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Abstract 
The increasing use of microprocessor cores in embedded 
systems, as well as mobile and portable devices, creates 
an opportunity for customizing the cache subsystem for 
improved performance. Traditionally, a 
design-simulate-analyze methodology is used to achieve 
desired cache performance. Here, to bootstrap the 
process, arbitrary cache parameters are selected, the 
cache sub-system is simulated using a cache simulator, 
based on performance results, cache parameters are 
tuned, and the process is repeated until an acceptable 
design is obtained. Since the cache design space is 
typically very large, the traditional approach often 
requires a very long time to converge. In the proposed 
approach, we outline an efficient algorithm that directly 
computes cache parameters satisfying the desired 
performance. We demonstrate the feasibility of our 
algorithm by applying it to a large number of embedded 
system benchmarks. 
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1. Introduction 
The growing demand for embedded computing platforms, 
mobile systems, general-purpose handheld devices, and 
dedicated servers coupled with shrinking time-to-market 
windows are leading to new core based system-on-a-chip 
(SOC) architectures [1][2][3]. Specifically, 
microprocessor cores (a.k.a., embedded processors) are 
playing an increasing role in such systems’ design 
[4][5][6]. This is primarily due to the fact that 
microprocessors are easy to program using well evolved 
programming languages and compiler tool chains, provide 
high degree of functional flexibility, allow for short 
product design cycles, and ultimately result in low 
engineering and unit costs. However, due to continued 
increase in system complexity of these systems and 
devices, the performance of such embedded processors is 
becoming a vital design concern. 

The use of data and instruction caches has been a 
major factor in improving processing speed of today’s 
microprocessors. Generally, a well-tuned cache hierarchy 

and organization would eliminate the time overhead of 
fetching instruction and data words from the main 
memory, which in most cases resides off-chip and 
requires power costly communication over the system bus 
that crosses chip boundaries. 

Particularly, in embedded, mobile, and handheld 
systems, optimizing of the processor cache hierarchy has 
received a lot of attention from the research community 
[7][8][9]. This is in part due to the large performance 
gained by tuning caches to the application set of these 
systems. The kinds of cache parameters explored by 
researchers include deciding the size of a cache line 
(a.k.a., cache block), selecting the degree of associativity, 
adjusting the total cache size, and selecting appropriate 
control policies such as write-back and replacement 
procedures. These techniques, typically, improve cache 
performance, in terms of miss reduction, at the expense of 
silicon area, clock latency, or energy. 

Traditionally, a design-simulate-analyze 
methodology is used to achieve optimal cache 
performance [10][11][12][13]. In one approach, all 
possible cache configurations are exhaustively simulated, 
using a cache simulator, to find the optimal solution. 
When the design space is too large, an iterative heuristic 
is used instead. Here, to bootstrap the process, arbitrary 
cache parameters are selected, the cache sub-system is 
simulated using a cache simulator, cache parameters are 
tuned based on performance results, and the process is 
repeated until an acceptable design is obtained. 

Central to the design-simulate-analyze methodology 
is the ability to quickly simulate the cache. Specifically, 
cache simulation takes as input a trace of memory 
references generated by the application. In some of the 
efforts, speedup is achieved by stripping the original trace 
to a provably identical (from a performance point of 
view) but shorter trace [14][15]. In some of the other 
efforts, one-pass techniques are used in which numerous 
cache configurations are evaluated simultaneously during 
a single simulation run [16][17]. While these techniques 
reduce the time taken to obtain cache performance metrics 
for a given cache configuration, they do not solve the 
problem of design space exploration in general. This is 
primarily due to the fact that the cache design space is too 
large. Figure 1(a) depicts the traditional approach to cache 
design space exploration. 

Our approach uses an analytical model of the cache 
combined with an algorithm to directly and efficiently 
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compute a cache configuration meeting designers’ 
performance constraints. Figure 1(b) depicts our proposed 
analytical approach to cache design space exploration. In 
our approach, we consider a design space that is formed 
by varying cache size and degree of associativity. In 
addition to the trace file, our algorithm takes as input the 
design constraint in the form of the number of desired 
cache misses. The output of the algorithm is a set of cache 
instances that meet the constraint. 

The remainder of this paper is organized as follows. 
In Section 2, we outline our technical approach and 
introduce our data structures and algorithm. In Section 3, 
we present our experiments and show our results. In 
Section 4, we conclude with some final remarks and 
future direction of research. 

