

Virtual Microcontrollers

Scott Sirowy†, David Sheldon†, Tony Givargis‡, Frank Vahid†*
†
Department of Computer Science and Engineering

University of California, Riverside, USA

*Also with the Center for Embedded Computer
Systems at UC Irvine

{ssirowy,dsheldon,vahid }@cs.ucr.edu

‡
Department of Computer Science

Center for Embedded Computer Systems

University of California, Irvine

givargis@ics.ucr.edu

Abstract

Embedded programming training today commonly involves

numerous low-level details of a particular microcontroller. Such

details shift focus away from higher-level structured embedded

programming concepts. Thus, hard-to-break, unstructured

programming habits are commonplace in the field. Yet structured

embedded programming is becoming more necessary as embedded

systems grow in complexity. We introduce a virtual

microcontroller to address this problem. Freed from manufacturing

or historical architectural issues, the virtual microcontroller

contains the core features to support embedded programming

training, and possesses an exceptionally clean interface to low-

level features like timers, interrupt service routines, and UARTs.

The virtual microcontroller can be mapped onto existing

microcontrollers, or even onto FPGAs or a PC, providing more lab

and book flexibility, at the expense of performance and size

overhead. Most importantly, training can still use a bottom-up

resource-aware approach, yet can focus more on structured

embedded programming concepts.

Categories and Subject Descriptors
K.3.2 [Computer and Information Science Education]:

Computer Science Education- Time Oriented Programming

General Terms
Design, Human Factors, Languages

Keywords
Embedded Programming, Time Oriented Programming, Education,

virtualization, microcontrollers

1. Introduction

Increasingly complex embedded system functionality requires

elevation of the introduction to embedded programming from low-

level details to higher-level structured programming. Yet the

importance of resource aware embedded programmers discourages

hiding all low-level details via an operating system.

Present first courses or tutorials on embedded systems often

focus on low-level details specific to a particular microcontroller,

such as how to configure a particular microcontroller‟s timers,

counters, or UARTs via configuration registers. Due to processor

evolution reasons, such details are often convoluted, possibly

involving delicate balances between setting of oscillator

frequencies, timer registers, interrupt registers, and UART

registers, to achieve a serial transmission at a particular baud rate.

With hundreds of microcontroller variations, details differ

significantly across and even within microcontroller families.

In contrast, embedded system complexity demands elevation of

embedded programming to higher-level structured approaches.

Such a structured approach may involve using state machine or

dataflow computation models captured in a language like C,

utilizing clear multi-tasking methods such as round-robin

processing of concurrently-executing state machines, and having a

clear and consistent methodology for dealing with timed input and

output events.

Two approaches are commonplace today for elevating the level

of programming. A bottom-up approach first introduces low-level

detailed programming, and then introduces higher-level concepts in

a second course. While practical in the sense of teaching technical

skills enabling physical implementation, this approach has the

drawback of allowing undisciplined programming habits to

develop, which can be hard to break later. Furthermore, the low-

level details may discourage some students from pursuing studies

in the area. Also, the second course commonly does not exist (or

consists of a capstone project rather than additional training), or

students may not take that course. Further, labs and textbooks are

highly microcontroller-specific; changes due to obtaining new

hardware may require substantial modifications to labs, textbooks,

and other materials – and thus are resisted by many instructors.

In contrast, a top-down approach skips the low-level

programming and may introduce embedded systems programming

using a real-time operating system (RTOS) or other higher-level

environment, which provides an abstraction that hides many

details. While enabling focus on higher-level issues, this approach

has the drawback of not providing students with an intuition of the

basic underlying microcontroller mechanisms, and can lead to

programmers not cognizant of important resource issues. While

elevating programming is important, resource-awareness is also

critical for practical embedded development, because many

systems do not use RTOSes, and because understanding low-level

concepts encourages more effective use of RTOS features.

