Software Tools & Methods
Class 7

Lecturer: Greg Bolcer, greg@bolcer.org
Summer Session 2009
ELH 110 9am-11:50am

Overview

e Last Class
— More Design Patterns
— More Software Process

e This Class
— Scrum Review
— Testing
 Next Class

— eXtreme Programming review
— Use cases

Study Review Final

Silver Bullet Accidental vs Essential difficulties

Design Patterns, understand the description, context, consequences (good
and bad) for at least one design pattern

XP Extreme Practices—12 key practices

— Programmer

— Management

— Customer
Tool chains—be able to name a couple of tools and describe what they do
Scrum, roles, burndown chart, applicability
Use cases, writing scenarios, generating graphs
Testing, QA

— quality metrics,

— Common errors

— Equivalence partitioning, black-box/white-box

— Definitions of error, fault, failure

SILVER BULLETS

Whiteboard Exercise (silver bullet)

What is a silver bullet?

How does it relate to software?

What does it mean to have no silver bullet?
Who coined the term?

When might we expect a silver bullet in
software?

Silver Bullets

e What s a silver bullet?
— Any straightforward solution perceived to have extreme
effectiveness.
e How does it relate to software?

— |Is there some great technological discovery yet to be
invented that will take away all the inherent problems with

building software?
e What does it mean to have no silver bullet?

— "there is no single development, in either technology or
management technique, which by itself promises even one
order-of-magnitude [tenfold] improvement within a
decade in productivity, in reliability, in simplicity.”

— “We can’t expect to see twofold gain in two years.”

Silver Bullets

Who coined the term?

— Fred Brooks, 1986; author of the Mythical Man
Month; No Silver Bullet Refired, 1995

When might we expect a silver bullet in
software?

— An order of magnitude over 40 years might be
achievable with several techniques in tandem

Summary: There is no magic cure for the
“software crisis”

SCRUM REVIEW

Scrum

Derived from the rugby term “scrum”

— Despite appearances, is a organized test of
strength and skill

Work is done in sprints (iterations) that form
releases

Key Roles: Scrum Master and Product Owner
(On-Site Customer)

Key Practices: Daily stand-up meeting, time-
boxing, and burn-down chart

Scrum Schematic

Daily Scrum
Meeting

Backlog tasks
expanded

Sprint Backlog by team

—

Potentially Shippable
Product Backlog Product Increment

As prioritized by Product Owner

Source: Adagied fnom Sk Sofwang

Dvvpioprnent with Scrurm by Ken
Sehwabsir and Mike B eede

Week 7, Slide 11

Scrum Development Process

Roles

Product Owner:
Set priorities

mo
E

ScrumMaster:
Manage process,
remove blocks

ll

Team: Develop
product

H
IO

Stakeholders:
observe & advise

Key Artifacts

Key Meetings

Product Backlog

s Listof requirements & issues

¢ Owned by Product Owner
¢ Anybody canadd fo it

¢ Only Product Owner prioritizes

Sprint Goal
« (One-sentence summary

« Declared by Product Owner

« Accepted by team

Sprint Backlog

o List of fasks

« Owned by team

« Only team modifies it

Blocks List

e List of blocks & unmade
decisions

o Owned by ScrumMaster

o Updated daily

Increment
» Version of the product

« Shippable functionality (tested,

documented. etc.)

Sprint Planning Meetinh

s Hosted by ScrumMaster; %1 day

s |n: Product Backlog, existing pro-
duct, business & technology
conditions

1. Select highest priority items in

Product Backlog; declare Sprint Goal

2. Team turns selected items into

Sprint Backlog
& Out:: Sprint Goal, Sprint Backly

6aily Scrum \

« Hosted by ScrumMaster

« Attended by all, but Stakeholders
don't speak

« Same time every day

o Answer: 1) What did you do
yesterday? 2) What will you do
today? 3) What's in your way?

