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ABSTRACT 
Embedded microprocessor cores are increasingly being 
used in embedded and mobile devices. The software 
running on these embedded microprocessor cores is often a 
priori known, thus, there is an opportunity for customizing 
the cache subsystem for improved performance. In this 
work, we propose an efficient algorithm to directly compute 
cache parameters satisfying desired performance criteria. 
Our approach avoids simulation and exhaustive 
exploration, and, instead, relies on an exact algorithmic 
approach. We demonstrate the feasibility of our algorithm 
by applying it to a large number of embedded system 
benchmarks. 
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1. INTRODUCTION 
The growing demand for embedded computing platforms, 
mobile systems, general-purpose handheld devices, and 
dedicated servers coupled with shrinking time-to-market 
windows are leading to new core-based system-on-a-chip 
(SOC) architectures [6][2][5]. Specifically, microprocessor 
cores (a.k.a., embedded processors) are playing an 
increasing role in such systems’ design [1][9][7]. This is 
primarily due to the fact that microprocessors are easy to 
program using well evolved programming languages and 
compiler tool chains, provide high degree of functional 
flexibility, allow for short product design cycles, and 
ultimately result in low engineering and unit costs. 
However, due to continued increase in system complexity 
of these systems and devices, the performance of such 
embedded processors is becoming a vital design concern. 

The use of data and instruction caches has been a major 
factor in improving processing speed of today’s 
microprocessors. Generally, a well-tuned cache hierarchy 
and organization would eliminate the time overhead of 
fetching instruction and data words from the main memory, 
which in most cases resides off-chip and requires power 
costly communication over the system bus that crosses chip 
boundaries. 

Particularly, in embedded, mobile, and handheld systems, 
optimizing of the processor cache hierarchy has received a 

lot of attention from the research community [9][3][10]. 
This is in part due to the large performance gained by 
tuning caches to the application set of these systems. The 
kinds of cache parameters explored by researchers include 
deciding the size of a cache line (a.k.a., cache block), 
selecting the degree of associativity, adjusting the total 
cache size, and selecting appropriate control policies such 
as write-back and replacement procedures. These 
techniques, typically, improve cache performance, in terms 
of miss reduction, at the expense of silicon area, clock 
latency, or energy. 

Traditionally, a design-simulate-analyze methodology is 
used to achieve optimal cache performance [15][12][13]. In 
one approach, all possible cache configurations are 
exhaustively simulated, using a cache simulator, to find the 
optimal solution. When the design space is too large, an 
iterative heuristic is used instead. Here, to bootstrap the 
process, arbitrary cache parameters are selected, the cache 
sub-system is simulated using a cache simulator, cache 
parameters are tuned based on performance results, and the 
process is repeated until an acceptable design is obtained. 

Central to the design-simulate-analyze methodology is the 
ability to quickly simulate the cache. Specifically, cache 
simulation takes as input a trace of memory references 
generated by the application. In some of the efforts, 
speedup is achieved by stripping the original trace to a 
provably identical (from a performance point of view) but 
shorter trace [16][8]. In some of the other efforts, one-pass 
techniques are used in which numerous cache 
configurations are evaluated simultaneously during a single 
simulation run [4][11]. While these techniques reduce the 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Design space exploration of caches: (a) 
traditional approach, (b) proposed approach. 
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time taken to obtain cache performance metrics for a given 
cache configuration, they do not solve the problem of 
design space exploration in general. This is primarily due to 
the fact that the cache design space is too large. Figure 1(a) 
depicts the traditional approach to cache design space 
exploration. 

Our approach uses an analytical model of the cache 
combined with an algorithm to directly and efficiently 
compute a cache configuration meeting designers’ 
performance constraints. Figure 1(b) depicts our proposed 
analytical approach to cache design space exploration. In 
our approach, we consider a design space that is formed by 
varying cache size and degree of associativity. In addition 
to the trace file, our algorithm takes as input the design 
constraint in the form of the number of desired cache 
misses. The output of the algorithm is a set of cache 
instances that meet the constraint. 

