
Software Tools & Methods
Class 7

Lecturer: Greg Bolcer, greg@bolcer.org

Summer Session 2009

ELH 110 9am-11:50am

Overview

• Last Class
– More Design Patterns
– More Software Process

• This Class
– Scrum Review
– Testing

• Next Class
– eXtreme Programming review
– Use cases

Study Review Final
• Silver Bullet Accidental vs Essential difficulties
• Design Patterns, understand the description, context, consequences (good

and bad) for at least one design pattern
• XP Extreme Practices—12 key practices

– Programmer
– Management
– Customer

• Tool chains—be able to name a couple of tools and describe what they do
• Scrum, roles, burndown chart, applicability
• Use cases, writing scenarios, generating graphs
• Testing, QA

– quality metrics,
– Common errors
– Equivalence partitioning, black-box/white-box
– Definitions of error, fault, failure

SILVER BULLETS
Software Tools & Methods

Whiteboard Exercise (silver bullet)

• What is a silver bullet?

• How does it relate to software?

• What does it mean to have no silver bullet?

• Who coined the term?

• When might we expect a silver bullet in
software?

Silver Bullets

• What is a silver bullet?
– Any straightforward solution perceived to have extreme

effectiveness.
• How does it relate to software?

– Is there some great technological discovery yet to be
invented that will take away all the inherent problems with
building software?

• What does it mean to have no silver bullet?
– "there is no single development, in either technology or

management technique, which by itself promises even one
order-of-magnitude [tenfold] improvement within a
decade in productivity, in reliability, in simplicity.”

– “We can’t expect to see twofold gain in two years.”

Silver Bullets

• Who coined the term?
– Fred Brooks, 1986; author of the Mythical Man

Month; No Silver Bullet Refired, 1995

• When might we expect a silver bullet in
software?
– An order of magnitude over 40 years might be

achievable with several techniques in tandem

• Summary: There is no magic cure for the
“software crisis”

SCRUM REVIEW
Software Tools & Methods

Week 7, Slide 9

Scrum

• Derived from the rugby term “scrum”
– Despite appearances, is a organized test of

strength and skill

• Work is done in sprints (iterations) that form
releases

• Key Roles: Scrum Master and Product Owner
(On-Site Customer)

• Key Practices: Daily stand-up meeting, time-
boxing, and burn-down chart

Week 7, Slide 10

Week 7, Slide 11

Scrum Schematic

Scrum Development Process

Tricks to a successful Sprint Project

• Have a formal kickoff with a fixed time, eg. 10 – 30 days
for first increment

• Use a tools for each of the documents
• Be the note-taker yourself
• Listen carefully to what everyone says

– Pick out and write down the details no matter how small
– It’s okay to have some participants not do anything due to

other projects or priorities on some days
– Let everyone have their say

• Pass out paperwork and cross out tasks, blocks, and
goals in the meeting
– Include crossed out tasks in handouts

Scrum Case Study

Scrum Case Study

• Legacy project and staff paralyzed by over-
specification, infighting and dependencies

• Continued regular development on overall product
• Assembled series of goals, one issue at a time:

performance, platform change, live updates
• Ran a sprint project for each goal with different teams
• Created a competitive atmosphere
• Keep to a standard work week < 50 hours, no

weekends

Scrum Pushbacks

• Programmer pushback
– “This is stupid”

• Nothing more enjoyable than seeing developers transform in
the middle of a project and get excited about what they are
doing and having a sense of ownership and accomplishment

– Resent visibility into work habits
• Very uncomfortable for some staff, to the point of resigning,

but need to factor that in when scoping the project
– “My manager will go to the meeting for me”

• Need the people actually doing the work—flat organization
– “These are just like my daily meetings”

• Productive vs Unproductive, the key is the structure and
supporting documents and tasks

Scrum Pushbacks

• Product and Business pushback
– “How do you keep track of how far along the project is?”

• It’s a 30 day project, when we’re 15 days in, it’ll be halfway done
– “How do you know if they’ll meet their deadlines?”

• On day 30, we’ll be able to see what goals have been completed
and which haven’t

– “How do we grant them an extension?”
• No extensions—it’s pass or fail

– “What if they fail? Won’t that hurt the business?”
• The scope of the project is such that if it succeeds, the business

succeeds, if it fails, we factored in the risk and we try something
else

– “I want to be in the meetings.”
• No. Pigs and Chickens. My meeting, my scope, my process model.

