
RIOS: A Lightweight Task Scheduler for Embedded Systems
Bailey Miller

Dept. of Computer Science and
Engineering

University of California, Riverside

bmiller@cs.ucr.edu

Frank Vahid
Dept. of Computer Science and

Engineering
University of California, Riverside

Also with CECS, UC Irvine

vahid@cs.ucr.edu

Tony Givargis
Center for Embedded Computer Systems

(CECS)
University of California, Irvine

givargis@uci.edu

ABSTRACT

RIOS (Riverside-Irvine Operating System) is a lightweight
portable task scheduler written entirely in C. The scheduler
consists of just a few dozens lines of code, intended to be
understandable by students learning embedded systems
programming. Non-preemptive and preemptive scheduler versions
exist. Compared to the existing open-source solutions FreeRTOS
and AtomThreads, RIOS on average has 95% fewer lines of total
C code for a sample multitasking application, a 71% smaller
executable, and 70% less scheduler time overhead. RIOS source
code and examples are available for free at
http://www.riosscheduler.org. RIOS is useful for education and as
a stepping stone to understanding real-time operating system
behavior. Additionally, RIOS is a sufficient real-time scheduling
solution for various commercial applications.

Categories and Subject Descriptors

D.4.1 [Operating Systems]:
Multiprocessing/multiprogramming/multitasking

General Terms

Performance, design.

Keywords

Embedded systems, task scheduler, preemption, real-time
operating system, C programming, education.

1. INTRODUCTION
Multitasking embedded systems with precise timing may use a
real-time operating system (RTOS) to schedule tasks at runtime
using priority-based cooperative or preemptive scheduling
techniques. Many existing RTOSes provide scheduling services
and other features useful in multitasking systems like semaphores,
mutexes, queues, etc. [1][7][8][13]. A new embedded systems
programmer who needs basic support for multiple tasks may not
require the many features of an RTOS. Furthermore, attempts to
study RTOS implementations can be hindered by code sizes of
thousands of lines spanning dozens of files. RIOS is an alternative
to an RTOS, providing real-time scheduling of tasks with only
tens of lines of extra code directly inserted into an application C
program, requiring no special compilation. The small scheduler is
easy for students to understand, and is not hidden through API
(application programming interface) calls as in traditional
RTOSes.

We present non-preemptive and preemptive versions of RIOS.
Both versions utilize a peripheral timer to generate an interrupt
that contains the RIOS scheduler. Tasks in RIOS are executed
within the interrupt service routine (ISR), which is atypical
compared to traditional RTOSes.

Figure 1(a) shows the typical program stack of the non-
preemptive RIOS scheduler. The main function loops infinitely
and performs no real behavior, other than to be periodically
interrupted by a timer ISR. The ISR hosting the RIOS scheduler
checks if a task is ready to execute, and executes the task if
necessary, each such execution known as a task tick. For the non-
preemptive version, only one task exists on the program stack at
any time, and the task must finish before the ISR is called again.
The programmer must define each task to be a run-to-completion
task, meaning the task executes some actions and then returns, and
specifically does not wait on an event, block, or contain an infinite
loop. Otherwise, ticks of other tasks might be missed. Run-to-
completion tasks are a form of cooperative tasks [1].

The preemptive scheduler in Figure 1(b) allows nested interrupts
to occur, which provides higher priority tasks the ability to
preempt lower priority tasks. Stack overflow occurrence is mostly
prevented by disallowing self-preemption, meaning at most one
instance of each task may be present on the stack at any one time.
The highest priority executing task will always be at the top of
stack, and the number of stack frames is limited by the number of
defined tasks in the system. The programmer should define tasks
as mostly cooperative for the preemptive scheduler to operate
efficiently. The two versions of RIOS thus provide much of the
basic functionality necessary to execute concurrent tasks.

This paper is structured as follows. Section 2 discusses the
implementation of the existing solutions FreeRTOS and
AtomThreads. Section 3 discusses the timer abstractions used in
RIOS. Section 4 details the non-preemptive and preemptive RIOS
schedulers. Section 5 details our experiences with teaching RIOS
in embedded systems courses. Section 6 compares RIOS,

Figure 1: Stack snapshots of: (a) non-preemptive RIOS that
schedules one of (task1, task2, task3) at a time, (b) preemptive RIOS

that uses nested timer interrupts to preempt tasks.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WESE’12, October 11, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1765-8/12/10 …$15.00.

main()

 while(1);

TimerISR()

RIOS SCHEDULER

task1

task2

main()

 while(1);

task1 task2 task3

TimerISR()

RIOS SCHEDULER

(a) Non-preemptive (b) Preemptive

FreeRTOS, and AtomThreads in terms of binary size, overhead,
and source code size. Section 7 concludes.