2. Technical Approach 
2.1 Overview 
In the following approach, we consider a design space 
that is obtained by varying caches depth D and the degree 
of associativity A. Cache depth D gives the number of 
rows in the cache. In other words, log2(D) gives the 
bit-width of the index portion of the memory address. 
Degree of associativity A is the number of storage 
available to accommodate data/instruction words mapping 
to the same cache row (a.k.a., cache line/block). Our 
objective is to obtain a set of optimal cache pairs (D, A) 
for a given number K of desired cache misses. Note that 
by using the cache depth D, degree of associativity A, and 
line size Lsize, we obtain the total cache size by computing 
D×A×Lsize. Also, note that the K desired caches misses are 
assumed to be those beyond the cold misses, as cold 
misses cannot be avoided. 

In our approach, we do not consider the cache line 
size as a varying parameter. In part, our decision is due to 
the fact that a change in the cache line size would require 
redesign of processor memory interface, bus architecture, 
main memory controller, as well as main memory 
organization. Thus, changing of cache line size requires a 

more encompassing design space exploration. Likewise, 
we have assumed fixed least recently used replacement 
and write-back policies, as these are the most common 
and often optimal choices. 

Our approach can be divided into two logical 
phases, namely, the prelude algorithms and the postlude 
algorithm. During the execution of the prelude algorithms 
we process the trace file and construct two key data 
structures. One of these data structures is a Binary Cache 
Allocation Tree BCAT. The other data structure is the 
Memory Reference Conflict Table MRCT. During the 
execution of the postlude algorithm, and while operating 
on the BCAT and MRCT data structures, we compute the 
optimal cache pairs (D, A), which are guaranteed to result 
in a miss rate of less than K. A block diagram of our 
analytical approach is shown in Figure 2. We next 
describe in detail the two phases of our approach and 
define further the purpose of the key data structures. 

2.2 Prelude Phase 
Recall that a trace of N instruction/data memory 
references is obtained after simulating the target 
application on a processor whose cache is being 
optimized. We reduce this trace of N memory references 
into a set of N’ unique references, where N’≤N. In other 
words, the original trace contained repetitions of these N’ 
memory references. As part of a running example, 
consider the trace shown in Table 1 along with the 
stripped version shown in Table 2. 
 

B3 B2 B1 B0 
1 0 1 1 
1 1 0 0 
0 1 1 0 
0 0 1 1 
1 0 1 1 
0 1 0 0 
1 1 0 0 
0 0 1 1 
1 0 1 1 
0 1 1 0 

Table 1: Original trace. 

ID B3 B2 B1 B0 
1 1 0 1 1 
2 1 1 0 0 
3 0 1 1 0 
4 0 0 1 1 
5 0 1 0 0 

Table 2: Stripped trace. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Design space exploration: (a) traditional approach, 
(b) proposed approach. 

 

 

 

 

 

 

 

 

Figure 2: Block diagram of proposed approach. 
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Our trace contains 10 4-bit references. Of those, 
there are 5 unique references. We have assigned a 
numeric identifier to each of the unique references as 
shown in Table 2. (At times, we may simply refer to a 
particular reference using its numeric identifier.) 

To compute the BCAT data structure, we first 
transform the stripped trace into an array of zero/one sets. 
The array of zero/one sets contains a pair of sets for each 
address bit. Specifically, for index bit Bi, we compute a 
pair of sets called zero Zi and one Oi. The set Zi contains 
the identifier of all references that have a bit value of 0 at 
Bi. Likewise, the set Oi contains the identifier of all 
references that have a bit value of 1 at Bi. For our running 
example, shown in Table 1, the zero/one sets are given in 
Table 3. 

 2.2.1.1.1.1. O 
B0 {2,3,5} {1,4} 
B1 {2,5} {1,3,4} 
B2 {1,4} {2,3,5} 
B3 {3,4,5} {1,2} 

Table 3: Zero/one sets. 

The choice of a BCAT data structure is due to the 
fact that it fully captures how references are mapped onto 
a cache of any possible organization. To construct this 
tree, we use the array of zero/one sets given earlier. We 
use these sets because the set intersection operation nicely 
defines how references are allocated to each cache 
location. For example, in a cache of depth 4 (i.e., 4 
indexed rows), using B0 and B1 as the index bits, we can 
compute the following cross intersections: 
L00=Z0∩Z1={2,5}, L01=Z0∩O1={3}, L10=O0∩Z1={}, and 
L11=O0∩O1={1,4}. Here sets L00, L01, L10, and L11 contain 
the reference identifiers mapped onto the 4 cache slots. 
Likewise, for a cache of depth 8, using an additional 
index bit B2, we cross intersect each of these 4 sets with 
Z2 and O2 to obtain the 8 new sets and so on. The new sets 
form the nodes of our binary tree. We stop growing the 
tree further down when we reach a set with cardinality 
less than 2. Algorithm 1 recursively builds a BCAT data 
structure as described here. 
 
