
Analytical Design Space Exploration of Caches for Embedded Systems

Arijit Ghosh and Tony Givargis
Department of Information and Computer Science

Center for Embedded Computer Systems
University of California, Irvine, CA 92697

{arijitg,givargis}@ics.uci.edu

Abstract
The increasing use of microprocessor cores in embedded
systems, as well as mobile and portable devices, creates
an opportunity for customizing the cache subsystem for
improved performance. Traditionally, a
design-simulate-analyze methodology is used to achieve
desired cache performance. Here, to bootstrap the
process, arbitrary cache parameters are selected, the
cache sub-system is simulated using a cache simulator,
based on performance results, cache parameters are
tuned, and the process is repeated until an acceptable
design is obtained. Since the cache design space is
typically very large, the traditional approach often
requires a very long time to converge. In the proposed
approach, we outline an efficient algorithm that directly
computes cache parameters satisfying the desired
performance. We demonstrate the feasibility of our
algorithm by applying it to a large number of embedded
system benchmarks.

Keywords
Cache Optimization, Core-Based Design, Design Space
Exploration, System-on-a-Chip

1. Introduction
The growing demand for embedded computing platforms,
mobile systems, general-purpose handheld devices, and
dedicated servers coupled with shrinking time-to-market
windows are leading to new core based system-on-a-chip
(SOC) architectures [1][2][3]. Specifically,
microprocessor cores (a.k.a., embedded processors) are
playing an increasing role in such systems’ design
[4][5][6]. This is primarily due to the fact that
microprocessors are easy to program using well evolved
programming languages and compiler tool chains, provide
high degree of functional flexibility, allow for short
product design cycles, and ultimately result in low
engineering and unit costs. However, due to continued
increase in system complexity of these systems and
devices, the performance of such embedded processors is
becoming a vital design concern.

The use of data and instruction caches has been a
major factor in improving processing speed of today’s
microprocessors. Generally, a well-tuned cache hierarchy

and organization would eliminate the time overhead of
fetching instruction and data words from the main
memory, which in most cases resides off-chip and
requires power costly communication over the system bus
that crosses chip boundaries.

Particularly, in embedded, mobile, and handheld
systems, optimizing of the processor cache hierarchy has
received a lot of attention from the research community
[7][8][9]. This is in part due to the large performance
gained by tuning caches to the application set of these
systems. The kinds of cache parameters explored by
researchers include deciding the size of a cache line
(a.k.a., cache block), selecting the degree of associativity,
adjusting the total cache size, and selecting appropriate
control policies such as write-back and replacement
procedures. These techniques, typically, improve cache
performance, in terms of miss reduction, at the expense of
silicon area, clock latency, or energy.

Traditionally, a design-simulate-analyze
methodology is used to achieve optimal cache
performance [10][11][12][13]. In one approach, all
possible cache configurations are exhaustively simulated,
using a cache simulator, to find the optimal solution.
When the design space is too large, an iterative heuristic
is used instead. Here, to bootstrap the process, arbitrary
cache parameters are selected, the cache sub-system is
simulated using a cache simulator, cache parameters are
tuned based on performance results, and the process is
repeated until an acceptable design is obtained.

Central to the design-simulate-analyze methodology
is the ability to quickly simulate the cache. Specifically,
cache simulation takes as input a trace of memory
references generated by the application. In some of the
efforts, speedup is achieved by stripping the original trace
to a provably identical (from a performance point of
view) but shorter trace [14][15]. In some of the other
efforts, one-pass techniques are used in which numerous
cache configurations are evaluated simultaneously during
a single simulation run [16][17]. While these techniques
reduce the time taken to obtain cache performance metrics
for a given cache configuration, they do not solve the
problem of design space exploration in general. This is
primarily due to the fact that the cache design space is too
large. Figure 1(a) depicts the traditional approach to cache
design space exploration.

Our approach uses an analytical model of the cache
combined with an algorithm to directly and efficiently

1530-1591/03 $17.00 2003 IEEE

compute a cache configuration meeting designers’
performance constraints. Figure 1(b) depicts our proposed
analytical approach to cache design space exploration. In
our approach, we consider a design space that is formed
by varying cache size and degree of associativity. In
addition to the trace file, our algorithm takes as input the
design constraint in the form of the number of desired
cache misses. The output of the algorithm is a set of cache
instances that meet the constraint.

