
Software Tools & Methods
Class 5

Lecturer: Greg Bolcer, greg@bolcer.org

Summer Session 2009

ELH 110 9am-11:50am

Week 4, Slide 2

Overview

• Reading for today was on UML, Larman

• Last Class: UML

• Up next
– Quick Review

– More UML

– Class, Object, Package diagrams

– Design Patterns

REVIEW
Software Tools and Methods

Iterative Development

• The development is carried out as a series of
stages, each with its own design,
implementation and testing phase.

• The output of each stage is a working,
production-quality system but with reduced
functionality.

• The customer is involved in evaluating each of
the stages.

• Can accommodate changing requirements.

INFO 620 Lecture #1 5

Iterative Development

• System is defined by use cases
– A “use case” is a major way of using the system, or

a major type of functionality

• High level planning needs to
– Define what are the major use cases

– Determine in what order they will be done

– Estimate development time for each use
case (“timeboxing”)

Larman
p. 15

Agile development

• A family of iterative development techniques
that emphasise response to changing
requirements (the opposite of the waterfall
model)

• Makes heavy use of of UML for sketching.
– Usually by a group of developers using white-

boards.
– The main purpose of using UML in this way is to

understand the problems and solutions rather
than to document them.

MORE UML
Software Methods & Tools

INFO 620 Lecture #1 8

UML Goals

• The goals of UML are:
– To model systems using OO concepts

– To establish an explicit coupling between
conceptual and software artifacts (objects)

– To address the issues of scale inherent in complex
mission critical systems

– To create a modeling language usable by both
humans and machines

Week 5, Slide 9

Class Diagram

INFO 620 Lecture #1 10

UML Method

• A method needs a language, and a process to
describe how to use the language

Method = Language + Process

• The Rational Unified Process (RUP or UP) was
designed to be used with UML
– UP is an iterative process

– Provides a structure for system development

INFO 620 Lecture #1 11

UP Phases

• Inception

• Elaboration

• Construction

• Transition

Larman
p. 19

Week 5, Slide 12

More in Larman

• Keywords («guillemets»)
– Stereotypes

– Examples: calls, interface, permit,…

• Responsibilities
– Another compartment in class

– Items prefixed by --

• Template classes

Week 5, Slide 13

Examples
«call»Window

a dependency on calling on operations of
the operations of a Clock

Clock

getTime()
...

«create»A

a dependency that A objects create B objects

B

...

«interface»
Timer

getTime ()

Clock 1

...

getTime ()
...

Week 5, Slide 14

Hints for Class Diagrams

• Remember: models are for communication
• Remember: include only important stuff
• How do I find classes, attributes and so on?

– Classes often correspond to nouns
– Associations often correspond to verbs

• A class should
– Represent a coherent concept

• Principle: Low Coupling, High Cohesion
– Have a small, well-defined set of responsibilities
– Be named with a singular noun that says what each

instance of the class is
– Have no more than 10-20 operations

Week 5, Slide 15

Hints for Class Diagrams
• Class diagrams should

– have a single purpose

– have a title that expresses the purpose

– show only things that are relevant for this
purpose

• Avoid
– cyclical dependencies, if possible

– generalization hierarchies with more than 5
levels

– crossing edges

Week 5, Slide 16

Hints for Class Diagrams

• Use colors judiciously
– to highlight and group things

– unless you have to print it in black-and-white!

• Lay out classes in a meaningful way
– similar classes close to each other

– top: closer to the user, bottom: closer to the data
structures

Week 5, Slide 17

Object Diagrams

• Show instantiation or specification of classes
• Associated with a particular use or instance of the

model
• Differences between Classes and Objects

– Name:class is underlined
– Attributes and operations included as needed
– Fields have data added

• Useful for showing interactions between
interfaces, abstract classes, etc.
– Where functionality is not clear until instantiation

Week 5, Slide 18

Example: Class to Object Diagrams

ProctorSilex
:Toaster

Cinderella
:Person

owns

Week 5, Slide 19

Package Diagrams

• Package is a grouping construct
– Most commonly used for class diagrams, but can

be used with any UML diagram or elements

– Used to create a hierarchy or higher level of
abstraction

– Corresponds to package in Java

• Each package represents a namespace
– Like Java, can have classes with same name in

different packages

Week 5, Slide 20

Representing Packages

Week 5, Slide 21

Code to UML

public class SalesLineItem
{
private int quantity ;

private ProductDescription description ;

public SalesLineItem (ProductDescription desc , int qty) { ... }

public Money getSubtotal () { ... }

}

Week 5, Slide 22

Code to UML

public class SalesLineItem
{
private int quantity ;

private ProductDescription description ;

public SalesLineItem (ProductDescription desc , int qty) { ... }

public Money getSubtotal () { ... }

}

SalesLineItem

quantity : Integer

getSubtotal () : Money

ProductDescription

description : Text
price : Money
itemID : ItemID

...