Algorithm 1 

Input:      array of zero Z and one O sets 
Output:   data structures BCAT 
BCAT.root ⇐  (Z0,O0) 
call build-tree(BCAT.root, 1) 
begin build-tree(node n=(Z,O), l) 
   if |Z| >= 2 then 
      n.left ⇐  (Z ∩ Zl, Z ∩ Ol) 
      call build-tree(n.left, l + 1) 
   if |O| >= 2 then 
      n.right ⇐  (O ∩ Zl, O ∩ Ol) 
      call build-tree(n.right, l + 1) 
end build-tree 

 

The complete BCAT data structure for our running 
example is shown in Figure 3. 

Next, we look at the MRCT data structure. The 
choice of an MRCT data structure is due to the fact that it 
captures, for each occurrence of a reference, a set of 
references that may cause a conflict. In other words, the 
MRCT data structure is an array of size N’ (number of 
unique references) of sets, where each set corresponds to 
one unique reference. Moreover, each set is composed of 
sets, each corresponding to an occurrence (excluding the 
first cold occurrence) of that unique reference in the 
original trace. To clarify, consider the MRCT data 
structure of our running example shown in Table 4. 
 

ID Conflict Sets 
1 {{2,3,4}, {2,4,5}} 
2 {{1,3,4,5}} 
3 {{1,2,4,5}} 
4 {{1,2,5}} 
5 {} 

Table 4: MRCT data structure. 

Here, the reference “1011” has 3 occurrences. The 
first occurrence of “1011” is ignored as it will always be a 
cold miss. The second occurrence of “1011” can 
potentially be a miss due to a conflict with references 
“1100”, “0110”, or “0011” (i.e., the set {2,3,4}). The last 
occurrence of “1011” can potentially be a miss due to a 
conflict with references “0100”, “1100”, or “0011” (i.e., 
the set {2,4,5}). So, the set of sets for reference “1011” 
contains two sets, namely {{2,3,4}, {2,4,5}}. Algorithm 2 
builds an MRCT data structure as described here. 
 
Algorithm 2 

Input:      memory references R1…RN 
Input:      unique reference U1…UN’ 
Output:   memory reference conflict table T 
for i ∈  {1…N’} 
   Ti ⇐  Si ⇐  ∅  
for j ∈  {1…N} do 
   for i ∈  {1…N’} do 
      if Rj = Ui then 
         Ti ⇐  Ti ∪  Si 
         Si ⇐  ∅  
      else 
         Si ⇐  Si ∪  Rj.identifier 

 

 

 

 

 

 

 

Figure 3: BCAT data structure. 
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2.3 Postlude Phase 
Let us now compute a set of cache depth D and degree of 
associativity A pairs that would result in K or less misses. 
We start by looking at the BCAT data structure of our 
running example, shown in Figure 3. Note that each level 
of the tree corresponds to a particular cache depth. For 
example, level one of the tree (root being level zero) 
corresponds to a cache of depth two. At this level, the 
nodes of the BCAT tree capture the reference instances 
that would map to the two cache rows, namely any 
reference identified as one of {2,3,5} would map to the 
first cache row and any reference identified as one of 
{1,4} would map to the second cache row. In essence, for 
a cache of depth two with zero desired misses, we would 
need to set the degree of associativity A equal to the 
maximum cardinality of the two sets {2,3,5}, and {1,4} 
(i.e., A=max(|{2,3,5}|,|{1,4}|)=3). A similar approach can 
be taken to compute the degree of associativity A of a 
cache with depth four. Here, the degree of associativity A 
is set to the maximum of the cardinality of the sets {2,5}, 
{3}, {}, and {1,4} corresponding to the nodes at level two 
of the BCAT, and so on for the any other cache depth. 

Clearly, the above approach is too conservative and 
produces caches that are ideal, in other words, caches that 
result in exactly zero misses (not counting cold misses). 
However, when the desired number of cache misses is 
greater than zero, we need to compute the minimum 
degree of associativity A that would satisfy our constraint. 
The MRCT data structure is used to accomplish this. 
Once again, for any particular cache depth, we look at the 
corresponding BCAT level. For each node at that level we 
determine the number of misses (described below) that 
would occur if the degree of associativity A was set to 1, 
2…Azero. Where Azero is the degree of associativity 
required to have zero misses at that node. Consequently, 
we choose the smallest A that results in the sum of the 
misses of the individual nodes to be less than the desired 
number of misses K. 