The remainder of this paper is organized as follows.
In Section 2, we outline our technical approach and
introduce our data structures and algorithm. In Section 3,
we present our experiments and show our results. In
Section 4, we conclude with some final remarks and
future direction of research.

2. Technical Approach
2.1 Overview
In the following approach, we consider a design space
that is obtained by varying caches depth D and the degree
of associativity A. Cache depth D gives the number of
rows in the cache. In other words, log2(D) gives the
bit-width of the index portion of the memory address.
Degree of associativity A is the number of storage
available to accommodate data/instruction words mapping
to the same cache row (a.k.a., cache line/block). Our
objective is to obtain a set of optimal cache pairs (D, A)
for a given number K of desired cache misses. Note that
by using the cache depth D, degree of associativity A, and
line size Lsize, we obtain the total cache size by computing
D×A×Lsize. Also, note that the K desired caches misses are
assumed to be those beyond the cold misses, as cold
misses cannot be avoided.

In our approach, we do not consider the cache line
size as a varying parameter. In part, our decision is due to
the fact that a change in the cache line size would require
redesign of processor memory interface, bus architecture,
main memory controller, as well as main memory
organization. Thus, changing of cache line size requires a

more encompassing design space exploration. Likewise,
we have assumed fixed least recently used replacement
and write-back policies, as these are the most common
and often optimal choices.

Our approach can be divided into two logical
phases, namely, the prelude algorithms and the postlude
algorithm. During the execution of the prelude algorithms
we process the trace file and construct two key data
structures. One of these data structures is a Binary Cache
Allocation Tree BCAT. The other data structure is the
Memory Reference Conflict Table MRCT. During the
execution of the postlude algorithm, and while operating
on the BCAT and MRCT data structures, we compute the
optimal cache pairs (D, A), which are guaranteed to result
in a miss rate of less than K. A block diagram of our
analytical approach is shown in Figure 2. We next
describe in detail the two phases of our approach and
define further the purpose of the key data structures.

2.2 Prelude Phase
Recall that a trace of N instruction/data memory
references is obtained after simulating the target
application on a processor whose cache is being
optimized. We reduce this trace of N memory references
into a set of N’ unique references, where N’≤N. In other
words, the original trace contained repetitions of these N’
memory references. As part of a running example,
consider the trace shown in Table 1 along with the
stripped version shown in Table 2.

B3 B2 B1 B0
1 0 1 1
1 1 0 0
0 1 1 0
0 0 1 1
1 0 1 1
0 1 0 0
1 1 0 0
0 0 1 1
1 0 1 1
0 1 1 0

Table 1: Original trace.

ID B3 B2 B1 B0
1 1 0 1 1
2 1 1 0 0
3 0 1 1 0
4 0 0 1 1
5 0 1 0 0

Table 2: Stripped trace.

Figure 1: Design space exploration: (a) traditional approach,
(b) proposed approach.

Figure 2: Block diagram of proposed approach.

D

es
ir

ed

M
is

se
s

K

T
ra

ce

Fi
le

$
Simulator

==

$ Design
Instance

Introduce $
Design Instance

(a) (b)

%
 D

es
ir

ed

M
is

se
s

T
ra

ce

Fi
le

Algorithmic $
Instance Generator

$ Design
Instance

Y N

Postlude Phase

Prelude Phase

D

es
ir

ed

M
is

se
s

K

T
ra

ce

Fi
le

Strip

$ Design
Instance

Build BCAT

N

Build MRCT

N’

BCAT MRCT

Compute Optimal Set

Our trace contains 10 4-bit references. Of those,
there are 5 unique references. We have assigned a
numeric identifier to each of the unique references as
shown in Table 2. (At times, we may simply refer to a
particular reference using its numeric identifier.)

To compute the BCAT data structure, we first
transform the stripped trace into an array of zero/one sets.
The array of zero/one sets contains a pair of sets for each
address bit. Specifically, for index bit Bi, we compute a
pair of sets called zero Zi and one Oi. The set Zi contains
the identifier of all references that have a bit value of 0 at
Bi. Likewise, the set Oi contains the identifier of all
references that have a bit value of 1 at Bi. For our running
example, shown in Table 1, the zero/one sets are given in
Table 3.