Scrum Burndown

• Useful to also predict
– Stability of software

– Resource planning

– Estimated completion
date

– Problem areas

Whiteboard Exercise

What week will the sprint
backlog be completed?

When will the Sprint
project end?

Sprint Backlog items vs. Week

Deadline, end of week 9

SOFTWARE TESTING
Software Tools & Methods

© Susan Elliott Sim, 2009
Week 9, Slide 21

Definitions

• Error
– A human action that produces an incorrect result

• Fault
– Manifestation of an error
– The result of an error is a fault in the code.

• Failure
– Observable consequences of a fault or faults

• A failure may be caused by more than one fault and a fault
may cause different failures

• It’s theoretically impossible to eliminate all faults from all
but the most trivial software programs
– Complete and exhaustive testing is intractable

© Susan Elliott Sim, 2009
Week 9, Slide 22

Quality Assurance Activities

• Verification
– Check product against specification
– Building the system right

• Validation
– Check product against world (stakeholder expectations)
– Building the right system

• van Vliet considers all quality assurance activities as
testing

• Quality Control (QC) validating physical and
environmental constraints and preparations before
providing to customer

© Susan Elliott Sim, 2009

Testing

• Waterfall model show testing as an activity or
box
– In practice, testing is performed constantly

• There has never been a project where there
was too much testing.
– Products always ship with some defects

• Test cases are a valuable resource
– Should be managed like code

© Susan Elliott Sim, 2009
Week 8, Slide 24

Whiteboard Exercise (testing)

• Name and describe four types of testing.

• What is the difference between black box and
white box testing?

© Susan Elliott Sim, 2009

Whiteboard Exercise (testing)

Name and describe four types of testing.
• Unit testing- testing parts, e.g. classes
• Regression- Testing to ensure that previous

functionality still works (after new code has been
added)

• Integration- Testing two or more components together
• System- Testing the whole she-bang
• Beta- Pre-release testing with actual users
• Alpha- Pre-release testing within the company with

developers and customers

Whiteboard Exercise (testing)

• White box testing
– Glass box, clear box, transparent box, etc.
– Designs test cases based on internal structure
– Programming skills to test all possible execution

paths through the software
– Exhaustive method to trigger all possible outputs

or output classes
– Tests based on implementation, so if

implementation changes, test cases need to
change too

Whiteboard Exercise (testing)

• Black box testing
– External view of the system as a black box

– Can be functional or non-functional tests

– Uses valid and invalid test data

– Success is measured by correct output

– Good for uncovering unimplemented parts of
specification

– No guarantee that all paths through code are tested

– Good candidate for automated testing

Testing Techniques

• Manual Test Techniques
– Reading
– Walkthroughs and Inspections
– Stepwise Abstraction

• Scenario-Based Evaluation
• Correctness Proofs
• Coverage-Based Techniques
• Fault-Based Techniques
• Error-Based Techniques

Test Design Techniques

• Equivalence partitioning

• Boundary value analysis

• Decision table testing

• Pairwise testing

• State transition tables

• Use case testing

• Cross-functional testing

http://en.wikipedia.org/wiki/Equivalence_partitioning
http://en.wikipedia.org/wiki/Boundary_value_analysis
http://en.wikipedia.org/wiki/Decision_table
http://en.wikipedia.org/wiki/All-pairs_testing
http://en.wikipedia.org/wiki/State_transition_table
http://en.wikipedia.org/wiki/Use_case

Smoke Testing

• The first test after repairs to provide some
assurance that the fix didn’t break other parts of
the system

• Make sure that changes didn’t cause catastrophic
errors
– Plumbing—fixing a pipe results in undo water

pressure causing a leak in a different place
• Typically done by developers before build is

released to testers
• Basic, automated test to validate code changes

– “Shallow and wide” that touches all areas

Fuzz Testing

• A software technique that provides invalid,
unexpected, or random data to the inputs of a
program

• File formats and network protocols most
common targets of fuzz testing
– Buffer overflow errors
– Best place to apply is across trust boundaries

• Can use anything,
– environment variables,
– mouse and keyboard events,
– random sequence of API calls

Stress Testing

• A measure of the stability or robustness of a
software system by running the system
beyond normal operational capacity, often to
the breaking point, to observe the results

• Capacity planning
• Concurrency & concurrent user activities
• Example: 30 day stress test that measured

software and hardware behavior with max
events per second input

Boundary Testing

• Zero-One-Infinity

• Test case data is based on extremes of the
input domain

• Maximum and minimum and just
inside/outside the boundaries

• Similar to equivalence partitioning, but solely
focuses on “corner cases”

Acceptance Testing

• A black box testing technique performed on a
system prior to or as part of the delivery
– A “ceremonial” handoff process to the customer, i.e.

site or field testing
– QA department accepting a specific build from

engineering
– Handoff of major subsystem to an integration partner
– Any transfer of ownership

• All or nothing testing technique
• Covers specific items of interest, e.g. latest

changes, customer interested, etc.

