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Abstract 

Embedded programming training today commonly involves 

numerous low-level details of a particular microcontroller. Such 

details shift focus away from higher-level structured embedded 

programming concepts. Thus, hard-to-break, unstructured 

programming habits are commonplace in the field. Yet structured 

embedded programming is becoming more necessary as embedded 

systems grow in complexity.  We introduce a virtual 

microcontroller to address this problem. Freed from manufacturing 

or historical architectural issues, the virtual microcontroller 

contains the core features to support embedded programming 

training, and possesses an exceptionally clean interface to low-

level features like timers, interrupt service routines, and UARTs. 

The virtual microcontroller can be mapped onto existing 

microcontrollers, or even onto FPGAs or a PC, providing more lab 

and book flexibility, at the expense of performance and size 

overhead. Most importantly, training can still use a bottom-up 

resource-aware approach, yet can focus more on structured 

embedded programming concepts. 

Categories and Subject Descriptors 
K.3.2 [Computer and Information Science Education]: 

Computer Science Education- Time Oriented Programming 

General Terms 
Design, Human Factors, Languages 

Keywords 
Embedded Programming, Time Oriented Programming, Education, 

virtualization, microcontrollers 

1. Introduction  

Increasingly complex embedded system functionality requires 

elevation of the introduction to embedded programming from low-

level details to higher-level structured programming. Yet the 

importance of resource aware embedded programmers discourages 

hiding all low-level details via an operating system.  

Present first courses or tutorials on embedded systems often 

focus on low-level details specific to a particular microcontroller, 

such as how to configure a particular microcontroller‟s timers, 

counters, or UARTs via configuration registers. Due to processor 

evolution reasons, such details are often convoluted, possibly 

involving delicate balances between setting of oscillator 

frequencies, timer registers, interrupt registers, and UART 

registers, to achieve a serial transmission at a particular baud rate. 

With hundreds of microcontroller variations, details differ 

significantly across and even within microcontroller families.  

In contrast, embedded system complexity demands elevation of 

embedded programming to higher-level structured approaches. 

Such a structured approach may involve using state machine or 

dataflow computation models captured in a language like C, 

utilizing clear multi-tasking methods such as round-robin 

processing of concurrently-executing state machines, and having a 

clear and consistent methodology for dealing with timed input and 

output events.   

Two approaches are commonplace today for elevating the level 

of programming. A bottom-up approach first introduces low-level 

detailed programming, and then introduces higher-level concepts in 

a second course. While practical in the sense of teaching technical 

skills enabling physical implementation, this approach has the 

drawback of allowing undisciplined programming habits to 

develop, which can be hard to break later. Furthermore, the low-

level details may discourage some students from pursuing studies 

in the area. Also, the second course commonly does not exist (or 

consists of a capstone project rather than additional training), or 

students may not take that course. Further, labs and textbooks are 

highly microcontroller-specific; changes due to obtaining new 

hardware may require substantial modifications to labs, textbooks, 

and other materials – and thus are resisted by many instructors. 

In contrast, a top-down approach skips the low-level 

programming and may introduce embedded systems programming 

using a real-time operating system (RTOS) or other higher-level 

environment, which provides an abstraction that hides many 

details. While enabling focus on higher-level issues, this approach 

has the drawback of not providing students with an intuition of the 

basic underlying microcontroller mechanisms, and can lead to 

programmers not cognizant of important resource issues. While 

elevating programming is important, resource-awareness is also 

critical for practical embedded development, because many 

systems do not use RTOSes, and because understanding low-level 

concepts encourages more effective use of RTOS features.  

We propose a compromise approach utilizing a virtual 

microcontroller, illustrated in Figure 1. The virtual microcontroller 

exposes fundamental low-level components to the programmer – 

timers, interrupt service routines, UARTs, general-purpose 

input/output, etc. – rather than hiding them using an RTOS, yet 

does so using simple clean structures uncluttered by transient or 

historical low-level complexities. The virtual microcontroller 

supports a fixed and non-parameterized architecture with a simple, 

reduced and C-compatible instruction set. The virtual 

microcontroller also supports the simplest programming apertures 

possible, allowing the student to focus on more important 

embedded programming concepts while still enabling a bottom-up 

perspective.  