 2.2.1.1.1.1. O
B0 {2,3,5} {1,4}
B1 {2,5} {1,3,4}
B2 {1,4} {2,3,5}
B3 {3,4,5} {1,2}

Table 3: Zero/one sets.

The choice of a BCAT data structure is due to the
fact that it fully captures how references are mapped onto
a cache of any possible organization. To construct this
tree, we use the array of zero/one sets given earlier. We
use these sets because the set intersection operation nicely
defines how references are allocated to each cache
location. For example, in a cache of depth 4 (i.e., 4
indexed rows), using B0 and B1 as the index bits, we can
compute the following cross intersections:
L00=Z0∩Z1={2,5}, L01=Z0∩O1={3}, L10=O0∩Z1={}, and
L11=O0∩O1={1,4}. Here sets L00, L01, L10, and L11 contain
the reference identifiers mapped onto the 4 cache slots.
Likewise, for a cache of depth 8, using an additional
index bit B2, we cross intersect each of these 4 sets with
Z2 and O2 to obtain the 8 new sets and so on. The new sets
form the nodes of our binary tree. We stop growing the
tree further down when we reach a set with cardinality
less than 2. Algorithm 1 recursively builds a BCAT data
structure as described here.

Algorithm 1

Input: array of zero Z and one O sets
Output: data structures BCAT
BCAT.root ⇐ (Z0,O0)
call build-tree(BCAT.root, 1)
begin build-tree(node n=(Z,O), l)
 if |Z| >= 2 then
 n.left ⇐ (Z ∩ Zl, Z ∩ Ol)
 call build-tree(n.left, l + 1)
 if |O| >= 2 then
 n.right ⇐ (O ∩ Zl, O ∩ Ol)
 call build-tree(n.right, l + 1)
end build-tree

The complete BCAT data structure for our running
example is shown in Figure 3.

Next, we look at the MRCT data structure. The
choice of an MRCT data structure is due to the fact that it
captures, for each occurrence of a reference, a set of
references that may cause a conflict. In other words, the
MRCT data structure is an array of size N’ (number of
unique references) of sets, where each set corresponds to
one unique reference. Moreover, each set is composed of
sets, each corresponding to an occurrence (excluding the
first cold occurrence) of that unique reference in the
original trace. To clarify, consider the MRCT data
structure of our running example shown in Table 4.

ID Conflict Sets
1 {{2,3,4}, {2,4,5}}
2 {{1,3,4,5}}
3 {{1,2,4,5}}
4 {{1,2,5}}
5 {}

Table 4: MRCT data structure.

Here, the reference “1011” has 3 occurrences. The
first occurrence of “1011” is ignored as it will always be a
cold miss. The second occurrence of “1011” can
potentially be a miss due to a conflict with references
“1100”, “0110”, or “0011” (i.e., the set {2,3,4}). The last
occurrence of “1011” can potentially be a miss due to a
conflict with references “0100”, “1100”, or “0011” (i.e.,
the set {2,4,5}). So, the set of sets for reference “1011”
contains two sets, namely {{2,3,4}, {2,4,5}}. Algorithm 2
builds an MRCT data structure as described here.

Algorithm 2

Input: memory references R1…RN
Input: unique reference U1…UN’
Output: memory reference conflict table T
for i ∈ {1…N’}
 Ti ⇐ Si ⇐ ∅
for j ∈ {1…N} do
 for i ∈ {1…N’} do
 if Rj = Ui then
 Ti ⇐ Ti ∪ Si
 Si ⇐ ∅
 else
 Si ⇐ Si ∪ Rj.identifier

Figure 3: BCAT data structure.

B0
{2,3,5} {1,4}
B1

{2,5} {3}

B1

{} {1,4}

B2

{} {2,5}

B2

{1,4} {}

B3

{5} {2}

B3

{4} {1}

2.3 Postlude Phase
Let us now compute a set of cache depth D and degree of
associativity A pairs that would result in K or less misses.
We start by looking at the BCAT data structure of our
running example, shown in Figure 3. Note that each level
of the tree corresponds to a particular cache depth. For
example, level one of the tree (root being level zero)
corresponds to a cache of depth two. At this level, the
nodes of the BCAT tree capture the reference instances
that would map to the two cache rows, namely any
reference identified as one of {2,3,5} would map to the
first cache row and any reference identified as one of
{1,4} would map to the second cache row. In essence, for
a cache of depth two with zero desired misses, we would
need to set the degree of associativity A equal to the
maximum cardinality of the two sets {2,3,5}, and {1,4}
(i.e., A=max(|{2,3,5}|,|{1,4}|)=3). A similar approach can
be taken to compute the degree of associativity A of a
cache with depth four. Here, the degree of associativity A
is set to the maximum of the cardinality of the sets {2,5},
{3}, {}, and {1,4} corresponding to the nodes at level two
of the BCAT, and so on for the any other cache depth.