Fault Seeding

• “Bedbugging”

• Technique where opposing teams plant bugs into
software to validate testing process
– Insert number of known faults to monitor rate of

detection

– Good predictor for how many unknown faults remain

• May do through code inspection

• Programmers/testers may be alerted to known
number of bugs or hints to areas

Test Automation

• Use of software in to control the execution of test cases

• GUI automation tools

• Rational Functional Tester, storyboarding

• Good way to automate exploratory automation, but with
more coverage

• Code automation tools, e.g. JUnit

© Susan Elliott Sim, 2009
Week 9, Slide 37

Error-Based Techniques

• Certain kinds of problems are known to be
difficult
– Lead to common errors

– Go after these errors

© Susan Elliott Sim, 2009
Week 9, Slide 38

Common Time and Date Errors

• Y2K
• mm/dd/yyyy (the US) vs dd/mm/yyyy (rest of the world
• 24 hour vs. 12 hour clock
• Formatting

– Day 36 of a month?
– Hour 27 of a day?

• Leap Years

© Susan Elliott Sim, 2009
Week 9, Slide 39

Where do Bugs Hide?
• Memory

– Be careful about memory leaks in Java.
– The job of the garbage collector is to find objects that are no

longer needed by an application and to remove them when they
can no longer be accessed or referenced.

– The key point to remember is that an object is only counted as
being unused when it is no longer referenced.

– If your program is getting a java.lang.OutOfMemoryError after
executing for a while, a memory leak is highly likely.

Runtime Heap Summary
GC

© Susan Elliott Sim, 2009
Week 9, Slide 40

Where do Bugs Hide?

• Preventing memory leaks
– Collection classes, such as hashtables and vectors,

are common places to find the cause of a memory
leak. Specially if the class has been declared static
and exists for the life of the application.

– Another common problem occurs when you
register a class as an event listener without
bothering to unregister when the class is no
longer needed.

– Member variables of a class that point to other
classes simply need to be set to null at the
appropriate time.

© Susan Elliott Sim, 2009
Week 9, Slide 41

Where do Bugs Hide?
• Threads / Concurrency

– When you get different results on the same input
– Testing and debugging multithreaded programs is difficult because

concurrency hazards do not manifest themselves uniformly or reliably.

Select in DB
Account number: 123
OldBalance: $30

3:47.01 User 1 initiates tx to
pay electricity online

Update in DB
Account number: 123
OldBalance: $30
Balance: $5,030

3:47.03 User 2 deposits
$5,000

Update in DB
Account number: 123
OldBalance: $30
Balance: $20

3:47.05 User 1 finishes tx to
pay electricity online $10

Recommendation: Verify that the information did not change in DB before
updating it

© Susan Elliott Sim, 2009
Week 9, Slide 42

Where do Bugs Hide?
• Escaping characters when converting between

encoding schemes
– HTML <-> Java <-> Database

// HTML Special Chars

if (c == '"')

sb.append(""");

else if (c == '&')

sb.append("&");

else if (c == '<')

sb.append("<");

else if (c == '>')

sb.append(">");

else if (c == '\n')

// Handle Newline

sb.append("
");

Java - HTML Java - SQL

SELECT * FROM Books WHERE title = ‘INPUT’

INPUT: Yasser’s Book

SELECT * FROM Books WHERE title = ‘Yasser’s
Book’

© Susan Elliott Sim, 2009
Week 9, Slide 43

Security Bugs

SELECT * FROM users
WHERE username = ‘NAME’
and password = ‘PASSWORD’

Name: a
Password: ‘ OR ‘t’=‘t

SELECT * FROM users
WHERE
username = ‘a’ and password = ‘’
OR ‘t’=‘t’

© Susan Elliott Sim, 2009
Week 9, Slide 44

Security Bugs

SELECT * FROM users
WHERE username = ‘NAME’
and password = ‘PASSWORD’

Name: a
Password: ‘;DROP TABLE users;--

SELECT * FROM users
WHERE username = ‘a’ and password = ‘’;
DROP TABLE users;
--’

© Susan Elliott Sim, 2009
Week 9, Slide 45

Coverage-Based Techniques

• Coverage is expressed in terms of how much of the
software work product has been covered by testing
– Percentage of statements, paths, branches, etc.
– Percentage of requirements

• Control-Flow Coverage
• Data-Flow Coverage

• Both are based on turning the work product into a
graph

© Susan Elliott Sim, 2009
Week 9, Slide 46

How Do We Choose Test Cases?

public boolean isValidMonth(int num) {

if (num >= 1 && num <= 12) {

return true;

}

return false;

}

• Can we test this function for -231 to 231-1?