Further, the virtual microcontroller can execute on a variety of 

embedded devices, including various existing microcontrollers, 



 

 

embedded microprocessors on boards having general-purpose I/O, 

field-programmable gate arrays (FPGAs), or even on a PC with 

appropriate general-purpose I/O additions. Instructors must 

perform a one-time mapping of the virtual microcontroller to their 

specific device. When changing devices later, instructors perform a 

remapping, but need not change books or lab materials. The virtual 

microcontroller also has a graphical simulator, allowing instructors 

to teach embedded programming even in the sub-optimal case of 

not having a hardware lab, or supporting additional training by 

students outside of lab. Even when using different devices, the 

student continues to use the same virtual microcontroller tools 

(simulator, debugger, compiler), rather than having to switch to the 

particular device‟s own tools. 

2. Related Work 

Several research projects attempt to improve engineering 

education. Hodge [8] introduces the concept of a Virtual Circuit 

Laboratory, a virtual environment for a beginning electrical 

engineering course that mimics failure modes in order to aid 

students in developing solid debugging techniques. The 

environment not only provides a convenient test environment, but 

also allows an instructor to concentrate more on teaching.  Butler 

[2] developed a web-based microprocessor fundamental course, 

which includes a Fundamental Computer that provides students in 

a first year engineering course a less threatening introduction to 

microprocessors and how to program. 

Other researchers have concentrated on developing or 

evaluating computing architectures for beginning students or non-

engineers. Benjamin [1] describes the BlackFin architecture, a 

hybrid microcontroller and digital signal processor.  The 

architecture provides a rich instruction set based on MIPS with 

variable width data, and parallel processing support.  Ricks [10] 

evaluates the VME Architecture in the context of addressing the 

need for better embedded system education.  The Eblocks project 

[4] concentrated on developing sensor blocks that people without 

programming or electronics knowledge could connect to build 

basic customized sensor-based embedded systems.  

Much research has involved virtualization [9][11], with several 

commercial products developed in response to the need for portable 

virtual machines. VMware [13] and the open source product Xen 

[15] concentrate on developing virtual machines that allow the end-

user to run multiple operating systems concurrently. The Java 

Virtual Machine [12] allows the programmer to write operating 

system independent code, and tools like DOS Box [5] and console 

emulators allow the user to run legacy applications in modern 

operating systems. 

A number of real time operating systems have been introduced 

to provide a higher level of abstraction between the application 

software and embedded hardware, including the open source eCos 

[6], and VxVorks and RTLinux from WindRiver [14].  

To the best of our knowledge, the work described in this paper 

is the first to describe a virtual microcontroller that can be 

physically implemented on existing platforms while also 

supporting programmer access to low-level yet clean, uncluttered 

microcontroller resources.  

Figure 1: (a) Programming a real microcontroller often requires a complex flow that is confusing to beginning students and obfuscates 

crucial embedded systems concepts. (b) The virtual microcontroller, implemented on any number of devices, quickly allows the student to 

write structured embedded microcontroller code. Instructors must perform a one-time mapping of the virtual microcontroller on their 

particular device platform.  

 
 

 
SREG |= (1 << 7); 

TCCR1A = 0; 

TCCR1B = 0; 

TCNT1H = 0xFF; 

TCNT1L = 0x83; 

TIMSK |= (1 << 3); 

TCCR1B = 3; 

state = init; 

while(true){ 

    switch(state){ 

        case init: 

             … 

        case incr: 

      } 

} 

Increase in Complexity 

Timer_reg = 1000;  

Timer_start = 1; 

state = init; 

while(true){ 

    switch(state){ 

        case init: 

             … 

        case incr: 

      } 

} 
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3. Programmer’s View 

We describe the virtual microcontroller (VμC) from the 

programmer‟s point of view.  While programmable entirely in C, 

some instructors may wish to introduce the instruction set too – 

learning to program and read assembly code is still a common part 

of training, as assembly code is still written for certain drivers, and 

is sometimes examined during difficult debugging. We chose an 

instruction set based on the MIPS ISA (instruction set architecture) 

in [7].  