Clearly, the above approach is too conservative and
produces caches that are ideal, in other words, caches that
result in exactly zero misses (not counting cold misses).
However, when the desired number of cache misses is
greater than zero, we need to compute the minimum
degree of associativity A that would satisfy our constraint.
The MRCT data structure is used to accomplish this.
Once again, for any particular cache depth, we look at the
corresponding BCAT level. For each node at that level we
determine the number of misses (described below) that
would occur if the degree of associativity A was set to 1,
2…Azero. Where Azero is the degree of associativity
required to have zero misses at that node. Consequently,
we choose the smallest A that results in the sum of the
misses of the individual nodes to be less than the desired
number of misses K.

Lets us now compute the number of misses at a
particular node given a particular degree of associativity
A. Let us assume that the set of references mapping to this
node is S. For each member of S we refer to the
corresponding conflict sets C1, C2, … from the MRCT
data structure. We count as a miss each time the
cardinality of the intersection of the set S with Ci is larger
than or equal to A. To illustrate, let us look at the
rightmost node at level two of our BCAT example with
S={1,4} and assuming A=1. From the MRCT data
structure we obtain the conflict sets of the first element
(i.e., 1), namely, C1={2,3,4} and C2={2,4,5}. Since the
cardinality of the intersection of S and C1 is one, we
increment our miss count at that level. Likewise since the
cardinality of the intersection of S and C2 is one, we
increment our miss count at that level for a second time.
We repeat the same for the second element in S (i.e., 4).

Note that a miss count is associated with each degree of
associativity A under consideration (i.e., 1, 2…Azero). We
stop to consider a particular degree of associativity A
when its miss count goes beyond the desired number of
desired misses K. The complete procedure to compute the
set of optimal cache instances is presented in Algorithm 3.

Algorithm 3

Input: data structures BCAT and MRCT
Input: desired number of cache misses K
Output: optimal pairs (D,A)1, (D,A)2…

for i ∈ {1…|BCAT.depth|}
 mini ⇐ 1
 for each node n in BCAT
 for j ∈ {1…|n.S|}
 countj ⇐ 0
for i ∈ {1…|BCAT.depth|}
 for each node n at level i of BCAT
 for each element e ∈ n.S
 for each set C ∈ MRCTe
 for j ∈ {mini…|n.S|}
 if |C ∩ n.S| ≥ j
 counti ⇐ counti + 1
 if counti > K
 mini ⇐ mini + 1
for i ∈ {1…|BCAT.depth|}
 (D,A)i ⇐ (2i, mini)

2.4 Final Remarks
The data structure and algorithms described above are
presented in a manner to illustrate the logic and intuition
behind our analytical cache optimization technique. Here,
we comment on issues to be considered in an actual
implementation (such as the one used to obtain the results
in our experiments section).

 Stripping of a trace amounts to sorting the
references and thus could take as long as
N×log(N) steps. However, using a hash table can
substantially improve the performance of this
step of the algorithm.

 In Algorithm 2, the building of the MRCT data
structure can be performed during the stripping
of the trace with no additional added time
complexity using a hash table.

 The extensive use of sets in our technique is due
to the fact that sets are efficient to represent,
store, and manipulate on a computer system
using bit vectors. In addition, the use of sets
allows for execution of the algorithm on a cluster
of machines by utilizing a distributed set library,
enabling the processing of very large trace files.

 The implementation of Algorithm 1 and
Algorithm 3 can be combined. Specifically, the
BCAT does not need to be calculated in its
entirety. Instead, a depth first traversal of the tree
can be performed. This also would reduce the

space complexity of the algorithm from
exponential down to linear.