The remainder of this paper is organized as follows. In 
Section 2, we outline our technical approach and introduce 
our data structures and algorithm. In Section 3, we present 
our experiments and show our results. In Section 4, we 
conclude with some final remarks and future direction of 
research. 

2. TECHNICAL APPROACH 
2.1 Overview 
In the following approach, we consider a design space that 
is obtained by varying caches depth D and the degree of 
associativity A. Cache depth D gives the number of rows in 
the cache. In other words, log2(D) gives the bit-width of the 
index portion of the memory address. Degree of 
associativity A is the amount of storage available to 
accommodate data/instruction words mapping to the same 
cache row (a.k.a., cache block). Our objective is to obtain a 
set of optimal cache pairs (D, A) for a given number K of 
desired cache misses. Note that by using the cache depth D, 
degree of associativity A, and line size Lsize, we obtain the 

total cache size by computing D×A×Lsize. Also, note that the 
K desired caches misses are assumed to be those beyond 
the cold misses, as cold misses cannot be avoided. 

In our approach, we do not consider the cache row size as a 
varying parameter. In part, our decision is due to the fact 
that a change in the cache row size would require redesign 
of processor memory interface, bus architecture, main 
memory controller, as well as main memory organization. 
Thus, changing of cache row size requires a more 
encompassing design space exploration. Likewise, we have 
assumed fixed least recently used replacement and write-
back policies, as these are common and often optimal 
choices. 

Our approach can be divided into three phases, the 
pre-processing phase, the main processing phase and the 
post-processing phase. During the pre-processing phase, we 
read the trace file and construct a binary-tree data structure, 
called the Binary Cache Allocation Tree BCAT. In the 
main processing phase, we compute the Miss Table MT 
during a depth first traversal of the BCAT. In the post-
processing phase, we generate the optimal cache pairs (D, 
A), which are guaranteed to result in a miss rate of less than 
K. A block diagram of our analytical approach is shown in 
Figure 2. We next describe in detail the three phases of our 
algorithm and the associated data structures. 

2.2 Pre-Processing Phase 
Recall that a trace of N instruction/data memory references 
is obtained after simulating the target application on a 
processor whose cache is being optimized. We reduce this 
trace into a set of N’ unique references, where N’≤N. In 
other words, the original trace contained repetitions of 
these N’ memory references. As part of a running example, 
consider the trace shown in Table 1 and the stripped 
version shown in Table 2. 
 

B3 B2 B1 B0 
1 0 1 1 
1 1 0 0 
0 1 1 0 
0 0 1 1 
1 0 1 1 
0 1 0 0 
1 1 0 0 
0 0 1 1 
1 0 1 1 
0 1 1 0 

Table 1: Original trace. 

ID B3 B2 B1 B0 
1 1 0 1 1 
2 1 1 0 0 
3 0 1 1 0 
4 0 0 1 1 
5 0 1 0 0 

Table 2: Stripped trace. 

In this example, the trace contains N=10 4-bit references. 
Of those, there are N'=5 unique references. We have 
assigned a numeric identifier to each of the unique 
references as shown in Table 2. (At times, we may simply 
refer to a particular reference using its numeric identifier.) 
Next we describe the BCAT data structure. 

A BCAT data structure fully captures how references are 
mapped onto a cache of any possible organization. Prior to 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Block diagram of proposed algorithm. 
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computing the BCAT data structure, we transform the 
stripped trace into an array of zero/one sets. The array of 
zero/one sets contains a pair of sets for each address bit. 
Specifically, for index bit Bi, we compute a pair of sets 
called zero Zi and one Oi. The set Zi contains the identifier 
of all references that have a bit value of 0 at Bi. Likewise, 
the set Oi contains the identifier of all references that have a 
bit value of 1 at Bi. For the running example, shown in 
Table 1, the zero/one sets are given in Table 3. 

