossom v: a new implementation of a minimum cost perfect matching
algorithm. Mathematical Programming Computation, 1(1):43–67, 2009.

[16] David Martin, Charless Fowlkes, Doron Tal, and Jitendra Malik. A database of human seg-
mented natural images and its application to evaluating segmentation algorithms and measur-
ing ecological statistics. In Proceedings of the Eighth International Conference on Computer
Vision (ICCV-01), pages 416–423, 2001.

[17] David R. Martin, Charless C. Fowlkes, and Jitendra Malik. Learning to detect natural image
boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach.
Intell., 26(5):530–549, May 2004.

[18] Julian Yarkony. Analyzing planarcc. NIPS 2014 workshop, 2014.

[19] Julian Yarkony, Thorsten Beier, Pierre Baldi, and Fred A Hamprecht. Parallel multicut seg-
mentation via dual decomposition. In New Frontiers in Mining Complex Patterns (NFMCP
2014), 2014.

[20] Julian Yarkony, Alexander Ihler, and Charless Fowlkes. Fast planar correlation clustering
for image segmentation. In Proceedings of the 12th European Conference on Computer Vi-
sion(ECCV 2012), 2012.

[21] Chong Zhang, Julian Yarkony, and Fred A. Hamprecht. Cell detection and segmentation us-
ing correlation clustering. In Medical Image Computing and Computer-Assisted Intervention
MICCAI 2014, volume 8673, pages 9–16, 2014.

A Expanded multicut objective and the cycle inequalities

In this appendix we show that for planar graphs, solving the expanded multicut optimization pro-
duces solutions that satisfy the cycle inequalities and have equivalent cost when truncated to lie in
the unit hypercube. This establishes an equivalence between the expanded multicut optimization

min
γ≥0
β≥0

θ · Ẑγ − θ− · β s.t. Ẑγ − β ≤ 1 (18)

and the cycle polytope relaxation
min
X∈CYC

θ ·X (19)

for the case of planar graphs.
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A.1 Multicut cone and Cycle cone

Recall that CUT and MCUT denote the set of binary indicator vectors that represent valid two-way
cuts and multicuts respectively for a specified graph G. We denote the conic hulls of these sets by

CUT4 =

{∑
i

Xiγi : γi ≥ 0, Xi ∈ CUT

}
(20)

MCUT4 =

{∑
i

Xiγi : γi ≥ 0, Xi ∈ MCUT

}
(21)

(22)

Finally, we denote the cone of positive vectors satisfying the cycle inequalities by:

CYC4 =

{
X ≥ 0,

∑
e∈c−ê

Xe ≥ Xê,∀c ∈ C, ê ∈ c

}
(23)

We now state a two basic results concerning these cones.

Proposition 1: MCUT4 = CUT4

Every cut indicator is a multicut indicator, hence CUT4 ⊂ MCUT4. On the other hand, any
multicut X ∈ MCUT can be written as a conic combination of cuts that isolate each connected
component with weight 1

2 so that X = 1
2

∑
i Z

i with Zi ∈ CUT so MCUT ⊂ CUT4 and hence
MCUT4 ⊂ CUT4.

Proposition 2: If G is planar, CUT4 = CYC4

A stronger version of this result due to [10] states that for a graph G containing no K5 minor, the
set of cycle inequalities over chordless circuits is sufficient to specify the facets of the cut polytope
for G. See [12] (p. 434) for a detailed discussion.

A.2 The projected solution min(1, Zγ) satisfies the cycle inequalities

As a result of the basic properties of the cut cone, for any γ ≥ 0, we have Zγ ∈ CYC4 for planar
graphs. Let X = min(1, Zγ) be a solution to the expanded multicut objective and (Zγ)e denote the
value for a particular edge e. It must then be that X ∈ CYC4 since:∑

e∈c−ê

min(1, (Zγ)e) ≥ min(1,
∑
e∈c−ê

(Zγ)e) (24)

≥ min(1, (Zγ)ê) ∀c ∈ C, ê ∈ c (25)

The first inequality arises from pulling the min outside the sum. The second inequality holds since
Zγ ∈ CYC4

A.3 The projected solution min(1, Zγ) achieves an objective cost no greater than that of Zγ

We now demonstrate that the fractional multicut X = min(1, Zγ) given by projecting the solution
Zγ yields a solution with an equal or smaller objective value.