« Team updates Sprint Backlog;
\Scruml‘v‘laster updates Blocks Lis

/S;;rint Review Meeting\

« Hosted by ScrumMaster

» Aftended by all

« |nformal, 4-hour, informational
« Team demos Increment

« Al discuss

« Hold retrospective

« Announce next Sprint Planning

\Meeti ng /

Development Process

Product
Backlog

Increment

e

Sprint Planning Meeting | 30 days each

1

spﬁm\\\

Sprint
Goal

Daily Work)

: N

Sprint
Backlog

Blocks
List

Product

Increment’

\ Sprint Review Meeting

Product
Backlog’

Copyright 2004, William C. Wake, William.Wake@acm.org, www.xp123.com

Free for non-commercial use. 1-25-04

Tricks to a successful Sprint Project

 Have a formal kickoff with a fixed time, eg. 10 — 30 days
for first increment

e Use a tools for each of the documents
e Be the note-taker yourself
e Listen carefully to what everyone says

— Pick out and write down the details no matter how small

— It’s okay to have some participants not do anything due to
other projects or priorities on some days

— Let everyone have their say

e Pass out paperwork and cross out tasks, blocks, and
goals in the meeting

— Include crossed out tasks in handouts

Scrum Case Study

iZl C4 Perf Product

Search C4 Perf Product

0 Subject

Click here to add a new Task

& B

Research CUDA regex, use C regex from perl/python

Embed keywords in regexes and run all at the same time
Thread optimizations, timers, rules

Experiment with different DB drivers, values, compilation

Testing: Different traffic models, constant, spikey, bludge

File based approach for DB inserts, switch modes when backlogged

Come up with standard EPS test & run against ranger, enterprise, ranger Il

Improve string comparison with new algarithm or unrolling loops, multithreading

Any Java compilation of components using excelsior & experiment with compilation values

n

+# €4 Perf Blocks

[| subject

Click here to add a new Task

21 [Serial IDs, signals for compilation

;_31];'393-—%-34

Perc 6/i RAID bios settings for optimal performance
Tasting: standard cpL-aAd-mEmeRmatHc1o3d

Qutsource performance testing and tuning

4 €4 Perf Sprint

Search C4 Perf Sprint

[¥ subject

RERREBEREBEREBEOBROOOO0OO0OO0O0O00

e R R R R R R &

Click here to add a new Task

Settle on /dist config issue

Mjoiner queue tweak

Figure out way to auto-set regulator values (Frank)
Look at way regulator class works (Clay)

Evaluate C Regex parsing with JMNI [Srinath)

Workout views issue for batch db upload
Check EPS numbers for hw

checkta bR ctaf
Bui .
Send out intermadiate before and aftar stats
tinue tectingvar davi d-configurat
g g 4
Einish-sett fig-Baddf th £

Callwith nuidia to discuce chring matehy

Setup test to look into parallel compacting GC & what options need to be set (Frank)

Find out all places in the code where we do sorting (timestamps, reports, ete)

;4 Performance

(] Subject

g-{Greg-Stave Clay

R R B By B B B B B B B B B R R By B i g o R R o o o e |

¥

Click here to add a new Task

j I Goal: Increase performance of Cinxi 4.0 Release over current EPS and CEPS

[T Enterprise CEPS: Rama 50,000
I Enterprise CEPS: Cleve 36,000
[0 Enterprise CEPS: Greg 29,500

[T Enterprise CEPS: Clay 22,000

I Enterprise CEPS: Andy 21,000

[Enterprise CEPS: Frank 15,000

I Enterprise CEPS: Srinath 14,000
j [T Enterprise CEPS: Henry 13,000

E]
<
=i
j [Enterprise CEPS: Terry 28,000
<
Ei
El
Ei

Scrum Case Study

Legacy project and staff paralyzed by over-
specification, infighting and dependencies

Continued regular development on overall product

Assembled series of goals, one issue at a time:
performance, platform change, live updates

Ran a sprint project for each goal with different teams
Created a competitive atmosphere

Keep to a standard work week < 50 hours, no
weekends

Scrum Pushbacks

 Programmer pushback
— “This is stupid”

 Nothing more enjoyable than seeing developers transform in
the middle of a project and get excited about what they are
doing and having a sense of ownership and accomplishment

— Resent visibility into work habits

e Very uncomfortable for some staff, to the point of resigning,
but need to factor that in when scoping the project

— “My manager will go to the meeting for me”
 Need the people actually doing the work—flat organization

— “These are just like my daily meetings”

e Productive vs Unproductive, the key is the structure and
supporting documents and tasks

Scrum Pushbacks

Product and Business pushback

— “How do you keep track of how far along the project is?”
e It’s a 30 day project, when we’re 15 days in, it’ll be halfway done
— “How do you know if they’ll meet their deadlines?”

e Onday 30, we'll be able to see what goals have been completed
and which haven’t

— “How do we grant them an extension?”
* No extensions—it’s pass or fail

— “What if they fail? Won’t that hurt the business?”

* The scope of the project is such that if it succeeds, the business
succeeds, if it fails, we factored in the risk and we try something
else

— “l want to be in the meetings.”
* No. Pigs and Chickens. My meeting, my scope, my process model.