We propose a compromise approach utilizing a virtual

microcontroller, illustrated in Figure 1. The virtual microcontroller

exposes fundamental low-level components to the programmer –

timers, interrupt service routines, UARTs, general-purpose

input/output, etc. – rather than hiding them using an RTOS, yet

does so using simple clean structures uncluttered by transient or

historical low-level complexities. The virtual microcontroller

supports a fixed and non-parameterized architecture with a simple,

reduced and C-compatible instruction set. The virtual

microcontroller also supports the simplest programming apertures

possible, allowing the student to focus on more important

embedded programming concepts while still enabling a bottom-up

perspective.

Further, the virtual microcontroller can execute on a variety of

embedded devices, including various existing microcontrollers,

embedded microprocessors on boards having general-purpose I/O,

field-programmable gate arrays (FPGAs), or even on a PC with

appropriate general-purpose I/O additions. Instructors must

perform a one-time mapping of the virtual microcontroller to their

specific device. When changing devices later, instructors perform a

remapping, but need not change books or lab materials. The virtual

microcontroller also has a graphical simulator, allowing instructors

to teach embedded programming even in the sub-optimal case of

not having a hardware lab, or supporting additional training by

students outside of lab. Even when using different devices, the

student continues to use the same virtual microcontroller tools

(simulator, debugger, compiler), rather than having to switch to the

particular device‟s own tools.

2. Related Work

Several research projects attempt to improve engineering

education. Hodge [8] introduces the concept of a Virtual Circuit

Laboratory, a virtual environment for a beginning electrical

engineering course that mimics failure modes in order to aid

students in developing solid debugging techniques. The

environment not only provides a convenient test environment, but

also allows an instructor to concentrate more on teaching. Butler

[2] developed a web-based microprocessor fundamental course,

which includes a Fundamental Computer that provides students in

a first year engineering course a less threatening introduction to

microprocessors and how to program.

Other researchers have concentrated on developing or

evaluating computing architectures for beginning students or non-

engineers. Benjamin [1] describes the BlackFin architecture, a

hybrid microcontroller and digital signal processor. The

architecture provides a rich instruction set based on MIPS with

variable width data, and parallel processing support. Ricks [10]

evaluates the VME Architecture in the context of addressing the

need for better embedded system education. The Eblocks project

[4] concentrated on developing sensor blocks that people without

programming or electronics knowledge could connect to build

basic customized sensor-based embedded systems.

Much research has involved virtualization [9][11], with several

commercial products developed in response to the need for portable

virtual machines. VMware [13] and the open source product Xen

[15] concentrate on developing virtual machines that allow the end-

user to run multiple operating systems concurrently. The Java

Virtual Machine [12] allows the programmer to write operating

system independent code, and tools like DOS Box [5] and console

emulators allow the user to run legacy applications in modern

operating systems.

A number of real time operating systems have been introduced

to provide a higher level of abstraction between the application

software and embedded hardware, including the open source eCos

[6], and VxVorks and RTLinux from WindRiver [14].

To the best of our knowledge, the work described in this paper

is the first to describe a virtual microcontroller that can be

physically implemented on existing platforms while also

supporting programmer access to low-level yet clean, uncluttered

microcontroller resources.

Figure 1: (a) Programming a real microcontroller often requires a complex flow that is confusing to beginning students and obfuscates

crucial embedded systems concepts. (b) The virtual microcontroller, implemented on any number of devices, quickly allows the student to

write structured embedded microcontroller code. Instructors must perform a one-time mapping of the virtual microcontroller on their

particular device platform.

SREG |= (1 << 7);

TCCR1A = 0;

TCCR1B = 0;

TCNT1H = 0xFF;

TCNT1L = 0x83;

TIMSK |= (1 << 3);

TCCR1B = 3;

state = init;

while(true){

 switch(state){

 case init:

 …

 case incr:

 }

}

Increase in Complexity

Timer_reg = 1000;

Timer_start = 1;

state = init;

while(true){

 switch(state){

 case init:

 …

 case incr:

 }

}

Timer

 PIC

 Virtual

Microcontroller

…

 V.M.