1

description

Week 5, Slide 23

Code to UML

public class SalesLineItem
{
private int quantity ;

private ProductDescription description ;

public SalesLineItem (ProductDescription desc , int qty) { ... }

public Money getSubtotal () { ... }

}

extend BasicLineItem implements Item

Week 5, Slide 24

Code to UML

SalesLineItem

quantity : Integer

getSubtotal()
1..*

Sale

isComplete : Boolean
time : DateTime

becomeComplete()
makeLineItem()
makePayment()
getTtotal()

public class Sale
{
...

private List lineItems = new ArrayList();
}

A collection class is necessary to
maintain attribute visibility to all the
SalesLineItems.

lineItems

DESIGN PATTERNS
Software Tools & Methods

Week 5, Slide 26

Design Patterns

• Reusable design component
• First codified by the Gang of Four in 1995

– Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides

• Concept taken from architecture
– “A Pattern Language” by Christopher Alexander
– “…a three-part rule, which expresses a relation

between a certain context, a problem, and a solution.”
• Original Gang of Four book described 23 patterns

– More have been added
– Other authors have written books

Week 5, Slide 27

Design Patterns Template

• Context
– General situation in which the

pattern applies

• Problem
– The main difficulty being tackled

• Forces
– Issues or concerns that need to

be considered. Includes criteria
for evaluating a good solution.

• Solution
– Recommended way to solve the

problem in the context. The
solution “balances the forces”

• The following are optional

• Antipatterns
– Common mistakes to avoid

• Related Patterns
– Similar patterns; could be

alternated solutions or work with
the pattern

• References

– Source of pattern

– Who developed or inspired
the pattern

Week 5, Slide 28

Gang of Four Design Patterns

• Creational Patterns
– Abstract Factory
– Builder
– Factory Method
– Prototype
– Singleton

• Structural Patterns
– Adapter
– Bridge
– Composite
– Decorator
– Façade
– Flyweight
– Proxy

• Behavioral Patterns
– Chain of Responsibility

– Command

– Interpreter

– Iterator

– Mediator

– Memento

– Observer

– State

– Strategy

– Template Method

– Visitor

Week 5, Slide 29

Patterns in Java

• Chain of Responsibility
– Exception handling

– Try/catch/throw blocks

• Iterator
– Container classes

• Observer
– Listeners in GUIs

Week 5, Slide 30

Gang of Four Design Patterns

• Creational Patterns
– Abstract Factory
– Builder
– Factory Method
– Prototype
– Singleton

• Structural Patterns
– Adapter
– Bridge
– Composite
– Decorator
– Façade
– Flyweight
– Proxy

• Behavioral Patterns
– Chain of Responsibility

– Command

– Interpreter

– Iterator

– Mediator

– Memento

– Observer

– State

– Strategy

– Template Method

– Visitor

Façade
Singleton

Façade
Adapter

Observer
Chain of Responsibility

Façade
Adapter

Façade
Adapter

Week 5, Slide 32

The Observer Pattern

•Context
–When an association is created between two classes, the

code for the classes becomes inseparable.
–If you want to reuse one class, then you also have to

reuse the other.
•Problem

–How do you reduce the interconnection between
classes, especially between classes that belong to
different modules or subsystems?

•Forces
–You want to maximize the flexibility of the system to the

greatest extent possible

Week 5, Slide 33

The Observer Pattern

Week 5, Slide 34

Observer

•Antipatterns (Don’t do this)
–Connect an observer directly to an observable so

that they both have references to each other.

–Make the observers subclasses of the observable.

•Reference
–Gang of Four

Week 5, Slide 35

Observer in Java

• Observer interface and Observable class exist
– java.util.Observer and java.util.Observable

• But people usually implement their own
– Usually can’t or don’t want to sub-class from Observable

– Can’t have your own class hierarchy and multiple
inheritance is not available

– Has been replaced by the Java Delegation Event Model
(DEM)

• Passes event objects instead of update/notify

• Listener is specific to GUI classes

Week 5, Slide 36

The Façade Pattern

•Context
– Often, an application contains several complex packages.
– A programmer working with such packages has to manipulate

many different classes
•Problem

– How do you simplify the view that programmers have of a complex
package?