Scrum Burndown

e Useful to also predict
— Stability of software

200
150 — Resource planning
100 — Estimated completion
date
50
— Problem areas
0 = |

— NS L NO M 000N O —

Sccccccecec

20660606006 ¢c¢

SREEEERBEEESS

Yoo aa L o

—HHHHHHHHE;H

200
180
160
140
120
100
80
60
40
20

Whiteboard Exercise

Sprint Backlog items vs. Week

Deadline, end of week 9

What week will the sprint
backlog be completed?

When will the Sprint
project end?

SOFTWARE TESTING

Definitions

Error

— A human action that produces an incorrect result
Fault

— Manifestation of an error

— The result of an error is a fault in the code.
Failure

— Observable consequences of a fault or faults

A failure may be caused by more than one fault and a fault
may cause different failures

It’s theoretically impossible to eliminate all faults from all
but the most trivial software programs

— Complete and exhaustive testing is intractable

Quality Assurance Activities

Verification
— Check product against specification
— Building the system right
Validation
— Check product against world (stakeholder expectations)
— Building the right system
van Vliet considers all quality assurance activities as
testing

Quality Control (QC) validating physical and
environmental constraints and preparations before
providing to customer

Testing

e Waterfall model show testing as an activity or
box
— In practice, testing is performed constantly

 There has never been a project where there
was too much testing.

— Products always ship with some defects

e Test cases are a valuable resource
— Should be managed like code

Whiteboard Exercise (testing)

e Name and describe four types of testing.

e What is the difference between black box and
white box testing?

Whiteboard Exercise (testing)

Name and describe four types of testing.
e Unit testing- testing parts, e.g. classes

* Regression- Testing to ensure that previous
functionality still works (after new code has been
added)

* Integration- Testing two or more components together
e System- Testing the whole she-bang
 Beta- Pre-release testing with actual users

e Alpha- Pre-release testing within the company with
developers and customers

Whiteboard Exercise (testing)

 White box testing

— Glass box, clear box, transparent box, etc.
— Designs test cases based on internal structure

— Programming skills to test all possible execution
paths through the software

— Exhaustive method to trigger all possible outputs
or output classes

— Tests based on implementation, so if
implementation changes, test cases need to
change too

Whiteboard Exercise (testing)

e Black box testing
— External view of the system as a black box
— Can be functional or non-functional tests
— Uses valid and invalid test data
— Success is measured by correct output

— Good for uncovering unimplemented parts of
specification

— No guarantee that all paths through code are tested
— Good candidate for automated testing

Testing Techniques

Manual Test Techniques

— Reading

— Walkthroughs and Inspections
— Stepwise Abstraction

Scenario-Based Evaluation
Correctness Proofs
Coverage-Based Techniques
Fault-Based Techniques
Error-Based Techniques

Test Design Techniques

Equivalence partitioning

Boundary value analysis

Decision table testing

Pairwise testing

State transition tables

Use case testing

Cross-functional testing

http://en.wikipedia.org/wiki/Equivalence_partitioning
http://en.wikipedia.org/wiki/Boundary_value_analysis
http://en.wikipedia.org/wiki/Decision_table
http://en.wikipedia.org/wiki/All-pairs_testing
http://en.wikipedia.org/wiki/State_transition_table
http://en.wikipedia.org/wiki/Use_case

Smoke Testing

The first test after repairs to provide some

assurance that the fix didn’t break other parts of
the system

Make sure that changes didn’t cause catastrophic
errors

— Plumbing—fixing a pipe results in undo water
pressure causing a leak in a different place

Typically done by developers before build is
released to testers

Basic, automated test to validate code changes
— “Shallow and wide” that touches all areas

Fuzz Testing

e A software technique that provides invalid,

unexpected, or random data to the inputs of a
program

* File formats and network protocols most

common targets of fuzz testing

— Buffer overflow errors

— Best place to apply is across trust boundaries
e Can use anything,

— environment variables,

— mouse and keyboard events,

— random sequence of API calls

Stress Testing

A measure of the stability or robustness of a
software system by running the system
beyond normal operational capacity, often to
the breaking point, to observe the results

Capacity planning
Concurrency & concurrent user activities

Example: 30 day stress test that measured
software and hardware behavior with max
events per second input

Boundary Testing

Zero-One-Infinity

Test case data is based on extremes of the
input domain

Maximum and minimum and just
inside/outside the boundaries

Similar to equivalence partitioning, but solely
focuses on “corner cases”

Acceptance Testing

* A black box testing technique performed on a
system prior to or as part of the delivery

— A “ceremonial” handoff process to the customer, i.e.
site or field testing

— QA department accepting a specific build from
engineering

— Handoff of major subsystem to an integration partner
— Any transfer of ownership
e All or nothing testing technique

e Covers specific items of interest, e.g. latest
changes, customer interested, etc.