Extensive documentation,

complex tool flows, language

extensions, etc.

…

 V.M.

(a)

(b)

VμC

tools

PIC

tools

FPGA

Tools
FPGA

I0

I1

I2

I3

I4

I5

I6

I7

O0

O1

O2

O3

O4

O5

O6

O7

3. Programmer’s View

We describe the virtual microcontroller (VμC) from the

programmer‟s point of view. While programmable entirely in C,

some instructors may wish to introduce the instruction set too –

learning to program and read assembly code is still a common part

of training, as assembly code is still written for certain drivers, and

is sometimes examined during difficult debugging. We chose an

instruction set based on the MIPS ISA (instruction set architecture)

in [7].

We considered other choices, including an ARM-like

instruction set or Java byte code. The ARM instruction set is

similar to many microcontroller instruction sets, and there are

already numerous virtual machine implementations built for Java

byte code. However, the MIPS ISA provides a more intuitive

instruction set, with the additional advantage that the ISA is usually

already taught in beginning computer architecture courses.

Learning the complete MIPS ISA might overwhelm students.

We thus chose to use a twenty-instruction subset, shown in Figure

2, chosen as a representative mix of the entire MIPS ISA. Using the

subset allows for easier learning, at the expense of larger code size

and slower performance, which are less important in the context of

training. The subset also has the drawback of requiring a special C

compiler back-end (we are presently developing such a back-end to

LCC), and not supporting existing MIPS binaries; again, these are

lesser issues in a training setting.

We added a return from interrupt RETI instruction, which

didn‟t exist in the original MIPS ISA. Because interrupts are so

commonly used in embedded systems, we sought to support

interrupts in a clean manner for students. An alternative approach

would have been to require the student to use the jump register JR

instruction to exit interrupts, but such usage distracts from the basic

idea of interrupts.

The VμC architecture, shown in Figure 3, is a fixed 32-bit

architecture. Microcontrollers used in the beginning classroom are

often 8-bit and occasionally 16-bit, but small architectures add

additional complexity in moving data between registers and data

memory by forcing the student to use an accumulator or a stack,

which obfuscate the higher level issues of embedded programming.

A 32-bit architecture is both simple to understand and allows easy

access to a large register set and memory. Although the virtual

microcontroller would have allowed parameterization of the

instruction set width for increased flexibility, the functionality was

not needed in the context of an embedded systems course.

The VμC uses a four-kilobyte instruction memory, chosen

based on off-the-shelf microcontroller memory sizes, and on the

size required for several introductory embedded systems labs and

exercises that we examined from several embedded systems

courses. The VμC‟s data memory is 64 kilobytes. A 32-bit

architecture could support a four-gigabyte memory, but supporting

such a large space would have made physical mapping to real

microcontrollers nearly impossible. The upper half of the 64-

kilobyte data memory is devoted to the VμC‟s memory mapped

peripherals and registers. 64 kilobytes of data memory was more

than adequate for any of the embedded programs we examined.

The VμC implements a simplified interrupt controller model as

viewed by the programmer and the software. The interrupt

controller model allowed for easy and intuitive implementation of

interrupts with priorities. The interrupt controller consists of two

memory-mapped special function registers, an interrupt status

register and a interrupt value register. Together, the two registers

act as a simplified interrupt vector table, which is commonly used

in off-the-shelf microcontrollers. When the VμC is interrupted, the

student simply reads the interrupt value register and runs the

corresponding interrupt service routine using a programming

construct akin to a case statement. For convenience, interrupts are

automatically turned off by the VμC, so an interrupt routine cannot

be interrupted by another interrupt request. Nested interrupts might

have confused new students. The interrupt status register serves as

a software switch to enable and/or disable interrupts, and can easily

be written with the value „0‟ or „1‟. Interrupt service routines

complete with the RETI instruction. The RETI instruction will

update the VμC‟s program counter to the last instruction not yet

completed, and re-enable interrupts. The interrupt controller is

connected to three peripherals: two timers, and a UART. The

peripherals have fixed priorities, where the two timers are given top

priority followed by the UART. Fixed priorities reduced the

complexity of the virtual microcontroller as well as the software

being run, allowing the student to concentrate on core embedded

programming concepts, at the expense of situations where the

priorities need to be different (which are rare in a learning setting).