Table 3: Zero/one sets. 
 Z O 

B0 {2,3,5} {1,4} 
B1 {2,5} {1,3,4} 
B2 {1,4} {2,3,5} 
B3 {3,4,5} {1,2} 

 

Next, the zero/one sets are used to construct the BCAT tree. 
We use these sets because the set intersection operation 
nicely defines how references are allocated to each cache 
location. For example, in a cache of depth 4 (i.e., 4 rows), 
using B0 and B1 as the index bits, we can compute the 
following cross intersections: L00=Z0∩Z1={2,5}, 
L01=Z0∩O1={3}, L10=O0∩Z1={}, and L11=O0∩O1={1,4}. 
Here sets L00, L01, L10, and L11 contain the reference 
identifiers mapped onto the 4 cache slots. Likewise, for a 
cache of depth 8, using an additional index bit B2, we cross 
intersect each of these 4 sets with Z2 and O2 to obtain the 8 
new sets and so on. The new sets form the nodes of our 
binary tree. We stop growing the tree further down when 
we reach a set with cardinality less than 2. Algorithm 1 and 
Algorithm 2 recursively build a BCAT data structure as 
described here. 

Algorithm 1: Build-BCAT  
Input : Stripped Trace T’=R0, R1 … RN’-1 
Output : BCAT Data Structure 
for each i ∈ [M-1…0] do // assume M-bit references 
   Zi := Oi := ∅ 
   for each Rj ∈ T’ do 
      if j th bit of Rj is 0 then 
         Zj := Zj ∪ { i} 
      else 
         Oj := Oj ∪ { i} 
BCAT.root ⇐ Z0 ∪ O0 

BCAT := Recursive-Build-BCAT(BCAT.root, Z, O, 1) 

Algorithm 2: Recursive-Build-BCAT  
Input : BCAT Data Structure, Node N, Sets Z/O, and level L 
Output : BCAT Data Structure 
if |N| >= 2 then 
   N.left ⇐ N ∩ ZL 
   BCAT := Recursive-Build-BCAT(N.left, Z, O, L + 1) 
   N.right ⇐ N ∩ OL 
   BCAT := Recursive-Build-BCAT(N.right, Z, O, L + 1) 

The complete BCAT data structure of the running example 
is shown in Figure 3. 

Associated with each node, we maintain a trace, called the 
Relevant Trace Set RTS. The RTS of a node is a subset of 
the RTS of its parent node containing only the references 
mapped onto the current node. For the root, RTS is the 
original trace. For other nodes, RTS is created dynamically 
during the main processing phase. (See Algorithm 7.) 

2.3 Main Processing Phase 
In the main processing phase, we build up the Miss Table 
MT data structure by processing each node as it is 
encountered in a depth first traversal of the BCAT tree. 

The MT data structure maintains, for each level L of the 
BCAT, the number of misses for every associativity being 
considered, i.e., A=1 to A=Amax. Note that each level of the 
tree corresponds to a particular cache depth D=2L. For 
example, level one of the tree (root being level zero) 
corresponds to a cache of depth two. Also, the maximum 
associativity at a given level, which results in no misses, 
can be calculated by setting A to the maximum cardinality 
of all nodes in the BCAT at that level. An entry MTL,A gives 
the number of misses at level L (i.e., depth D=2L) for 
associativity A. For example, MT3,2=15 means a cache of 
dept D=23=8 with associativity A=2 will result in 15 
misses. The complete MT data structure for our running 
example is shown in Table 4. 

Table 4: MT data structure. 
Assoc. ���� 

Level 
1 2 3 4 5 

0 5 4 4 2 0 
1 5 2 0 0 0 
2 4 0 0 0 0 
3 4 0 0 0 0 
4 0 0 0 0 0 

 

The MT data structure is built using Algorithm 3. 

Algorithm 3: Build-MT  
Input : Original Trace T, Desired Misses K 
Input : BCAT Data Structure 
Output : MT Data Structure 
MT := ∅; BCAT.root.RTS = T 
for each node N ∈ BCAT (depth first) do 
   (MT,N) := Process-Node(MT,N,K) 

Processing of each node involves updating the MT data 
structure and creating the RTS (explained earlier) as well as 

 
 
 
 
 
 
 
 
 
 
 

Figure 3: BCAT data structure. 
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the Memory Reference Conflict Table MRCT (explained 
next) for the children nodes, as shown in Algorithm 4. 