Lets us now compute the number of misses at a 
particular node given a particular degree of associativity 
A. Let us assume that the set of references mapping to this 
node is S. For each member of S we refer to the 
corresponding conflict sets C1, C2, … from the MRCT 
data structure. We count as a miss each time the 
cardinality of the intersection of the set S with Ci is larger 
than or equal to A. To illustrate, let us look at the 
rightmost node at level two of our BCAT example with 
S={1,4} and assuming A=1. From the MRCT data 
structure we obtain the conflict sets of the first element 
(i.e., 1), namely, C1={2,3,4} and C2={2,4,5}. Since the 
cardinality of the intersection of S and C1 is one, we 
increment our miss count at that level. Likewise since the 
cardinality of the intersection of S and C2 is one, we 
increment our miss count at that level for a second time. 
We repeat the same for the second element in S (i.e., 4). 

Note that a miss count is associated with each degree of 
associativity A under consideration (i.e., 1, 2…Azero). We 
stop to consider a particular degree of associativity A 
when its miss count goes beyond the desired number of 
desired misses K. The complete procedure to compute the 
set of optimal cache instances is presented in Algorithm 3. 
 
Algorithm 3 

Input:      data structures BCAT and MRCT  
Input:      desired number of cache misses K 
Output:   optimal pairs (D,A)1, (D,A)2… 

for i ∈  {1…|BCAT.depth|} 
   mini ⇐  1 
   for each node n in BCAT 
      for j ∈  {1…|n.S|} 
         countj ⇐  0 
for i ∈  {1…|BCAT.depth|} 
   for each node n at level i of BCAT 
      for each element e ∈  n.S 
         for each set C ∈  MRCTe 
            for j ∈  {mini…|n.S|} 
               if  |C ∩ n.S| ≥ j 
                  counti ⇐  counti + 1 
                  if  counti > K 
                     mini ⇐  mini + 1 
for i ∈  {1…|BCAT.depth|} 
      (D,A)i ⇐  (2i, mini) 

 

2.4 Final Remarks 
The data structure and algorithms described above are 
presented in a manner to illustrate the logic and intuition 
behind our analytical cache optimization technique. Here, 
we comment on issues to be considered in an actual 
implementation (such as the one used to obtain the results 
in our experiments section).  

 Stripping of a trace amounts to sorting the 
references and thus could take as long as 
N×log(N) steps. However, using a hash table can 
substantially improve the performance of this 
step of the algorithm. 

 In Algorithm 2, the building of the MRCT data 
structure can be performed during the stripping 
of the trace with no additional added time 
complexity using a hash table. 

 The extensive use of sets in our technique is due 
to the fact that sets are efficient to represent, 
store, and manipulate on a computer system 
using bit vectors. In addition, the use of sets 
allows for execution of the algorithm on a cluster 
of machines by utilizing a distributed set library, 
enabling the processing of very large trace files. 

 The implementation of Algorithm 1 and 
Algorithm 3 can be combined. Specifically, the 
BCAT does not need to be calculated in its 
entirety. Instead, a depth first traversal of the tree 
can be performed. This also would reduce the 



space complexity of the algorithm from 
exponential down to linear. 

Finally, we note that the space complexity of our 
analytical approach is of the order of the size of the trace 
file. In designing embedded systems, this is not likely to 
be a limitation as most embedded systems execute a small 
kernel of the code most of the time.   

3. Experiments 
For our experiments, we used 12 typical embedded 
system applications that are part of the PowerStone 
benchmark applications [4]. The applications included a 
Unix compression utility called compress, a CRC 
checksum algorithm called crc, an encryption algorithm 
called des, an engine controller called engine, an FIR 
filter called fir, a fax decoder called g3fax, a sorting 
algorithm called ucbqsort, an image rendering algorithm 
called blit, a POCSAG communication protocol called 
pocsag, and a few other applications. 

We first compiled and executed the benchmark 
applications on a MIPS R3000 simulator. Our processor 
simulator is instrumented to output separate instruction 
and data memory reference traces. The size of the traces 
N, the number of unique references N’ and the maximum 
number of misses are reported for all the data traces in 
Table 5 and all the instruction traces in Table 6. In these 
tables, the maximum number of misses is obtained by 
simulating the traces on a cache simulator configured to 
be direct mapped with the cache depth set to one. 