The VμC interfaces to a basic set of peripherals that enable a

variety of embedded systems to be created, from working with

general-purpose input/output to timing-oriented programming. The

virtual microcontroller separates input and output into two separate

memory mapped eight-bit registers, which can be read (input

register) or written (output register). Each input and output bit is

also accessible individually by name (e.g., I1, O4). Having

dedicated input and output eliminates the required step for most

microcontrollers of configuring each input/output port‟s direction.

One 8-bit input port and one 8-bit output port was sufficient for

Figure 2: Virtual microcontroller MIPS instruction subset. We

added RETI to simplify interrupt use.

Figure 3: Virtual Microcontroller Architecture.

1. ADD $1 $2 $3

2. ADDI $1 $2 imm

3. ADDIU $1 $2 imm

4. AND $1 $2 $3

5. ANDI $1 $2 imm

6. BEQ $1 $2 [Label]

7. J [Label]

8. JR $1

9. LW $1 0($2)

10. NOOP

11. OR $1 $2 $3

12. ORI $1 $2 imm

13. RETI

14. SLL $1 $2 $3

15. SLT $1 $2 $3

16. SW $1 0($2)

17. SUB $1 $2 $3

18. SUBI $1 $2 imm

19. XOR $1 $2 $3

20. XORI $1 $2 imm

Interrupts

MIPS

ISA

Data

Memory

Timer 1

Timer 0

UART

In System

Programming

Inst.

Memory

GPIO

Data

Bus

GPIO

most introductory labs we examined. If more ports are needed,

external extended parallel I/O techniques can be introduced.

The virtual microcontroller has two timers. At least one timer

was required because much of an embedded programming

curriculum revolves around timing-based computing models (state

machines, interrupts, etc.) The VμC uses two timers because

several concepts and applications become more intuitive with the

use of two timers. For instance, a student might write an

application that mimics two state machines that must transition on

every half second, and every two seconds. While the two state

machines can be implemented with only one timer, the

programming becomes substantially easier with the use of multiple

timers. The two timers offer limited configurability via the Timer

0/1 Control register. The student can allow or disallow the timers

to interrupt the VμC, and can start and stop the timer by writing a

few bits. The VμC timer‟s limited configurability provides a

cleaner, concept-oriented interface than ones offered by off-the-

shelf microcontrollers. The timers are programmed by writing the

memory mapped register Timer 0/1 Value register with a

millisecond value to time. This millisecond value is in contrast to

off-the-shelf microcontrollers, which require writing a value based

on that microcontroller‟s clock frequency. We chose millisecond

resolution for the VμC‟s timers because all labs in the embedded

programming course required that granularity or coarser. The

millisecond resolution is also an easy time period for students to

grasp quickly.

The VμC includes a UART (Universal Asynchronous

Receiver/Transmitter), which allows a student to learn how to

interface to serial devices, including a PC, for input, display, or

debugging purposes. The UART can be programmed and

configured using three intuitive memory-mapped registers, the

UART status register, UART TX Data register, and the UART RX

data register. To write to the UART, the program writes a value to

the UART TX Data register, and writes a „1‟ to the UART Status

register to signal a transmission start. Similarly, the program can

read the UART RX Data register for valid data once the UART has

interrupted the VμC core. As with the VμC‟s timers, we eliminated

several additional features offered by off-the-shelf microcontrollers

to ease programming. For instance, the UART baud rate is fixed at

9600, eliminating the need to configure the rate. That rate was

chosen based on 9600 baud being the default rate for several off-

the-shelf microcontrollers.