Algorithm 4: Process-Node 
Input : MT Data Structure, Node N, and Desired Misses K 
Output : MT Data Structure, Node N 
MRCT := Build-MRCT(N) 
MT := Update-MT(MRCT,K,MT,N.level) 
N := Create-Children-RTS(N) 

The MRCT data structure of a node N captures, for each 
occurrence of a reference R, the number of unique 
references that may cause a conflict with the next 
occurrence of R in the RTS of N. In other words, the 
MRCT associated with node N is an array of vectors, one 
for each unique reference R mapped to N, containing a 
count of references that may cause a conflict with R. The 
MRCT data structure associated with the root node of the 
running example is shown in Table 5. 

Table 5: MRCT data structure for root node. 
ID Conflict Vectors 
1 (3,3) 
2 (4) 
3 (4) 
4 (3) 
5 (0) 

Here, the reference “1011” has 3 occurrences. The first 
occurrence of “1011” is ignored as it will always be a cold 
miss. The second occurrence of “1011” can potentially be a 
miss due to a conflict with references “1100”, “0110”, or 
“0011” (i.e., the element MRCT1,1=3). The last occurrence 
of “1011” can potentially be a miss due to a conflict with 
references “0100”, “1100”, or “0011” (i.e., the element 
MRCT1,2=3). So, the conflict vector for reference “1011” 
contains two elements, namely (3,3). Algorithm 5 builds 
the MRCT data structure as described above. 

Algorithm 5: Build-MRCT  
Input : Node N 
Output : MRCT Data Structure 
MRCT := temp := last := ∅ 
for Ri ∈ N.RTS do 
   for Rj ∈ N do 
      if (j ≠ i) && ( i ∉ tempj) then 
         MRCT[ j][ last[ j]] := MRCT[j][ last[ j]] + 1 
         temp[j] := temp[ j] ∪ { i} 
      else 
         last[ j] := last[ j] + 1 
         temp[j] := ∅ 

To update the MT, we observe that the value MRCTi,j 
provides the upper bound on the degree of associativity, for 
which the i th occurrence of the j th reference will result in a 
miss. To illustrate, let us look at the root of the BCAT 
example with N={1,2,3,4,5}. From the MRCT data 
structure we obtain the conflict vectors of the first element, 
namely V11=3 and V12=3. Since the value of V11 is 3, we 
increment our miss count at that level by 1 for all 
associativities from 1 to 3. Likewise since the value of V12 
is 3, we increment our miss count at that level for a second 

time. We repeat the same for the remaining elements in N. 
Note that a miss count is associated with each degree of 
associativity A under consideration (i.e., 1, 2…Amax). We 
stop to consider a particular degree of associativity A when 
its miss count goes beyond the desired number of desired 
misses K, as shown in Algorithm 6. 

Algorithm 6: Update-MT  
Input : MRCT Data Structure, Desired Misses K 
Input : MT Data Structure, Level L 
Output : MT Data Structure 
for each row i ∈ MRCT do 
   for each element j ∈ MRCT[i] do 
      for A ∈ [1…MRCT[ i][ j]] do 
         if (MT[L][A] != -1) && ( MT[L][A] > K) then 
            MT[L][A] := -1 and break 
         MT[L][A] := MT[L][A] + 1 

Finally, to build the RTS of the children, we follow the 
steps outlines in Algorithm 7. 

Algorithm 7: Generate-Children-RTS 
Input : Node N 
Output : Node N 
N.left-child.RTS := N.right-child.RTS := ∅ 
for Ri ∈ N.RTS do 
   if Ri ∈ N.left-child then 
      N.left-child.RTS := N.left-child.RTS ∪ {Ri} 
   else 
      N.right-child.RTS := N.right-child.RTS ∪ {Ri} 

2.4 Postlude Phase 
During the last phase of the algorithm, we read the MT data 
structure and output a set of cache depth and associativity 
pairs that satisfy the desired performance in terms of the 
number of cache misses, as shown in Algorithm 8. 