We considered other choices, including an ARM-like 

instruction set or Java byte code. The ARM instruction set is 

similar to many microcontroller instruction sets, and there are 

already numerous virtual machine implementations built for Java 

byte code. However, the MIPS ISA provides a more intuitive 

instruction set, with the additional advantage that the ISA is usually 

already taught in beginning computer architecture courses.  

Learning the complete MIPS ISA might overwhelm students. 

We thus chose to use a twenty-instruction subset, shown in Figure 

2, chosen as a representative mix of the entire MIPS ISA. Using the 

subset allows for easier learning, at the expense of larger code size 

and slower performance, which are less important in the context of 

training.  The subset also has the drawback of requiring a special C 

compiler back-end (we are presently developing such a back-end to 

LCC), and not supporting existing MIPS binaries; again, these are 

lesser issues in a training setting.   

We added a return from interrupt RETI instruction, which 

didn‟t exist in the original MIPS ISA. Because interrupts are so 

commonly used in embedded systems, we sought to support 

interrupts in a clean manner for students. An alternative approach 

would have been to require the student to use the jump register JR 

instruction to exit interrupts, but such usage distracts from the basic 

idea of interrupts.   

The VμC architecture, shown in Figure 3, is a fixed 32-bit 

architecture.  Microcontrollers used in the beginning classroom are 

often 8-bit and occasionally 16-bit, but small architectures add 

additional complexity in moving data between registers and data 

memory by forcing the student to use an accumulator or a stack, 

which obfuscate the higher level issues of embedded programming. 

A 32-bit architecture is both simple to understand and allows easy 

access to a large register set and memory. Although the virtual 

microcontroller would have allowed parameterization of the 

instruction set width for increased flexibility, the functionality was 

not needed in the context of an embedded systems course.  

The VμC uses a four-kilobyte instruction memory, chosen 

based on off-the-shelf microcontroller memory sizes, and on the 

size required for several introductory embedded systems labs and 

exercises that we examined from several embedded systems 

courses. The VμC‟s data memory is 64 kilobytes. A 32-bit 

architecture could support a four-gigabyte memory, but supporting 

such a large space would have made physical mapping to real 

microcontrollers nearly impossible. The upper half of the 64-

kilobyte data memory is devoted to the VμC‟s memory mapped 

peripherals and registers. 64 kilobytes of data memory was more 

than adequate for any of the embedded programs we examined. 

The VμC implements a simplified interrupt controller model as 

viewed by the programmer and the software. The interrupt 

controller model allowed for easy and intuitive implementation of 

interrupts with priorities. The interrupt controller consists of two 

memory-mapped special function registers, an interrupt status 

register and a interrupt value register.  Together, the two registers 

act as a simplified interrupt vector table, which is commonly used 

in off-the-shelf microcontrollers. When the VμC is interrupted, the 

student simply reads the interrupt value register and runs the 

corresponding interrupt service routine using a programming 

construct akin to a case statement. For convenience, interrupts are 

automatically turned off by the VμC, so an interrupt routine cannot 

be interrupted by another interrupt request. Nested interrupts might 

have confused new students. The interrupt status register serves as 

a software switch to enable and/or disable interrupts, and can easily 

be written with the value „0‟ or „1‟. Interrupt service routines 

complete with the RETI instruction. The RETI instruction will 

update the VμC‟s program counter to the last instruction not yet 

completed, and re-enable interrupts. The interrupt controller is 

connected to three peripherals: two timers, and a UART. The 

peripherals have fixed priorities, where the two timers are given top 

priority followed by the UART. Fixed priorities reduced the 

complexity of the virtual microcontroller as well as the software 

being run, allowing the student to concentrate on core embedded 

programming concepts, at the expense of situations where the 

priorities need to be different (which are rare in a learning setting).  

The VμC interfaces to a basic set of peripherals that enable a 

variety of embedded systems to be created, from working with 

general-purpose input/output to timing-oriented programming.  The 

virtual microcontroller separates input and output into two separate 

memory mapped eight-bit registers, which can be read (input 

register) or written (output register).  Each input and output bit is 

also accessible individually by name (e.g., I1, O4). Having 

dedicated input and output eliminates the required step for most 

microcontrollers of configuring each input/output port‟s direction. 