4. Portability

As long as a computing platform supports the virtual

microcontroller described in Section 3, then code written for the

virtual microcontroller will execute identically on different

platforms. The need to port code from one platform to another,

whether that port is a relatively simple recompilation, or a complete

rewrite of the code base, is eliminated. For example, one piece of

code that blinks lights every half second running on a virtual

microcontroller implemented on a physical microcontroller will

also blink the same lights every half second running on a PC-

implemented virtual microcontroller.

An advantage of such portability includes the ability for a

student to use one implementation at home (e.g., a PC-based

implementation) while using a different implementation in a lab

(e.g., an FPGA-based implementation). Even the same lab setting

may use different implementations based on available physical

resources.

5. USB Programmability

The virtual microcontroller supports USB programming (here

“programming” refers to downloading code into a device) via a

USB flash drive, and not a traditional hardware programmer in

which a chip is plugged in, programmed, and placed in-system.

Such an approach requires non-volatile memory, and requires a

removable chip, greatly limiting the ability to implement the virtual

microcontroller on various existing devices. Such an approach also

requires a separate programmer device, adding to cost, and

introducing extra steps for a student. An alternative programming

approach is to program a device in-system using a USB cable.

While eliminating the need for a programming device, such an

approach still requires a PC every time a student wants to change a

program.

Instead, we chose a USB flash drive programming approach,

illustrated in Figure 4. A student copies the desired program onto a

USB drive as a file, plugs the drive into the VμC implementation,

and presses a button on the VμC that downloads the program from

the flash drive to the VμC instruction memory. The approach

eliminates the need for non-volatile memory in the VμC. The

approach enables students to load and change programs by

inserting and swapping flash drives, enabling more mobility, and

ease of examining behavior of each others‟ program. The approach

also matches current usage schemes for popular electronic devices,

allowing a beginning student to start programming with minimal

effort, and using a familiar paradigm. The cost is that the VμC must

contain an internal USB flash drive reader. We use an off-the-shelf

reading device, which increases the size and cost of the VμC.

6. VμC Executable Format

The virtual microcontroller uses a human-readable assembly

language file as the “executable” format. A traditional binary

executable format is more compact, but is unreadable by humans.

In contrast, an assembly format is more readable, providing a

clearer understanding of what is being executed on the device,

reducing the number of files that must be worked with, and

possibly enabling comprehension of the program (perhaps via

comments in the code). The assembly code is just-in-time (JIT)

assembled to machine code inside the VμC. We considered C code

as the distribution format, but assembly code enabled simpler JIT

tools and also supports assembly coding. A drawback of assembly

versus machine code is that unchecked assembly code is more

Figure 4: The virtual microcontroller is programmed by simply

plugging in a USB flash drive with the VμC program and pressing

a button.

likely to contain errors (students almost never modify tool-

generated machine code, but may modify assembly code). In the

VμC, a JIT assembler error causes an error LED to illuminate (a

future version may also write assembler errors to an error file on

the USB flash drive.) The JIT assembler approach has an additional

advantage of requiring no PC-based tools other than a text editor,

even allowing assembly code to be developed on a cell-phone or

PDA, saved to a USB flash drive, and downloaded to the VμC.

Nevertheless, in an environment with a PC-based C compiler or

assembler, enforcement of a methodology involving an assembly-

code checking tool, or avoidance of changing of compiler-

generated assembly code, may be helpful.

Figure 5 shows a sample virtual microcontroller assembly

program that increments the value of the general purpose output

every half second. Both comments and labels are allowed, to

increase the readability of the application. Comments begin with

the symbol „--„, and continue to end of the current line. Labels are

supported as a convenience to the application programmer.

The interrupt vector is at address 1 in the program. When an

interrupt occurs, the program code must poll the interrupt value

register to determine which interrupt should be serviced. In the

increment example, only one interrupt could have occurred, but the

code still performs the check on the interrupt value register to

make the code extendable later.