Algorithm 8: Calculate-Cache-Instances 
Input : MT Data Structure 
Print : A Set of (D,A) Cache Instances 
for each level L ∈ MT 
   A := 0 
   while MT[L][A] = -1 do 
      A++ 
   print cache instance (2L,A) 

In Algorithm 8, for depths (number of rows) equal to 1, 2, 
4, etc. we print the optimal caches having the smallest 
degree of associativity to guarantee no more misses than 
the desired value K. 

2.5 Time Complexity 
For time complexity analysis, we use the size of the trace N 
and the number of unique references N’ as the input 
parameters. We note that in most cases, N’ is much smaller 
than N. Moreover, log(N’) is bounded by the width of the 
memory references (i.e., processor data-path), which is 
typically 32 or 64. We have shown the time complexity of 
each part of the algorithm in Figure 2, as explained next. 

The average time taken to strip the trace amounts to sorting 
the references and thus is O(N×log(N’)). 
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The average time taken to build the BCAT data structure is 
O(N’×log(N’)). At the root, we processes one node by 
looking at the N’ unique references at a cost of O(1×N’), at 
level one, we process two nodes by looking at N’/2 unique 
references at a cost of O(2×N’/2), at level two, we process 
four nodes by looking at N’/4 unique references at a cost of 
O(4×N’/4), etc. In general, at each level of the tree, the 
computation is bounded by O(N’). Since the number of 
nodes in the tree is O(N’) it follows that the depth of the is 
O(log(N’)). Combining these, we obtain O(N’×log(N’)). 

The average time taken to build the MT data structure is 
O(N×N’×log(N’)) which is dominated by the computation 
involved in building the MRCTs of each node in BCAT. At 
the root, we process one node for which we compute the 
RTS data structure (taking O(N)) followed by the MRCT, 
which involves one pass over the RTS for each unique 
reference occurring at that node, (taking O(N×N’)). At the 
next level, we process two nodes for which we compute the 
RTS data structure (taking O(2×N/2)) followed by the 
MRCT, which involves one pass over the RTS for each 
unique reference occurring at that node, (taking 
O(2×N/2×N’/2)), and so on for the remaining levels. In 
general, at each level of the tree, the computation is 
bounded by O(N×N’). Since the number of nodes in the tree 
is O(N’) it follows that the depth of the tree is O(log(N’)). 
Combining these, we obtain O(N×N’×log(N’)). 

Finally, the post-processing phase of the algorithm takes 
constant time to output the cache instances. Overall, the 
presented technique takes O(N×N’×log(N’)) step to 
execute. 

2.6 Final Remarks 
The data structure and algorithms described above are 
presented in a manner to illustrate the logic and intuition 
behind our analytical cache optimization technique. Here, 
we comment on issues to be considered in an actual 
implementation (such as the one used to obtain the results 
in our experiments section).  

Stripping of a trace can be improved substantially by using 
a hash-table structure to keep track of unique reference. 
Moreover, the building of the MRCT data structure can be 
performed during the stripping of the trace with no 
additional added time complexity if a hash-table is used. 

The extensive use of sets in our technique is due to the fact 
that sets are efficient to represent, store, and manipulate on 
a computer system using bit vectors. In addition, the use of 
sets allows for execution of the algorithm on a cluster of 
machines by utilizing a distributed set library, enabling the 
processing of very large trace files. 

The implementation of Algorithm 1 and Algorithm 7 can 
be combined. Specifically, the BCAT does not need to be 
calculated in its entirety. Instead, a depth first traversal of 
the tree can be performed to reduce memory usage. Further, 

the data structures associated with each node can be 
deleted, after the node has been processed. 

3. EXPERIMENTS 
For our experiments, we have used 14 typical embedded 
system applications that are part of the PowerStone 
benchmark applications [1]. The applications include a 
JPEG decoder called jpeg, a modem decoder called v42, a 
Unix compression utility called compress, a CRC 
checksum algorithm called crc, an encryption algorithm 
called des, an engine controller called engine, an FIR filter 
called fir , a group three fax decoder called g3fax, a sorting 
algorithm called ucbqsort, an image rendering algorithm 
called blit, a POCSAG communication protocol for paging 
applications called pocsag, and a few other embedded 
applications. 