Recall that β is a positive slack variable that allows corresponding edge indicators to take on a value
greater than 1.

Zγ − β ≤ 1 (26)

Since the objective is non-decreasing in β, for a given setting of γ an optimal setting of the slack
variables is given by:

β∗ = max(0, Zγ − 1) (27)
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We split the objective into positive and negative edges and write:

θ · Zγ − θ− · β = θ+ · Zγ + θ− · Zγ − θ− · β (28)

= θ+ · Zγ + θ− ·min(1, Zγ) (29)

≥ θ+ ·min(1, Zγ) + θ− ·min(1, Zγ) (30)
= θ ·min(1, Zγ) (31)
= θ ·X (32)

which establishes that projecting Zγ onto the unit cube yields a fractional multicut solution that
does not increase the objective.

B Expanded ultrametric objective and fractional ultrametrics

Recall the set of fractional ultrametrics is defined as follows

ΩL =
{
{X1, X2, . . . XL} : X l ∈ CYC, X l ≥ X l+1 ∀l

}
(33)

In analogy with the previous appendix, we show the equivalence of the expanded ultrametric round-
ing problem:

min
γ≥0
β≥0
α≥0

L∑
l=1

θl · Zγl +

L∑
l=1

−θ−l · βl +

L−1∑
l=1

θ+l · αl (34)

s.t. Zγl+1 + αl+1 ≤ Zγl + αl ∀l < L

Zγl − βl ≤ 1 ∀l (35)

with the relaxed problem:

min
X∈ΩL

L∑
l=1

θl ·X l (36)

Given an optimal solution to the expanded ultrametric rounding problem specified by (γ, α, β), we
produce a fractional ultrametric H by the projection operation:

H l = min(1,max
m≥l

(Zγm)) = max(H l+1,min(1, (Zγl))) (37)

We show that the resulting projection H yields a valid fractional ultrametric H ∈ ΩL whose cost is
no greater than the cost of the corresponding solution to the expanded objective.

B.1 Projecting expanded solutions into ΩL

By construction, H satisfies the hierarchical constraint H l ≥ H l+1. We show that H l ∈ CYC by
induction. In the previous appendix, we established that HL = min(1, ZγL) ∈ CYC. Observe that
each H l for l < L is the coordinate-wise max of H l+1 and min(1, Zγl), both of which are in CYC
so we only need show that CYC is closed under coordinate-wise maximum.

Let X1 and X2 be two elements of CYC and X3 = max(X1, X2). We have ∀c ∈ C, ê ∈ c∑
e∈c−ê

X3
e =

∑
e∈c−ê

max(X1
e , X

2
e ) (38)

≥ max(
∑
e∈c−ê

X1
e ,
∑
e∈c−ê

X2
e ) (39)

≥ max(X1
ê , X

2
ê ) = X3

ê (40)
(41)

where the first inequality arises from pulling the max outside the sum and the second because X1

and X2 each satisfy the cycle inequality. Hence X3 ∈ CYC.
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B.2 The cost of H is no greater than that of {γ, α, β}

Fixing an optimal solution to the expanded ultrametric problem specified by γ we first note that the
optimal values of β and α are given by:

βl = max(0, Zγl − 1) (42)

αl = max
m≥l

(Zγm − Zγl) (43)

The formula for α can be developed by starting from layer L and working down, setting α to the
smallest possible value needed to satisfy the inter-layer constraints for a given γ.

αL = 0

αL−1 = max(0, ZγL − ZγL−1)

αL−2 = max(0, ZγL − ZγL−2, ZγL−1 − ZγL−2)

. . . (44)

Since the objective is non-decreasing in α and β, these values are the smallest values for which the
constraints are satisfied.

Plugging in the settings of the slack variables for each layer l we have:

θl · Zγl − θ−l · βl + θ+l · αl

= (θ+l + θ−l) · Zγl − θ−l ·max(0, Zγl − 1) + θ+l ·max
m≥l

(Zγm − Zγl)

= θ+l · (Zγl + max
m≥l

(Zγm − Zγl)) + θ−l · (Zγl −max(0, Zγl − 1))

= θ+l ·max
m≥l

Zγm + θ−l ·min(1, Zγl)

≥ θ+l ·min(1,max
m≥l

Zγm) + θ−l ·min(1, Zγl)

≥ θ+l ·min(1,max
m≥l

Zγm) + θ−l ·min(1,max
m≥l

Zγm)

= θl ·H l

where the second inequality holds because the max introduced is multiplied by a negative weight.
Since projection can only remain the same or decrease the cost of each layer, the total objective must
also be no greater than the expanded solution:∑

l

θl · Zγl − θ−l · βl + θ+l · αl ≥
∑
l

θl ·H l

C Derivation of Dual Problem

Here we give a derivation of the dual objective over the expanded ultrametric cut cone which we
utilize to provide an efficient column generation approach based on perfect matching.