7. Simulator

We have also developed a graphical VμC simulator. The simulator

supports standard microcontroller simulator/debugger functions,

such as steps, breakpoints, run for X simulated seconds,

input/output value writes/reads, observation of internal registers

including memory-mapped peripheral registers, etc. Furthermore,

the simulator provides a graphical view of the timers as they count

up to their interrupt time, akin to a “status bar” display ranging

from 0% to 100%. Figure 6 shows a screenshot of the simulator.

The simulator supports development in the absence of a physical

device, and is also useful for instructors when demonstrating new

concepts with a projected display.

8. Proof of Concept and Experiments

We implemented the VμC on various physical platforms. Each

implementation was based on a core instruction set simulator,

which consisted of just under 1,000 lines of C code. The code base

is highly modular, allowing further mappings of the VμC to be

created with less effort. The differences in each VμC

implementation lied in how we mapped the VμC peripherals to

physical peripherals.

Figure 7 shows several implementations of the virtual

microcontroller. The implementation shown in Figure 7(a)

emulates the VμC on a physical Atmel AVR microcontroller,

combined with a PIC 18 microcontroller for interfacing with the

USB reader device. In this implementation, we physically tied the

VμC‟s general purpose input and output to switches and LEDs,

Figure 5: Virtual microcontroller program AND executable format, to

increment the value in the general purpose output register every

second.

Figure 6: Virtual microcontroller simulator prototype. The simulator supports standard debugger and register views, as well as a high

level view of the virtual microcontroller and connected peripherals.

--program increments output value on interrupt

J Main

ISR: LW $20 12($10) --load which int. fired

BEQ $20 $0 ISR_zero --branch to ISR 0

RETI

ISR_zero: ADDI $5 $0 1 --r5 holds ISR flag

RETI

Main: ADDI $1 $0 3 --3 is val. to start timer

ADDI $2 $0 500 --incr. 500 ms

ADDI $3 $0 1 --incremented

ADDIU $10 $0 32768 --mem mapped base

ADD $10 $10 $10 --mem mapped base

SW $2 9($10) --ld timer w/ 1 sec.

SW $1 8($10) --start timer

Loop: SW $9 2($10) --r9 to IO output

BEQ $5 $3 update

J Loop

update: ADDI $5 $0 0 --clr interrupt flag

ADD $9 $9 $3 --increment by one

J Loop

providing a standalone device with a simple user interface. An

alternative implementation could include both the switches/LEDs

plus input/output ports that could be connected to other devices and

that could override the switches/LEDs, shown in Figure 7(b). We

built an implementation on a Xilinx FPGA, shown in Figure 7(c),

by emulating the VμC on a MicroBlaze soft-core processor. We

built interface functions on top of the MicroBlaze‟s physical

interrupt controller and timers to communicate with the physical

hardware. We built another FPGA implementation, this time

describing the VμC in synthesizable VHDL and then synthesizing a

circuit onto the FPGA. The ISRs, timers, and UART were created

as components that interfaced to the MIPS ISA core, and the

FPGAs general purpose input/output. Each implementation

required a few days to create. Of course, an instructor may not have

to build the implementation from scratch as we did; previous

implementations can be described or downloaded from the web.

To test whether the VμC could handle standard embedded

systems lab assignments, we redesigned the microcontroller labs

from the embedded systems courses at University of California,

Riverside, and University of California, Irvine, which have been

taught for over 10 years and are similar to numerous

microcontroller courses worldwide. The labs introduce a student to

basic embedded microcontroller programming concepts, using

general purpose input and output, timer-based programming, state

machine programming, and interfacing to various peripherals.

The first embedded programming “Hello World” lab involved

blinking a light on and off. The code to blink a light on and off in

virtual microcontroller code consisted of 16 assembly instructions.