Fault Seeding

“Bedbugging”
Technique where opposing teams plant bugs into
software to validate testing process

— Insert number of known faults to monitor rate of
detection

— Good predictor for how many unknown faults remain

May do through code inspection

Programmers/testers may be alerted to known
number of bugs or hints to areas

Test Automation

Use of software in to control the execution of test cases
GUI automation tools
Rational Functional Tester, storyboarding

Good way to automate exploratory automation, but with
more coverage

Code automation tools, e.g. JUnit

,
y import org.junit.*®;

\ public class MultiplicationTest {
' Jo% Test whether 3 #« 2 = 6, according to the JVM. #+/
ETest
public wvoid testMultiplication() {
Azzert.assertEgquals ("Multiplication™, &, 2 * 2):»

Error-Based Techniques

e Certain kinds of problems are known to be
difficult

— Lead to common errors
— Go after these errors

Common Time and Date Errors

Y2K

mm/dd/yyyy (the US) vs dd/mm/yyyy (rest of the world
24 hour vs. 12 hour clock

Formatting

— Day 36 of a month?
— Hour 27 of a day?

Leap Years

Where do Bugs Hide?

* Memory

Be careful about memory leaks in Java.

The job of the garbage collector is to find objects that are no
longer needed by an application and to remove them when they
can no longer be accessed or referenced.

The key point to remember is that an object is only counted as
being unused when it is no longer referenced.

If your program is getting a java.lang.OutOfMemoryError after
executing for a while, a memory leak is highly likely.

GC
Runtime Heap Summary

L, Fumtime Heap Semmany: com.bm.hab.ide.uiHabApp

I S ry ? seconds v Istance Surmmany *

+ Heap Usage Chait

Where do Bugs Hide?

* Preventing memory leaks

— Collection classes, such as hashtables and vectors,
are common places to find the cause of a memory
leak. Specially if the class has been declared static
and exists for the life of the application.

— Another common problem occurs when you
register a class as an event listener without
bothering to unregister when the class is no
longer needed.

— Member variables of a class that point to other
classes simply need to be set to null at the
appropriate time.

Where do Bugs Hide?

 Threads / Concurrency

— When you get different results on the same input

— Testing and debugging multithreaded programs is difficult because
concurrency hazards do not manifest themselves uniformly or reliably.

3:47.01 User 1 initiates tx to 3:47.03 User 2 deposits 3:47.05 User 1 finishes tx to
pay electricity online $5,000 pay electricity online $10

m Selectin DB
m Account number: 123
m OldBalance: $30

Update in DB
Account number: 123
OldBalance: $30
Balance: $5,030

Update in DB
Account number: 123
OldBalance: $30
Balance: $20

m Recommendation: Verify that the information did not change in DB before
updating it

Where do Bugs Hide?

Escaping characters when converting between
encoding schemes

— HTML <-> Java <-> Database

Java - HTML Java - sQL

// HTML Special Chars

SELECT * FROM Books WHERE title = ‘INPUT'
if (C - = vul)
n « .
sb.append ("" ") ; INPUT: Yasser’s Book
else if (¢ == '&')
sb.append ("& ") ;
1 —_— 1 1
else if (c == '<') SELECT * FROM Books WHERE title = ‘Yasser’s
sb.append ("<") ; Book'’
else if (c == '>")

sb.append("> ") ;

else if (¢ == '\n')
// Handle Newline
sb.append ("
") ;

Security Bugs

Donald Bren School of Information and
Computer Sciences Login

Name: ||
SELECT * FROM users Imﬁwm¢|
WHERE username = ‘NAME' mel
and password = ‘PASSWORD’
Name: a

Password: ‘' OR ‘t’'='‘t

SELECT * FROM users

WHERE

username = ‘a’ and password = ‘'’
OR ‘t’='t’

© Susan Elliott Sim, 2009 Week 9, Slide 43

Security Bugs

Donald Bren School of Information and
Computer Sciences Login

Name: ||
SELECT * FROM users Password: |
WHERE username = ‘NAME' mel
and password = ‘PASSWORD’
Name: a
Password: ‘';DROP TABLE users;--

SELECT * FROM users
WHERE username = ‘a’ and password = ‘';
DROP TABLE users;

14

© Susan Elliott Sim, 2009 Week 9, Slide 44

Coverage-Based Techniques

Coverage is expressed in terms of how much of the
software work product has been covered by testing

— Percentage of statements, paths, branches, etc.
— Percentage of requirements

Control-Flow Coverage
Data-Flow Coverage

Both are based on turning the work product into a
graph

How Do We Choose Test Cases?

public boolean isValidMonth(int num) {

}

e Can we test this function for -23* to 23%-1?

e |sthere any difference between isValidMonth(13), isValidMonth(100),
isValidMonth(1000)?