We introduce two sets of Lagrange multipliers {ω1 . . . ωL−1} and {λ1 . . . λL} corresponding to the
positivity constraints in Eq 11.

min
γ≥0
β≥0
α≥0

max
ω≥0,λ≥0

L∑
l=1

θlZ · γl −
L∑
l=1

θ−lβl +

L−1∑
l=1

θ+lαl (45)

+

L−1∑
l=1

ωl(Z · γl+1 + αl+1 − Zγl − αl)

+

L∑
l=1

λl(Z · γl − 1− βl)
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For notational convenience, we set αL = 0 and ω0 = 0. We reorder the terms of the Lagrangian in
terms of summations over the primal variable indices.

min
γ≥0
β≥0
α≥0

max
ω≥0,λ≥0

L∑
l=1

−λl1 +

L∑
l=1

(−θ−l − λl)βl (46)

+

L∑
l=1

(θ+l + ωl−1 − ωl)αl +

L∑
l=1

(θl + λl + ωl−1 − ωl) · Zγl

Each primal variable yields a positivity constraint in the dual.

max
ω≥0,λ≥0

L∑
l=1

−λl1 (47)

s.t. (−θ−l − λl) ≥ 0 ∀l
(θ+l − ωl + ωl−1) ≥ 0 ∀l
(θl + λl + ωl−1 − ωl) · Z ≥ 0 ∀l

This dual LP can be interpreted as finding modification of the original edge weights θl so that every
possible cut of each resulting graph has non-negative weight. Observe that the introduction of the
two slack terms α and β in the primal problem (Eq 11) results in bounds on the Lagrange multipliers
λ and ω in the dual problem in Eq 47. The constraint (−θ−l−λl) ≥ 0 is a result of the introduction
of βl. The constraint ωl−1 − ωl ≤ θ+l is a result of the introduction of αl. In practice these bounds
turn out to be essential for efficient optimization and are a key contribution of this paper.

It is also informative to make the substitution µl = ωl−ωl−1 which yields a slightly more symmetric
formulation

max

L∑
l=1

−λl1 (48)

s.t. 0 ≤ λl ≤ −θ−l ∀l

0 ≤
l∑

m=1

µm ∀l (49)

µl ≤ θ+l ∀l
(θl + λl − µl) · Z ≥ 0 ∀l

D Producing a genuine lower bound on the optimal integer solution

Consider optimizing the Lagrangian over the set of integer solutions X ∈ Ω̄L. In this case the α, β
terms disappear. For a given setting of the remaining multipliers ω, λ we have a lower bound on the
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optimal integer solution given by:

L(ω, λ) = min
X∈Ω̄L

L∑
l=1

(θlX̄ l + ωl(X̄ l+1 − X̄ l) + λl(X̄ l − 1))

= min
X∈Ω̄L

L∑
l=1

(θlX̄ l + ωl−1X̄ l − ωlX̄ l + λlX̄ l − λl1)

= min
X∈Ω̄L

L∑
l=1

(θl + ωl−1 − ωl + λl)X̄ l − λl1

=

L∑
l=1

−λl1 + min
X∈Ω̄L

L∑
l=1

(θl + ωl−1 − ωl + λl)X̄ l

≥
L∑
l=1

−λl1 +

L∑
l=1

min
Xl∈MCUT

(θl + ωl−1 − ωl + λl)X̄ l

≥
L∑
l=1

−λl1 +

L∑
l=1

3

2
min

X̄l∈CUT
(θl + ωl−1 − ωl + λl)X̄ l (50)

where the first inequality arises from dropping the constraints between layers of the hierarchy and
the second inequality holds for planar graphs where the the optimal multi-cut is bounded below by
3
2 the value of the optimal two-way cut (see [20]).
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