The second lab interfaces a microcontroller to seven-segment

displays, involving writing to general-purpose outputs, and creating

a simple delay loop. The third lab interfaces with a standard keypad

by reading general-purpose inputs. The fourth lab introduces

interrupts and interrupt service routines. The interrupts are

introduced along with the virtual timers, and the students are asked

to program a simple decimal counter using interrupts and the

concepts used in the previous labs. The fifth lab introduces the

serial protocol and interfacing to a microcontroller‟s UART. The

students are asked to read from the serial port, and then output the

input with a simple ROT13 encoding. Finally, the last lab brings

combines the earlier concepts in design of a reaction timer game.

For all of the labs, the input and output ports were sufficient to

interface to all of the required external peripherals.

Each lab was redesigned and written in the VμC‟s assembly

language and tested on the implemented platforms. Because the

assembly file is also the executable format, the VμC‟s executable

file was 10 times bigger than a traditional binary, due to using

ASCII text characters. The VμC implementation internally

translates the text file to a traditional binary to reduce internal

storage and improve performance.

9. Conclusion

We presented a virtual microcontroller, a clean intuitive

microcontroller that allows a beginning embedded programming

student to concentrate on structured embedded programming while

still learning important low-level resource concepts related to

interrupts, timers, and UARTs. We implemented the VμC on

several physical devices including an AVR microcontroller and an

FPGA, and redesigned a complete introductory course set of labs

for the VμC.

10. Acknowledgements

This work was supported in part by the National Science

Foundation (CNS-0614957). We also thank Bailey Miller, Jonathan

Basseri, and Andrew Becker for their work in developing the VuC

simulator and physical prototypes.

References

[1] BENJAMIN, M., KAELI, D., AND PLATCOW, R. 2006. Experiences with
the Blackfin architecture in an embedded systems lab.. WCAE '06

[2] BUTLER, J. AND BROCKMAN, J. Web-based Learning Tools on
Microprocessor Fundamentals for a First-Year Engineering Course.
2003. American Society for Engineering Education.

[3] CELOXICA. 2006. DK design suite.
http://www.celoxica.com/products/dk/default.asp.

[4] COTTRELL, S. AND F. VAHID. A Logic Enabling Configuration by
Non-Experts in Sensor Networks. HFC. 2005.

[5] DOS Box. http://www.dosbox.com
[6] ECOS. http://ecos.sourceware.org/
[7] HENNESSY, J. AND PATTERSON, D. Computer Architecture – A

Quantitative Approach. Morgan Kaufman Publishers. 3rd edition.
1996

[8] HODGE, H. HINTON, H.S, AND LIGHTNER, M. Virtual Circuit
Laboratory. ASEE. American Society for Engineering Education.
2000

[9] LEVIS, P. AND CULLER, D. 2002. Maté: a tiny virtual machine for
sensor networks. SIGOPS Oper. Syst. Rev. 36, 5 (Dec. 2002), 85-95.

[10] RICKS, K. G., JACKSON, D. J., AND STAPLETON, W. A. 2005. An
evaluation of the VME architecture for use in embedded systems
education. SIGBED Rev. 2, 4 (Oct. 2005), 63-69.

[11] SMITH, J. AND NAIR, R. VIRTUAL MACHINES: Versatile Platforms for
Systems and Processes. Morgan-Kaufman Publishers. 2005.

[12] STARK, R., SCHMID, J, AND BORGER, E. Java and the Virtual
Machine- Definition, Verificartion, and Validation. 2001.

[13] VMWARE. http://www.vmware.com/
[14] WINDRIVER Systems. http://www.windriver.com/
[15] XEN. http://www.xen.org

Figure 7: Virtual microcontroller implementations: (a) in a black-box, with internal AVR-microcontroller-based circuitry exposed, (b) on

an AVR microcontroller breadboard, with input/output wires that can be connected to other circuits, and (c) on a Xilinx Spartan 3E FPGA

using a serial connection to a PC to output to a serial terminal. All three can execute the same VμC program identically.

 (a) (b) (c)

http://www.celoxica.com/products/dk/default.asp.