One 8-bit input port and one 8-bit output port was sufficient for 

Figure 2: Virtual microcontroller MIPS instruction subset. We 

added RETI to simplify interrupt use.   

 

 

Figure 3: Virtual Microcontroller Architecture.  

 
 

 
1. ADD $1 $2 $3 

2. ADDI $1 $2 imm 

3. ADDIU $1 $2 imm 

4. AND $1 $2 $3 

5. ANDI $1 $2 imm 

6. BEQ $1 $2 [Label] 

7. J [Label] 

8. JR $1 

9. LW $1 0($2) 

10. NOOP 
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12. ORI $1 $2 imm 

13. RETI 
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17. SUB $1 $2 $3 

18. SUBI $1 $2 imm 

19. XOR $1 $2 $3 

20. XORI $1 $2 imm 
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most introductory labs we examined. If more ports are needed, 

external extended parallel I/O techniques can be introduced.  

The virtual microcontroller has two timers.  At least one timer 

was required because much of an embedded programming 

curriculum revolves around timing-based computing models (state 

machines, interrupts, etc.)  The VμC uses two timers because 

several concepts and applications become more intuitive with the 

use of two timers. For instance, a student might write an 

application that mimics two state machines that must transition on 

every half second, and every two seconds. While the two state 

machines can be implemented with only one timer, the 

programming becomes substantially easier with the use of multiple 

timers.  The two timers offer limited configurability via the Timer 

0/1 Control register. The student can allow or disallow the timers 

to interrupt the VμC, and can start and stop the timer by writing a 

few bits. The VμC timer‟s limited configurability provides a 

cleaner, concept-oriented interface than ones offered by off-the-

shelf microcontrollers.  The timers are programmed by writing the 

memory mapped register Timer 0/1 Value register with a 

millisecond value to time.  This millisecond value is in contrast to 

off-the-shelf microcontrollers, which require writing a value based 

on that microcontroller‟s clock frequency. We chose millisecond 

resolution for the VμC‟s timers because all labs in the embedded 

programming course required that granularity or coarser. The 

millisecond resolution is also an easy time period for students to 

grasp quickly. 

The VμC includes a UART (Universal Asynchronous 

Receiver/Transmitter), which allows a student to learn how to 

interface to serial devices, including a PC, for input, display, or 

debugging purposes. The UART can be programmed and 

configured using three intuitive memory-mapped registers, the 

UART status register, UART TX Data register, and the UART RX 

data register.  To write to the UART, the program writes a value to 

the UART TX Data register, and writes a „1‟ to the UART Status 

register to signal a transmission start. Similarly, the program can 

read the UART RX Data register for valid data once the UART has 

interrupted the VμC core. As with the VμC‟s timers, we eliminated 

several additional features offered by off-the-shelf microcontrollers 

to ease programming. For instance, the UART baud rate is fixed at 

9600, eliminating the need to configure the rate. That rate was 

chosen based on 9600 baud being the default rate for several off-

the-shelf microcontrollers. 

4. Portability 

As long as a computing platform supports the virtual 

microcontroller described in Section 3, then code written for the 

virtual microcontroller will execute identically on different 

platforms. The need to port code from one platform to another, 

whether that port is a relatively simple recompilation, or a complete 

rewrite of the code base, is eliminated. For example, one piece of 

code that blinks lights every half second running on a virtual 

microcontroller implemented on a physical microcontroller will 

also blink the same lights every half second running on a PC-

implemented virtual microcontroller.  

An advantage of such portability includes the ability for a 

student to use one implementation at home (e.g., a PC-based 

implementation) while using a different implementation in a lab 

(e.g., an FPGA-based implementation). Even the same lab setting 

may use different implementations based on available physical 

resources.  

5. USB Programmability  

The virtual microcontroller supports USB programming (here 

“programming” refers to downloading code into a device) via a 

USB flash drive, and not a traditional hardware programmer in 

which a chip is plugged in, programmed, and placed in-system. 

Such an approach requires non-volatile memory, and requires a 

removable chip, greatly limiting the ability to implement the virtual 

microcontroller on various existing devices. Such an approach also 

requires a separate programmer device, adding to cost, and 

introducing extra steps for a student. An alternative programming 

approach is to program a device in-system using a USB cable.  