© Susan Elliott Sim, 2009 Week 9, Slide 46

Equivalence partitioning

* Input data and output results often fall into different classes where all
members of a class are related e.g. positive numbers, negative numbers,
strings without blanks, etc.

e Each of these classes is an equivalence partition where the program
behaves in an equivalent way for each class member

e Test cases should be chosen from each partition- input and outputs lie
within partitions

Example: Age of Customers

Class Representative

Low -5

0-12 6

13-19 15
20-35 30
36-120 60

High 160

© Susan Elliott Sim, 2009 Week 9, Slide 48

Equivalence partitioning

Each equivalence partition is shown as an €llipse.

DS

Invalid inputs Valid inputs

~.

Input equivalence partitions

Sets of datawhere all the set members
Should be processed in equivalent way

/ Output equivalence partitions
Program outputs that have

common characteristics

© Susan Elliott Sim, 2009 Week 9, Slide 49

Equivalence partitions

Program accepts 4 to 10 inputs 3 11
which arefive- digit integers 4 7 10

greater than 10,000 + *

Less than4 Between 4 and 10 More than 10

Number of input values

9999 100000
10000 50000 999

Y

Less than 10000 Between 10000 and 99999 | More than 99999

Possible test input values

© Susan Elliott Sim, 2009

Input values

Week 9, Slide 50

Search routine specification

procedure Search (Key : ELEM ; T:. ELEM_ARRAY;
Found : out BOOLEAN; L: out ELEM_INDEX) ;

Pre-condition
The array has at least one element
T'FIRST <= T'LAST
Post-condition
The element is found and is referenced by L
(Found and T (L) = Key)
or
The element is not in the array
(not Found and
not (exists i, TFIRST >=i<=T'LAST, T (i) = Key))

Search routine - input partitions

e |Inputs where the key element is a member of the array
e |Inputs where the key element is not a member of the array
* Inputs where a pre-condition does not hold

Search routine - input partitions

Array Element

Singlevaue In sequence

Singlevaue Not in sequence

Morethan 1 value First element in sequence
Morethan 1 value Last e ement in sequence
Morethan 1 value Middle eement in sequence
Morethan 1 value Not in sequence

| nput sequence (T) Key (Key) Output (Found, L)
17 17 true, 1

17 0 fase, 7?
17, 29, 21, 23 17 true, 1

41, 18, 9, 31, 30, 16, 45 45 true, 7

17, 18, 21, 23, 29, 41, 38 23 true, 4

21, 23, 29, 33, 38 25 fase, 7?

	Software Tools & Methods�Class 7
	Overview
	Study Review Final
	Silver bullets
	Whiteboard Exercise (silver bullet)
	Silver Bullets
	Silver Bullets
	Scrum review
	Scrum
	Slide Number 10
	Scrum Schematic
	Scrum Development Process
	Tricks to a successful Sprint Project
	Scrum Case Study
	Scrum Case Study
	Scrum Pushbacks
	Scrum Pushbacks
	Scrum Burndown
	Whiteboard Exercise
	Software testing
	Definitions
	Quality Assurance Activities
	Testing
	Whiteboard Exercise (testing)
	Whiteboard Exercise (testing)
	Whiteboard Exercise (testing)
	Whiteboard Exercise (testing)
	Testing Techniques
	Test Design Techniques
	Smoke Testing
	Fuzz Testing
	Stress Testing
	Boundary Testing
	Acceptance Testing
	Fault Seeding
	Test Automation
	Error-Based Techniques
	Common Time and Date Errors
	Where do Bugs Hide?
	Where do Bugs Hide?
	Where do Bugs Hide?
	Where do Bugs Hide?
	Security Bugs
	Security Bugs
	Coverage-Based Techniques
	How Do We Choose Test Cases?
	Equivalence partitioning
	Example: Age of Customers
	Equivalence partitioning
	Equivalence partitions
	Search routine specification
	Search routine - input partitions
	Search routine - input partitions