2. EXISTING EMBEDDED SCHEDULERS
Many existing RTOS solutions exist; we have selected two for
comparison to RIOS based on popularity, availability, and quality.
We chose popular RTOSes because we wish to compare RIOS to
relevant and modern software, and also because of the support
provided by existing communities that are helpful when
developing benchmarks. Availability implies that the RTOSes’
code bases are under an open-source license, such as the General
Public License (GPL), etc. Many commercial systems use an
open-source RTOS. Notable exceptions are large real-time
systems with hard critical constraints that require additional
features like embedded graphics or security. Quality is an
important feature that considers the size and overhead of task
scheduling, the memory footprint, etc. We selected FreeRTOS
and AtomThreads to compare to RIOS, based on the three metrics.
Similar comparisons could be made with other solutions.

Other works present similar schedulers to RIOS. TinyOS [9] is a
small open source operating system for embedded systems that
shares many event-driven, cooperative task characteristics of
RIOS. However, TinyOS utilizes the nesC programming
language, requires multiple configuration files to run a simple
project, and specifically targets sensor network applications. The
Super Simple Task (SST) scheduler [11] also provides a single
stack, interrupt driven scheduler. Compared to SST, RIOS is
leaner and is targeted to the beginning embedded systems
programmer. Phantom [10] uses a compiler-driven cross-language
approach, where a POSIX C program is translated to an
equivalent, multitasking embedded ANSI-C compliant program.
Quantum Leaps provides an event-driven framework utilizing
UML (Unified Modeling Language) abstractions [13].

FreeRTOS is a widely known RTOS that has been ported to 31
computer architectures, and is used in numerous commercial
products [1]. AtomThreads is a very portable small real-time
scheduler written mostly in C [8]. Despite having substantial
community support for each of the above schedulers, they are
complex pieces of software that may not be easily understood by
beginning embedded software programmers. For example, the
AVR microcontroller port for FreeRTOS contains approximately
9500 lines of text (C code and comments), making it impractical
for a new student to understand the low-level implementation
details in the few weeks of time that a typical embedded systems
course might allocate to RTOS design.

At the user-level, FreeRTOS (and most other RTOSes) provides
an API that allows a programmer to create tasks and add them to
the scheduler for execution. Figure 2 shows the various API calls
required by FreeRTOS and AtomThreads to initialize and run a
single task. FreeRTOS has the most straightforward usage
available – merely two API calls to run a task. Other RTOSes like
AtomThreads require even more function calls and stack
initialization routines, since each task is allocated its own stack.

The use of an API hides the behind-the-scenes action of the
scheduler. Hiding RTOS implementation details is good when the
focus is on the application; however, for educational purposes
having a small, understandable scheduler is also desired. Typical
RTOS designs, including FreeRTOS and AtomThreads, utilize
inline assembly code to perform context switches during
multitasking. The use of assembly is required because the
scheduler kernel must save the values of all registers and program
counter (PC) of the interrupted task, and restore the registers and
PC of the task to be switched to. The use of complicated, low-
level context switching routines limits both the understandability
and portability of the scheduler. Target platforms must be
specifically targeted with low-level context switch routines
because of different architecture characteristics, like the number
and usage of registers, thus requiring effort to port RTOSes to
different targets. Assembly routines are generally a necessary
feature of an RTOS, although some past work on schedulers have
utilized the standard setjmp.h library to implement thread-
switching using C level code only [6]. Engelschall provides an
overview of many existing thread libraries, noting that 16 of 18
require inline assembly calls [5]. The non-preemptive version of
RIOS does not require inline assembly, since a minimum context
is saved by the ISR and nested interrupts are not allowed. The
preemptive version of RIOS may require minimal assembly to
perform context-switching, depending on the target platform.

Both FreeRTOS and AtomThreads create separate stacks for each
task, requiring extra initialization and processing during context
switches to switch the stack pointers to the appropriate task. RIOS
maintains a single stack of nested task frames, as detailed in
Section 0. The use of a single stack relaxes the required stack
management procedure during context switches, which can reduce
the overhead of scheduling. Note that FreeRTOS does have an
API available for the use of co-routines that utilize a single stack
only, however many RTOSes such as AtomThreads do not
support single-stack programs.