•Forces
– It is hard for a programmer to understand and use an entire

subsystem
– If several different application classes call methods of the complex

package, then any modifications made to the package will
necessitate a complete review of all these classes.

Week 5, Slide 37

The Façade Pattern

•Solution

Week 5, Slide 38

The Façade Pattern

• Solution
– Provide a simple interface to a complex

subsystem.
– Decouple the classes of the subsystem from

its clients and other subsystems, thereby
promoting subsystem independence and
portability

Week 5, Slide 39

Using the Façade Pattern

• Hides implementation details
• Promotes weak coupling between the

subsystem and its clients.
• Reduces compilation dependencies in large

software systems

• Does not add any functionality, it just
simplifies interfaces

• Does not prevent clients from accessing the
underlying classes.

Week 5, Slide 40

Façade Example

Week 5, Slide 41

The Singleton Pattern

•Context
–It is very common to find classes for which only one

instance should exist (singleton)
•Problem

–How do you ensure that it is never possible to create
more than one instance of a singleton class?

•Forces
–The use of a public constructor cannot guarantee that no

more than one instance will be created.
–The singleton instance must also be accessible to all

classes that require it

Week 5, Slide 42

The Singleton Pattern

• Solution

Week 5, Slide 43

Singleton

• Example

WindowMgr

theWindowMgr

WindowMgr «private»
getInstance

if (theWindowMgr==null)
theWindowMgr= new WindowMgr();

return theWindowMgr;

«Singleton»

theInstance

getInstance

Constructor for WindowMgr is private
getInstance is public and static
theWindowMgr is private and static

This is the code for getInstance

Pattern

Instantiation
of Pattern

Week 5, Slide 44

Singleton Design Pattern
public class WindowMgr {

private static WindowMgr theWindowMgr;

private String windowLabel;

private WindowMgr (){

}

// Lazy instantiation

public static synchronized WindowMgr getInstance(){

if (theWindowMgr == null){

theWindowMgr = new WindowMgr();

}

return theWindowMgr;

}

...

}

Week 5, Slide 45

Singleton Design Pattern
public class WindowMgr {

// Eager instantiation

private static WindowMgr theWindowMgr = new WindowMgr();

private String windowLabel;

private WindowMgr (){

}

public static synchronized WindowMgr getInstance(){

return theWindowMgr;

}

...

}

Week 5, Slide 46

Questions

• Why do you need the getInstance method? Why isn’t
it enough to just make theWindowMgr static (i.e.
one per class)?
– This results in extra instances of WindowMgr, but still only

one underlying theWindowMgr

• Why do you need an instance of WindowMgr at all?
Why not just make all the methods static?
– May need an instance, e.g. as an observer, for callbacks

– More flexible when you discover later that you don’t want
WindowMgr to be a singleton any more

Week 5, Slide 47

Drawbacks

• Need to add synchronization to getInstance
– Race condition could occur in if block

• Sub-classing becomes complicated
– Private constructor violates normal Java design principles

– Could change constructor to protected, but that would violate the
security provided

• Make a sub-class that is identical to parent

• Can have lots of pseudo-WindowMgrs running around

– Alternatively, each sub-class has own getInstance method

• Also need to prevent cloning by overriding Cloneable interface

• Erich Gamma doesn’t like Singleton any more

Week 5, Slide 48

Singleton Design Pattern

• Related Patterns
– Factory and Façade

• Reference
– Gang of Four

	Software Tools & Methods�Class 5
	Overview
	Review
	Iterative Development
	Iterative Development
	Agile development
	More uml
	UML Goals
	Class Diagram
	UML Method
	UP Phases
	More in Larman
	Examples
	Hints for Class Diagrams
	Hints for Class Diagrams
	Hints for Class Diagrams
	Object Diagrams
	Example: Class to Object Diagrams
	Package Diagrams
	Representing Packages
	Code to UML
	Code to UML
	Code to UML
	Code to UML
	Design patterns
	Design Patterns
	Design Patterns Template
	Gang of Four Design Patterns
	Patterns in Java
	Gang of Four Design Patterns
	Slide Number 31
	The Observer Pattern
	The Observer Pattern
	Observer
	Observer in Java
	The Façade Pattern
	The Façade Pattern
	The Façade Pattern
	Using the Façade Pattern
	Façade Example
	The Singleton Pattern
	The Singleton Pattern
	Singleton
	Singleton Design Pattern
	Singleton Design Pattern
	Questions
	Drawbacks
	Singleton Design Pattern