While eliminating the need for a programming device, such an 

approach still requires a PC every time a student wants to change a 

program.   

Instead, we chose a USB flash drive programming approach, 

illustrated in Figure 4. A student copies the desired program onto a 

USB drive as a file, plugs the drive into the VμC implementation, 

and presses a button on the VμC that downloads the program from 

the flash drive to the VμC instruction memory. The approach 

eliminates the need for non-volatile memory in the VμC. The 

approach enables students to load and change programs by 

inserting and swapping flash drives, enabling more mobility, and 

ease of examining behavior of each others‟ program. The approach 

also matches current usage schemes for popular electronic devices, 

allowing a beginning student to start programming with minimal 

effort, and using a familiar paradigm. The cost is that the VμC must 

contain an internal USB flash drive reader. We use an off-the-shelf 

reading device, which increases the size and cost of the VμC. 

6. VμC Executable Format 

The virtual microcontroller uses a human-readable assembly 

language file as the “executable” format.  A traditional binary 

executable format is more compact, but is unreadable by humans. 

In contrast, an assembly format is more readable, providing a 

clearer understanding of what is being executed on the device, 

reducing the number of files that must be worked with, and 

possibly enabling comprehension of the program (perhaps via 

comments in the code). The assembly code is just-in-time (JIT) 

assembled to machine code inside the VμC. We considered C code 

as the distribution format, but assembly code enabled simpler JIT 

tools and also supports assembly coding. A drawback of assembly 

versus machine code is that unchecked assembly code is more 

Figure 4: The virtual microcontroller is programmed by simply 

plugging in a USB flash drive with the VμC program and pressing 

a button.  

 
 



 

 

likely to contain errors (students almost never modify tool-

generated machine code, but may modify assembly code). In the 

VμC, a JIT assembler error causes an error LED to illuminate (a 

future version may also write assembler errors to an error file on 

the USB flash drive.) The JIT assembler approach has an additional 

advantage of requiring no PC-based tools other than a text editor, 

even allowing assembly code to be developed on a cell-phone or 

PDA, saved to a USB flash drive, and downloaded to the VμC.  

Nevertheless, in an environment with a PC-based C compiler or 

assembler, enforcement of a methodology involving an assembly-

code checking tool, or avoidance of changing of compiler-

generated assembly code, may be helpful.  

Figure 5 shows a sample virtual microcontroller assembly 

program that increments the value of the general purpose output 

every half second. Both comments and labels are allowed, to 

increase the readability of the application.  Comments begin with 

the symbol „--„, and continue to end of the current line. Labels are 

supported as a convenience to the application programmer.  

The interrupt vector is at address 1 in the program. When an 

interrupt occurs, the program code must poll the interrupt value 

register to determine which interrupt should be serviced. In the 

increment example, only one interrupt could have occurred, but the 

code still performs the check on the interrupt value register to 

make the code extendable later.   

7. Simulator 

We have also developed a graphical VμC simulator. The simulator 

supports standard microcontroller simulator/debugger functions, 

such as steps, breakpoints, run for X simulated seconds, 

input/output value writes/reads, observation of internal registers 

including memory-mapped peripheral registers, etc. Furthermore, 

the simulator provides a graphical view of the timers as they count 

up to their interrupt time, akin to a “status bar” display ranging 

from 0% to 100%. Figure 6 shows a screenshot of the simulator.  

The simulator supports development in the absence of a physical 

device, and is also useful for instructors when demonstrating new 

concepts with a projected display.  

8. Proof of Concept and Experiments 

We implemented the VμC on various physical platforms. Each 

implementation was based on a core instruction set simulator, 

which consisted of just under 1,000 lines of C code.  The code base 

is highly modular, allowing further mappings of the VμC to be 

created with less effort. The differences in each VμC 

implementation lied in how we mapped the VμC peripherals to 

physical peripherals. 

Figure 7 shows several implementations of the virtual 

microcontroller. The implementation shown in Figure 7(a) 

emulates the VμC on a physical Atmel AVR microcontroller, 

combined with a PIC 18 microcontroller for interfacing with the 

USB reader device. In this implementation, we physically tied the 

VμC‟s general purpose input and output to switches and LEDs, 

Figure 5: Virtual microcontroller program AND executable format, to 

increment the value in the general purpose output register every 

second. 