Figure 2: Creating and running a task in (a) FreeRTOS, (b) AtomThreads, (c) and RIOS. Code is taken from RTOS examples and manuals
and is abbreviated for figure clarity where necessary. Some parameter names are changed for consistency.

 int main() {

 xTaskCreate(

 &function,
 pcName,
 usStackDepth,
 ¶meters,
 uxPriority,
 &pvCreatedTask);

 vTaskStartScheduler();
}

void function() { … }

(a) FreeRTOS

int main() {
 status = atomOSInit(&stack, SIZE);
 if (status == ATOM_OK) {
 status = atomThreadCreate(
 &threadTaskControlBlock,
 priority,
 &function,
 threadParameter,
 &topOfStack,
 stackSize);
 if (status == ATOM_OK) {
 atomOSStart();
 }
 }
}

void function() { … }

(b) AtomThreads

TimerISR() {
 //RIOS scheduler
}

int main() {
 tasks[0].period = task0_period;
 tasks[0].elapsedTime = tasks[0].period;
 tasks[0].TickFct = &function;

 TimerOn(task0_period);

 while(1); //Wait for interrupt
}

void function() { … }

(c) RIOS

3. TIMER ABSTRACTION
The RIOS scheduler C code can run on a wide variety of target
microprocessors. The only requirement is that the microprocessor
have a peripheral timer that can be set to tick at a specific rate,
with each tick calling an interrupt service routine (ISR). Most
embedded microprocessors satisfy that requirement. RIOS
assumes the following timer-related functions exist:

• TimerISR() -- An ISR function called when a peripheral
timer ticks.

• TimerSet(int) -- A function that sets the rate at which
the peripheral timer ticks.

• TimerOn()/TimerOff() -- Functions that enable/disable
the peripheral timer.

Before using the RIOS scheduler code, a programmer must
therefore implement the timer-related functions for the particular
target microprocessor. Figure 3 shows an example for an AVR
ATMEGA324P microprocessor. Implementing the timer-related
functions for other microprocessors is typically straightforward.

4. RIOS
RIOS provides a simple, C-based approach to providing simple
multitasking functionality in embedded designs. The technique
hinges on the calling of task tick functions within peripheral timer
interrupts. Every task in RIOS has an associated state, such that a
call to the tick function of the task results in an update of the task
state. Thus, tasks are non-blocking and require global storage of
state. RIOS is built around the model of synchronous state
machines, such that a call to a task tick function results in
execution of the actions of a single state. RIOS is not limited to
state machines however; normal code blocks can also be used if
desired. The only requirement for the use of RIOS for a target
platform is that nested interrupts are allowed either by default or
by re-enabling interrupts immediately once the Interrupt Service
Routine (ISR) has been entered, as is the case with most common
embedded processors. In the following sections, we present non-
preemptive and preemptive versions of RIOS.

4.1 Non-preemptive scheduler
The first presented version of RIOS is a non-preemptive
multitasking scheduler. Each task must be defined by the
programmer to be run-to-completion. We present two uses of the
scheduler: tasks defined as basic code blocks, and tasks defined as
state machines. We highlight the use of state machines in RIOS

Figure 3: Implementations of the timer-related functions for a 8
MHz AVR ATMEGA324P.

Figure 4: A complete sample program using the non-
preemptive RIOS scheduler with simple tasks.

 typedef struct task {
 unsigned long period; // Rate at which the task should tick
 unsigned long elapsedTime; // Time since task's last tick
 void (*TickFct)(void); // Function to call for task's tick
} task;

task tasks[2];
const unsigned char tasksNum = 2;
const unsigned long tasksPeriodGCD = 200; //Timer tick rate
const unsigned long periodToggle = 1000;
const unsigned long periodSequence = 200;

void TickFct_Toggle(void);
void TickFct_Sequence(void);

unsigned char processingRdyTasks = 0;
void TimerISR() {
 unsigned char i;
 if (processingRdyTasks) {
 printf("Timer ticked before task processing done.\n");
 }
 else { // Heart of the scheduler code
 processingRdyTasks = 1;
 for (i=0; i < tasksNum; ++i) {
 if (tasks[i].elapsedTime >= tasks[i].period) { // Ready
 tasks[i].TickFct(); //execute task tick
 tasks[i].elapsedTime = 0;
 }
 tasks[i].elapsedTime += tasksPeriodGCD;
 }
 processingRdyTasks = 0;
 }
}

void main() {
 // Priority assigned to lower position tasks in array
 unsigned char i=0;
 tasks[i].period = periodSequence;
 tasks[i].elapsedTime = tasks[i].period;
 tasks[i].TickFct = &TickFct_Sequence;
 ++i;
 tasks[i].period = periodToggle;
 tasks[i].elapsedTime = tasks[i].period;
 tasks[i].TickFct = &TickFct_Toggle;