Finally, we note that the space complexity of our
analytical approach is of the order of the size of the trace
file. In designing embedded systems, this is not likely to
be a limitation as most embedded systems execute a small
kernel of the code most of the time.

3. Experiments
For our experiments, we used 12 typical embedded
system applications that are part of the PowerStone
benchmark applications [4]. The applications included a
Unix compression utility called compress, a CRC
checksum algorithm called crc, an encryption algorithm
called des, an engine controller called engine, an FIR
filter called fir, a fax decoder called g3fax, a sorting
algorithm called ucbqsort, an image rendering algorithm
called blit, a POCSAG communication protocol called
pocsag, and a few other applications.

We first compiled and executed the benchmark
applications on a MIPS R3000 simulator. Our processor
simulator is instrumented to output separate instruction
and data memory reference traces. The size of the traces
N, the number of unique references N’ and the maximum
number of misses are reported for all the data traces in
Table 5 and all the instruction traces in Table 6. In these
tables, the maximum number of misses is obtained by
simulating the traces on a cache simulator configured to
be direct mapped with the cache depth set to one.

Benchmark Size N Unique References N’ Max. Misses

adpcm 18431 381 17066
bcnt 456 162 376
blit 4088 2027 4072

compress 58250 8906 48924
crc 2826 603 2787
des 20162 2241 20149

engine 211106 225 166599
fir 5608 146 5521

g3fax 229512 3781 211576
pocsag 13467 515 11569

qurt 503 84 489
ucbqsort 61939 1144 59215

Table 5: Data trace statistics.

Benchmark Size N Unique References N’ Max. Misses
adpcm 63255 611 63255
bcnt 1337 115 1337
blit 22244 149 22244

compress 137832 731 137832
crc 37084 176 37084
des 121648 570 121648

engine 409936 244 409936
fir 15645 327 15645

g3fax 1127387 220 1127387
pocsag 47840 560 47840

qurt 1044 179 1044
ucbqsort 219710 321 219710

Table 6: Instruction trace statistics.

We have ran these traces through our analytical
algorithm for various values of desired number of cache
misses K. Specifically, we have set K to one of 5%, 10%,
15%, and 20% of the maximum number of misses, which
is shown in the last columns of Table 5 and Table 6. A
traditional simulator has been used to verify the results
generated by our algorithms. For brevity, we have
presented the optimal cache instances for only one of the
benchmarks, namely the data trace of adpcm, as computed
by our algorithm in Table 7.

Degree of Associativity A
Desired Cache Misses K as a Percentage

Cache
Depth D

5% 10% 15% 20%
2 115 114 109 106
4 115 115 109 106
8 60 57 54 53

16 33 28 27 26
32 16 14 13 13
64 9 8 7 6

128 4 4 4 3
256 3 3 2 2
512 2 2 1 1

1024 1 1 - -

Table 7: Optimal cache instances.

In this table, the inner entries are the degree of
associativity A necessary to ensure the desired number of
cache misses. For example, for a cache of depth 512, a
direct mapped cache would be sufficient to ensure less
than 15% misses, while a two way set associative cache
would be needed to assure less than 5% misses.

Our algorithm was executed on a Pentium III
processor running at 1.0 GHz with 256 MB of memory.
The average time taken to produce results for data and
instruction traces is shown in Table 8 and Table 9.

In Figure 4 we have plotted the execution time on
the vertical axis versus the size of the trace N multiplied
by the number of unique references N’ on the horizontal
axis. It is easy to see that the time complexity of the
algorithm is on the average linear with respect to the
product of these two figures. In other words, it is faster
than quadratic considering that the number of unique

0

200

400

600

800

1000

1200

1400

0 200000000 400000000 600000000 800000000 1000000000

Trace Size * Unique Rreferences (N *N ')

E
xe

cu
tio

n
T

im
e

(s
ec

)

Figure 4: Execution efficiency of proposed approach.

references N’ is much smaller than the number of total
references N.

Benchmark Time (sec)

adpcm 2.9
bcnt 0.11
blit 6.8

compress 290
crc 0.80
des 19

engine 28
fir 0.67

g3fax 1200
pocsag 3.2

qurt 0.090
ucbqsort 23

Table 8: Algorithm run
time: data traces.