We first compiled and executed the benchmark applications 
on a MIPS R3000 simulator. Our processor simulator is 
instrumented to output instruction/data memory reference 
traces. The size of the traces N, the number of unique 
references N’, and the execution time of our algorithm are 
reported for data/instruction traces in   Table 6/Table 7.  

   Table 6: Data trace statistics. 

Benchmark 
Total 

Refs. N 
Unique 
Refs. N’ 

Time 
(sec) 

adpcm 18431 381 2.7 
bcnt 456 162 0.11 
blit 4088 2027 6.879 

compress 58250 8906 466.87 
crc 2826 603 0.43 
des 20162 2241 19.268 

engine 211106 225 10.786 
fir 5608 146 0.39 

g3fax 229512 3781 221.098 
jpeg 1311693 39302 100576 

pocsag 13467 515 1.582 
qurt 503 84 0.07 

ucbqsort 61939 1144 17.516 
v42 649168 23942 15628 

Table 7: Instruction trace statistics. 

Benchmark 
Total 

Refs. N 
Unique 
Refs. N’ 

Time 
(sec) 

adpcm 63255 611 12.689 
bcnt 1337 115 0.12 
blit 22244 149 0.781 

compress 137832 731 23.044 
crc 37084 176 1.653 
des 121648 570 22.954 

engine 409936 244 34.47 
fir 15645 327 1.60 

g3fax 1127387 220 67.73 
jpeg 4594120 623 693.876 

pocsag 47840 560 5.988 
qurt 1044 179 0.151 

ucbqsort 219710 321 17.165 
v42 2441985 656 389.856 

 

We have ran these traces through our analytical algorithm 
for various values of desired number of cache misses K. 
Specifically, we have set K to one of 1%, 2%, 3%, and 4% 
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cache misses. For brevity, we have presented the optimal 
cache instances for only one of the benchmarks, namely the 
data trace of adpcm in Table 8. The correctness of the 
proposed approach has been verified by subsequent cache 
simulation. 

In this table, the inner entries are the degree of associativity 
A necessary to ensure the desired number of cache misses. 
For example, if 2% cache misses are allowed, a two-way 
set associative cache of depth 1024 would suffice. 

Our algorithm was executed on a Pentium III processor 
running at 1.0 GHz with 256 MB of memory. The average 
time taken to produce results for data and instruction traces 
is shown in the last column of tables    Table 6 and Table 7. 

In Figure 4 we have plotted the average measured time 
taken to produce results along with the analytical time 
complexity computed as N×N’×log(N’) on a logarithmic 
scale. We note that the pattern of the plots match. 

 
Table 8: Optimal cache instances of adpcm 

Degree of Associativity A 
Desired Cache Misses K as a Percentage 

Cache 
Depth D 

1% 2% 3% 4% 
2 133 133 133 133 
4 115 115 115 115 
8 115 115 115 115 
16 62 61 61 61 
32 34 34 34 33 
64 20 19 19 18 
128 10 10 9 9 
256 6 5 5 5 
512 5 3 3 3 
1024 3 2 2 2 
2048 1 1 1 1 

4. CONCLUSION 
We have proposed an efficient algorithm to directly 
compute cache parameters satisfying desired performance 
criteria. The proposed approach avoids simulation and 
exhaustive exploration. Here, we consider a design space 
that is formed by varying cache size and degree of 

associativity. For a given memory reference trace, our 
algorithm takes as input the design constraint in the form of 
the number of desired cache misses and outputs a set of 
optimal cache instances that meet the constraint. The 
feasibility of the proposed approach has been verified 
experimentally using the PowerStone benchmarks. Future 
direction of research will focus on incorporating artifacts 
such as write-back policy, replacement policies, line size, 
multilevel caches, and bus architecture effects.  
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Figure 4: Analytical time complexity vs. actual run times. 
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