 TimerSet(tasksPeriodGCD);
 TimerOn();

 while(1) { Sleep(); }
}

// Task: Toggle an output
void TickFct_Toggle() {
 static unsigned char init = 1;
 if (init) { // Initialization behavior
 B0 = 0;
 init = 0;
 }
 else { // Normal behavior
 B0 = !B0;
 }
}

 // Task: Sequence a 1 across 3 outputs
void TickFct_Sequence() {
 static unsigned char init = 1;
 unsigned char tmp = 0;
 if (init) { // Initialization behavior
 B2 = 1; B3 = 0; B4 = 0;
 init = 0;
 }
 else { // Normal behavior
 tmp = B4; B4 = B3; B3 = B2; B2 = tmp;
 }

}

RIOS

scheduler

Task 1

Task 2

Entry

point

Loop interrupted

by TimerISR()

Definitions

ISR(TIMER1_COMPA_vect) { //(TimerISR) Timer interrupt service routine
 //RIOS kernel code
}

TimerSet(int milliseconds) {
 TCNT1 = 0;
 OCR1A = milliseconds*1000;
}

TimerOn() {
 TCCR1B = (1<<WGM12)|(1<<CS11); //Clear timer on compare. Prescaler = 8
 TIMSK1 = (1<<OCIE1A); //Enables compare match interrupt
 SREG |= 0x80; //Enable global interrupts
}

TimerOff() {
 TIMSK1 &= (0xFF ^ (1<<OCIE1A)); //Disable compare match interrupt
}

because synchronous state machines provide a consistent and
logical programming model for teaching students embedded
design.

4.1.1 Basic tasks
A program that demonstrates the use of non-preemptive RIOS
with basic code blocks as tasks is shown in Figure 4. The program
toggles and strobes outputs on port B as defined in the Toggle task
and the Sequence task. A task struct is described near the top of
the program. The struct defines all of the components of a task,
which include the following variables:

• period: the interval that the task should be executed.

• elapsedTime: the amount of time that has passed since
the previous execution of the task.

• TickFct: a pointer to the task’s tick function.

To create and schedule a task, a new task struct instance is
declared, the above variables are assigned, and the task struct
instance is inserted into the tasks array at the start of the main()
function. Compared to the previously examined RTOSes that
require multiple API calls, RIOS provides a simple and
transparent process for task initialization.

The main() function first initializes the tasks array as noted above,
and then configures the peripheral timer to periodically signal an
interrupt. The timer should be configured to call an ISR at a rate
equivalent to the greatest common divisor of all task periods to
ensure that the ISR will always execute exactly when at least one
task is ready. The main() function then enters an infinite loop, to
be interrupted periodically by the ISR.

The ISR hosts the RIOS scheduler code, as seen in Figure 4. The
non-preemptive scheduling code requires only about 10 lines of C
code. Compared to previously evaluated RTOSes, RIOS can fit
into a single C file alongside application code and can be easily
understood by beginning embedded system students. The heart of
the scheduling code is a loop that iterates over the tasks array. If
the elapsedTime of a task is greater than or equal to the period of
the task, than the tick function TickFct is executed. RIOS is built
to execute a single tick of a task when the task period expires, thus
tick functions should be run-to-completion, meaning they should
not block, wait, or contain infinite loops. Once the tick function
returns, the elapsedTime of each task is incremented by the timer
period.

Priority is given to tasks that have a lower position in the tasks
array, as the loop in the scheduler evaluates the elapsedTime of
task[0] first. In the non-preemptive version of RIOS, a flag
processingRdyTasks is set while the scheduler is active and is
reset when the scheduler finishes. If processingRdyTasks is set at
the start of an ISR, than the previous task could not complete
within the timer period and an error is thrown to avoid stack
overflow situations. Thus, task tick functions scheduled by the
non-preemptive scheduler should never block or wait for
resources that may not be available by the end of the timer period.