 

Figure 6:  Virtual microcontroller simulator prototype.  The simulator supports standard debugger and register views, as well as a high 

level view of the virtual microcontroller and connected peripherals. 

 

 

--program increments output value on interrupt 

J Main 

ISR: LW $20 12($10) --load which int. fired 

BEQ $20 $0 ISR_zero --branch to ISR 0 

RETI 

ISR_zero: ADDI $5 $0 1 --r5 holds ISR flag 

RETI 

Main: ADDI $1 $0 3  --3 is val. to start timer 

ADDI $2 $0 500      --incr. 500 ms 

ADDI $3 $0 1        --incremented 

ADDIU $10 $0 32768  --mem mapped base 

ADD $10 $10 $10     --mem mapped base 

SW $2 9($10)        --ld timer w/ 1 sec. 

SW $1 8($10)        --start timer 

Loop: SW $9 2($10)  --r9 to IO output 

BEQ $5 $3 update 

J Loop 

update: ADDI $5 $0 0  --clr interrupt flag 

ADD $9 $9 $3          --increment by one 

J Loop 



 

 

providing a standalone device with a simple user interface. An 

alternative implementation could include both the switches/LEDs 

plus input/output ports that could be connected to other devices and 

that could override the switches/LEDs, shown in Figure 7(b). We 

built an implementation on a Xilinx FPGA, shown in Figure 7(c), 

by emulating the VμC on a MicroBlaze soft-core processor. We 

built interface functions on top of the MicroBlaze‟s physical 

interrupt controller and timers to communicate with the physical 

hardware. We built another FPGA implementation, this time 

describing the VμC in synthesizable VHDL and then synthesizing a 

circuit onto the FPGA. The ISRs, timers, and UART were created 

as components that interfaced to the MIPS ISA core, and the 

FPGAs general purpose input/output. Each implementation 

required a few days to create. Of course, an instructor may not have 

to build the implementation from scratch as we did; previous 

implementations can be described or downloaded from the web.  

To test whether the VμC could handle standard embedded 

systems lab assignments, we redesigned the microcontroller labs 

from the embedded systems courses at University of California, 

Riverside, and University of California, Irvine, which have been 

taught for over 10 years and are similar to numerous 

microcontroller courses worldwide. The labs introduce a student to 

basic embedded microcontroller programming concepts, using 

general purpose input and output, timer-based programming, state 

machine programming, and interfacing to various peripherals.   

The first embedded programming “Hello World” lab involved 

blinking a light on and off.  The code to blink a light on and off in 

virtual microcontroller code consisted of 16 assembly instructions. 

The second lab interfaces a microcontroller to seven-segment 

displays, involving writing to general-purpose outputs, and creating 

a simple delay loop. The third lab interfaces with a standard keypad 

by reading general-purpose inputs. The fourth lab introduces 

interrupts and interrupt service routines. The interrupts are 

introduced along with the virtual timers, and the students are asked 

to program a simple decimal counter using interrupts and the 

concepts used in the previous labs. The fifth lab introduces the 

serial protocol and interfacing to a microcontroller‟s UART.  The 

students are asked to read from the serial port, and then output the 

input with a simple ROT13 encoding. Finally, the last lab brings 

combines the earlier concepts in design of a reaction timer game. 

For all of the labs, the input and output ports were sufficient to 

interface to all of the required external peripherals.  

Each lab was redesigned and written in the VμC‟s assembly 

language and tested on the implemented platforms. Because the 

assembly file is also the executable format, the VμC‟s executable 

file was 10 times bigger than a traditional binary, due to using 

ASCII text characters. The VμC implementation internally 

translates the text file to a traditional binary to reduce internal 

storage and improve performance.  

9. Conclusion  

We presented a virtual microcontroller, a clean intuitive 

microcontroller that allows a beginning embedded programming 

student to concentrate on structured embedded programming while 

still learning important low-level resource concepts related to 

interrupts, timers, and UARTs. We implemented the VμC on 

several physical devices including an AVR microcontroller and an 

FPGA, and redesigned a complete introductory course set of labs 

for the VμC. 
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