Benchmark Time (sec)
adpcm 27
bcnt 0.13
blit 2.0

compress 30
crc 5.1
des 31

engine 56
fir 2.3

g3fax 390
pocsag 8.2

qurt 0.20
ucbqsort 31

Table 9: Algorithm run
time: instruction traces.

4. Conclusion
We have presented an analytical approach to the design
space exploration of caches that avoids exhaustive
simulation. Our approach uses an analytical model of the
cache combined with algorithms to directly and
efficiently compute a cache configuration meeting
designers’ performance constraints. In our approach, we
consider a design space that is formed by varying cache
size and degree of associativity. For a given memory
reference trace, our algorithm takes as input the design
constraint in the form of the number of desired cache
misses and outputs a set of optimal cache instances that
meet the constraint. We have shown the feasibility of our
algorithm by experimenting with 12 embedded
applications, which are part of the PowerStone suite of
benchmarks.

Our future direction of research will focus on
incorporating additional design flexibility such as
replacement policies, write policies, line size, bus
architecture, multi-level cache hierarchies and other
system-on-a-chip artifacts.

5. References
[1] International Technology Roadmap for

Semiconductors. http://www.itrs.net.
[2] C. Kozyrakis, D. Patterson. A New Direction for

Computer Architecture Research, IEEE Computer,
pp. 24-32, 1998.

[3] F. Vahid, T. Givargis. The Case for a Configure-and-
Execute Paradigm. International Symposium on Low
Power Electronics and Design, 1999.

[4] A. Malik, B. Moyer, D. Cermak. A Lower Power
Unified Cache Architecture Providing Power and
Performance Flexibility. International Symposium on
Low Power Electronics and Design, 2000.

[5] P. Petrov, A. Orailoglu. Towards Effective
Embedded Processors in Codesigns: Customizable

Partitioned Caches. International Workshop on
Hardware/Software Codesign, 2001

[6] K. Suzuki, T. Arai, N. Kouhei, I. Kuroda.
V830R/AV: Embedded Multimedia Superscalar
RISC Processor. IEEE Micro, vol. 18, No. 2, pp.36-
47, 1998.

[7] P. Petrov, A. Orailoglu. Towards Effective
Embedded Processors in Codesigns: Customizable
Partitioned Caches. International Workshop on
Hardware/Software Codesign, 2001.

[8] C. Su, A.M. Despain. Cache Design Trade-offs for
Power and Performance Optimization: A Case Study.
International Symposium on Low Power Electronics
and Design, 1995.

[9] R. Balasubramonian, D. Albonesi, A.
Buyuktosunoglu, S. Dwarkadas. Memory Hierarchy
Reconfiguration for Energy and Performance in
General-Purpose Processor Architectures.
International Symposium on Microarchitecture, 2000.

[10] Y. Li, J. Henkel. A Framework for Estimating and
Minimizing Energy Dissipation of Embedded
HW/SW Systems. Design Automation Conference,
1998.

[11] S.J.E. Wilton, N.P. Jouppi. CACTI: An Enhanced
Cache Access and Cycle Time Model. IEEE Journal
of Solid State Circuits, vol. 31, no. 5, 1996.

[12] T. Sato. Evaluating Trace Cache on Moderate-Scale
Processors. IEEE Computer, vol. 147, no. 6, 2000.

[13] W. Shiue, C. Chakrabarti. Memory Exploration for
Low Power Embedded Systems. Design Automation
Conference, 1999.

[14] Z. Wu, W. Wolf. Iterative Cache Simulation of
Embedded CPUs with Trace Stripping. International
Workshop on Hardware/Software Codesign, 1999.

[15] M. Lajolo, A. Raghunathan, S. Dey, L. Lavagno, A.
Sangiovanni-Vincentelli. Efficient Power Estimation
Techniques for HW/SW Systems. IEEE Alessandro
Volta Memorial Workshop on Low-Power Design,
1999.

[16] D. Kirovski, C. Lee, M. Potkonjak, W. Mangione-
Smith. Synthesis of Power Efficient Systems-on-
Silicon. Asian South Pacific Design Automation
Conference, 1998.

[17] R.L. Mattson, J. Gecsei, D.R. Slutz, I.L. Traiger.
Evaluation Techniques for Storage Hierarchies. IBM
Systems Journal, vol. 9, no. 2, pp. 78-117, 1970.

	Main Page
	DATE'03
	Front Matter
	Table of Contents
	Author Index