A program utilizing the non-preemptive RIOS scheduler has a
maximum stack depth of three frames, as shown earlier in Figure
1(a). A program always contains at least the main() function stack
that is stuck in an infinite loop, as well as periodic ISR calls and a
single running task. The non-preemptive version of RIOS does not
require any inline assembly routines, since no executing task
should ever be interrupted and the call to the ISR will save the
return address to main() automatically in the function prologue.

Figure 5: Sample program using non-preemptive RIOS with
state machine tasks.

 unsigned char processingRdyTasks = 0;
void TimerISR() {
 unsigned char i;
 if (processingRdyTasks) {
 printf("Timer ticked before task processing done.\n");
 }
 else { // Heart of the scheduler code
 processingRdyTasks = 1;
 for (i=0; i < tasksNum; ++i) {
 if (tasks[i].elapsedTime >= tasks[i].period) { // Ready
 tasks[i].state = tasks[i].TickFct(tasks[i].state);
 tasks[i].elapsedTime = 0;
 }
 tasks[i].elapsedTime += tasksPeriodGCD;
 }
 processingRdyTasks = 0;
 }
}
void main() {
 unsigned char i=0;
 tasks[i].period = periodToggle;
 tasks[i].elapsedTime = tasks[i].period;
 tasks[i].TickFct = &TickFct_Toggle;
 tasks[i].state = -1;
 i++ ;
 tasks[i].period = periodSequence;
 tasks[i].elapsedTime = tasks[i].period;
 tasks[i].TickFct = &TickFct_Sequence;
 tasks[i].state = -1;

 TimerSet(tasksPeriodGCD);
 TimerOn();
 while(1) { Sleep(); }
}
enum TG_States { TG_s1 };
int TickFct_Toggle(int state) {
 switch(state) { // Transitions
 case -1: // Initial transition
 B0 = 0; // Initialization behavior
 state = TG_s1; break;
 case TG_s1:
 state = TG_s1; break;
 default:
 state = -1;
 } switch(state) { // State actions
 case TG_s1:
 B0 = !B0; break;
 default:
 break;
 }
 return state;
}
enum SQ_States { SQ_s1, SQ_s2, SQ_s3 };
int TickFct_Sequence(int state) {
 switch(state) { // Transitions
 case -1: // Initial transition
 state = SQ_s1; break;
 case SQ_s1:
 state = SQ_s2; break;
 case SQ_s2:
 state = SQ_s3; break;
 case SQ_s3:
 state = SQ_s1; break;
 default:
 state = -1;
 } switch(state) { // State actions
 case SQ_s1:
 B2 = 1; B3 = 0; B4 = 0; break;
 case SQ_s2:
 B2 = 0; B3 = 1; B4 = 0; break;
 case SQ_s3:
 B2 = 0; B3 = 0; B4 = 1; break;
 default:
 break;
 }
 return state;
}

RIOS

scheduler

Entry

point

Toggle

State

Machine

Return state to

update task struct

Update state

Sequence

State

Machine

4.1.2 State machines
State machines are a powerful model that can be used to teach
structured methods of embedded system design [11][13]. We have
specifically designed RIOS for use with state machines by
including a state attribute into the task struct. The RIOS scheduler
will update the state of a task by executing a tick of the state
machine, which results in the state machine transitioning to the
next state and executing the actions within the new state.

Figure 5 shows an abbreviated sample program using the non-
preemptive RIOS scheduler with state machines. The same tasks
from Figure 4 have been implemented as state machines, where
task Toggle toggles pin 0 on port B, and task Sequence strobes
pins 5-7 on port B. The Toggle task tick function will execute
every 1000 milliseconds, while the Sequence task function
executes every 200 milliseconds. Every 1000 milliseconds both
tasks will be ready to execute, and Toggle will be executed
because Toggle has a higher priority (lower position in tasks).
Since both tasks are relatively simple and require little
computation time, preemption is not necessary for this example.

The scheduler supports state machines directly by passing the
state of a task as an argument to the task tick function, and
updating the task state with a new value when the tick function
returns. Initially, state machines are assigned a state value of -1,
implying that the state machine has not yet executed. On the first
call to the tick function, the state will transition from the -1 state
to the real initial state, in this case SQ_s1 and TG_s1, and execute
any actions of the state. This technique prevents initial state
actions from being skipped on the first call of the tick function.
State machines are written as two consecutive switch statements,
the first determining the next state to transition to, and then
second executing the actions of that state. This structured method
of writing state machines provides a useful template for beginning
students, since state machines can be designed at a higher
abstraction level (e.g., a drawing), and easily translated into code.
The state machine code can immediately be incorporated into a
multitasking RIOS-based system by performing the simple
initialization of the tasks struct. Other RTOSes evaluated in this
work require the use of infinite loops and API function calls to
implement periodic functions. For example, FreeRTOS requires
the use of the vTaskDelayUntil() function within an infinite loop
in the tick function to specify a frequency with which to wake up
and execute the task. Structured state machines that tick
periodically provide a conceptually simpler framework for
students than blocks of code with timed delays.