• Is there any difference between isValidMonth(13), isValidMonth(100),
isValidMonth(1000)?

Black Box

© Susan Elliott Sim, 2009
Week 9, Slide 47

Equivalence partitioning

• Input data and output results often fall into different classes where all
members of a class are related e.g. positive numbers, negative numbers,
strings without blanks, etc.

• Each of these classes is an equivalence partition where the program
behaves in an equivalent way for each class member

• Test cases should be chosen from each partition- input and outputs lie
within partitions

© Susan Elliott Sim, 2009
Week 9, Slide 48

Example: Age of Customers

Class Representative

Low -5

0-12 6

13-19 15

20-35 30

36-120 60

High 160

© Susan Elliott Sim, 2009
Week 9, Slide 49

Equivalence partitioning
Each equivalence partition is shown as an ellipse.

Input equivalence partitions

Output equivalence partitions

Sets of data where all the set members
Should be processed in equivalent way

Program outputs that have
common characteristics

© Susan Elliott Sim, 2009
Week 9, Slide 50

Equivalence partitions

Program accepts 4 to 10 inputs
which are five- digit integers
greater than 10,000

Possible test input values

© Susan Elliott Sim, 2009
Week 9, Slide 51

Search routine specification

procedure Search (Key : ELEM ; T: ELEM_ARRAY;
Found : out BOOLEAN; L: out ELEM_INDEX) ;

Pre-condition
The array has at least one element
T’FIRST <= T’LAST

Post-condition
The element is found and is referenced by L
(Found and T (L) = Key)

or
The element is not in the array
(not Found and
not (exists i, T’FIRST >= i <= T’LAST, T (i) = Key))

© Susan Elliott Sim, 2009
Week 9, Slide 52

Search routine - input partitions

• Inputs where the key element is a member of the array

• Inputs where the key element is not a member of the array

• Inputs where a pre-condition does not hold

© Susan Elliott Sim, 2009
Week 9, Slide 53

Search routine - input partitions
Array Element
Single value In sequence
Single value Not in sequence
More than 1 value First element in sequence
More than 1 value Last element in sequence
More than 1 value Middle element in sequence
More than 1 value Not in sequence

Input sequence (T) Key (Key) Output (Found, L)
17 17 true, 1
17 0 false, ??
17, 29, 21, 23 17 true, 1
41, 18, 9, 31, 30, 16, 45 45 true, 7
17, 18, 21, 23, 29, 41, 38 23 true, 4
21, 23, 29, 33, 38 25 false, ??

	Software Tools & Methods�Class 7
	Overview
	Study Review Final
	Silver bullets
	Whiteboard Exercise (silver bullet)
	Silver Bullets
	Silver Bullets
	Scrum review
	Scrum
	Slide Number 10
	Scrum Schematic
	Scrum Development Process
	Tricks to a successful Sprint Project
	Scrum Case Study
	Scrum Case Study
	Scrum Pushbacks
	Scrum Pushbacks
	Scrum Burndown
	Whiteboard Exercise
	Software testing
	Definitions
	Quality Assurance Activities
	Testing
	Whiteboard Exercise (testing)
	Whiteboard Exercise (testing)
	Whiteboard Exercise (testing)
	Whiteboard Exercise (testing)
	Testing Techniques
	Test Design Techniques
	Smoke Testing
	Fuzz Testing
	Stress Testing
	Boundary Testing
	Acceptance Testing
	Fault Seeding
	Test Automation
	Error-Based Techniques
	Common Time and Date Errors
	Where do Bugs Hide?
	Where do Bugs Hide?
	Where do Bugs Hide?
	Where do Bugs Hide?
	Security Bugs
	Security Bugs
	Coverage-Based Techniques
	How Do We Choose Test Cases?
	Equivalence partitioning
	Example: Age of Customers
	Equivalence partitioning
	Equivalence partitions
	Search routine specification
	Search routine - input partitions
	Search routine - input partitions