 
Benchmark Size N Unique References N’ Max. Misses 

adpcm 18431 381 17066 
bcnt 456 162 376 
blit 4088 2027 4072 

compress 58250 8906 48924 
crc 2826 603 2787 
des 20162 2241 20149 

engine 211106 225 166599 
fir 5608 146 5521 

g3fax 229512 3781 211576 
pocsag 13467 515 11569 

qurt 503 84 489 
ucbqsort 61939 1144 59215 

Table 5: Data trace statistics. 

Benchmark Size N Unique References N’ Max. Misses 
adpcm 63255 611 63255 
bcnt 1337 115 1337 
blit 22244 149 22244 

compress 137832 731 137832 
crc 37084 176 37084 
des 121648 570 121648 

engine 409936 244 409936 
fir 15645 327 15645 

g3fax 1127387 220 1127387 
pocsag 47840 560 47840 

qurt 1044 179 1044 
ucbqsort 219710 321 219710 

Table 6: Instruction trace statistics. 

We have ran these traces through our analytical 
algorithm for various values of desired number of cache 
misses K. Specifically, we have set K to one of 5%, 10%, 
15%, and 20% of the maximum number of misses, which 
is shown in the last columns of Table 5 and Table 6. A 
traditional simulator has been used to verify the results 
generated by our algorithms. For brevity, we have 
presented the optimal cache instances for only one of the 
benchmarks, namely the data trace of adpcm, as computed 
by our algorithm in Table 7. 
 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

5% 10% 15% 20% 
2 115 114 109 106 
4 115 115 109 106 
8 60 57 54 53 

16 33 28 27 26 
32 16 14 13 13 
64 9 8 7 6 

128 4 4 4 3 
256 3 3 2 2 
512 2 2 1 1 

1024 1 1 - - 

Table 7: Optimal cache instances. 

In this table, the inner entries are the degree of 
associativity A necessary to ensure the desired number of 
cache misses. For example, for a cache of depth 512, a 
direct mapped cache would be sufficient to ensure less 
than 15% misses, while a two way set associative cache 
would be needed to assure less than 5% misses. 

Our algorithm was executed on a Pentium III 
processor running at 1.0 GHz with 256 MB of memory. 
The average time taken to produce results for data and 
instruction traces is shown in Table 8 and Table 9. 

In Figure 4 we have plotted the execution time on 
the vertical axis versus the size of the trace N multiplied 
by the number of unique references N’ on the horizontal 
axis. It is easy to see that the time complexity of the 
algorithm is on the average linear with respect to the 
product of these two figures. In other words, it is faster 
than quadratic considering that the number of unique 

0

200

400

600

800

1000

1200

1400

0 200000000 400000000 600000000 800000000 1000000000

Trace Size * Unique Rreferences (N *N ')

E
xe

cu
tio

n 
T

im
e 

(s
ec

)

 

Figure 4: Execution efficiency of proposed approach. 



references N’ is much smaller than the number of total 
references N. 

 
Benchmark Time (sec) 

adpcm 2.9 
bcnt 0.11 
blit 6.8 

compress 290 
crc 0.80 
des 19 

engine 28 
fir 0.67 

g3fax 1200 
pocsag 3.2 

qurt 0.090 
ucbqsort 23 

Table 8: Algorithm run 
time: data traces. 

Benchmark Time (sec) 
adpcm 27 
bcnt 0.13 
blit 2.0 

compress 30 
crc 5.1 
des 31 

engine 56 
fir 2.3 

g3fax 390 
pocsag 8.2 

qurt 0.20 
ucbqsort 31 

Table 9: Algorithm run 
time: instruction traces. 

4. Conclusion 
We have presented an analytical approach to the design 
space exploration of caches that avoids exhaustive 
simulation. Our approach uses an analytical model of the 
cache combined with algorithms to directly and 
efficiently compute a cache configuration meeting 
designers’ performance constraints. In our approach, we 
consider a design space that is formed by varying cache 
size and degree of associativity. For a given memory 
reference trace, our algorithm takes as input the design 
constraint in the form of the number of desired cache 
misses and outputs a set of optimal cache instances that 
meet the constraint. We have shown the feasibility of our 
algorithm by experimenting with 12 embedded 
applications, which are part of the PowerStone suite of 
benchmarks. 

Our future direction of research will focus on 
incorporating additional design flexibility such as 
replacement policies, write policies, line size, bus 
architecture, multi-level cache hierarchies and other 
system-on-a-chip artifacts. 
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