4.2 Preemptive scheduler
To support systems that require finer-grained timing than run-to-
completion tasks, we introduce a RIOS scheduler that supports
preemption of lower priority tasks. Figure 6 shows the entire
preemptive scheduler kernel – approximately 15-20 lines of C
code. The scheduler in Figure 6 is similar to the non-preemptive
RIOS version in that an array of tasks is iterated over to determine
if the task is ready to run. A new data structure runningTasks is
introduced that tracks the tasks that are executing. runningTasks
effectively acts as a stack where the highest priority task is located
at the top of the stack. When a task completes, the task is removed
from the top of runningTasks and the next lower-priority task
begins execution. An idle task is always allocated at the bottom of
the runningTasks stack and can not be removed.

In addition to checking if a task is ready to run, the condition in
the scheduler is updated to check if the priority of the task is
greater than the currently executing task, and if the task is not
already running. Recall that priority is established by position in

the array, where lower elements in tasks have priority. Priority
based on position in the tasks array is useful because we can
simply compare the loop iterator i to the task at the top of
runningTasks to determine if the task would have priority in the
scheduler. Also, we note that RIOS does not allow self-
preemption as self-preemption is rarely useful for applications
targeted by RIOS and introduces situations where stack overflows
can occur easily without special handling.

There are small critical sections in the scheduler code, in order to
prevent nested ISR calls while the scheduler is performing
administrative tasks. Immediately preceding the call of a tick
function, the task must first be marked as running and pushed onto
the stack of runningTasks. If another call to TimerISR occurs
before runningTasks was updated with the current tasks’ priority,
but after currentTask had been incremented, than a lower priority
task could possibly execute within the new scheduler stack frame,
since the value of runningTasks[currentTask] would be idleTask.
Similarly, a critical section that follows the execution of the tick
function protects runningTasks from corruption if TimerISR is
called immediately before decrementing currentTask.

The ISR entry and exit points are bounded by context switching
helper macros SaveContext() and RestoreContext(). Depending on
the platform, a call to the ISR may not save all of the registers
required to be able to seamlessly return to the interrupted position
in the program. For example, on the AVR architecture only the
registers used by the ISR, i.e. the call-saved registers r2-r17 and
r28-r29, are pushed onto the ISR stack during the prologue. Thus,
an assembly routine must be provided that also stores the
temporary registers and any other special registers provided by the
architecture. Since RIOS utilizes only a single stack, the assembly
calls are generally limited to pushing or popping of registers on or
off the stack only.

Figure 6: Preemptive RIOS scheduler

 unsigned char runningTasks[4] = {255}; //Track running tasks-[0] always idleTask
const unsigned long idleTask = 255; // 0 highest priority, 255 lowest
unsigned char currentTask = 0; // Index of highest priority task in runningTasks

void TimerISR() {
 unsigned char i;
 SaveContext(); //save temporary registers, if necessary
 for (i=0; i < tasksNum; ++i) { // Heart of scheduler code
 if ((tasks[i].elapsedTime >= tasks[i].period) // Task ready
 && (runningTasks[currentTask] > i) // Task priority > current task priority
 && (!tasks[i].running) // Task not already running (no self-preemption)
) {

 DisableInterrupts(); // Critical section
 tasks[i].elapsedTime = 0; // Reset time since last tick
 tasks[i].running = 1; // Mark as running
 currentTask += 1;
 runningTasks[currentTask] = i; // Add to runningTasks
 EnableInterrupts(); // End critical section

 tasks[i].state = tasks[i].TickFct(tasks[i].state); // Execute tick

 DisableInterrupts(); // Critical section
 tasks[i].running = 0;
 runningTasks[currentTask] = idleTask; // Remove from runningTasks
 currentTask -= 1;
 EnableInterrupts(); // End critical section
 }
 tasks[i].elapsedTime += tasksPeriodGCD;
 }
 RestoreContext();//restore temporary registers, if necessary
}

Figure 7 shows a stack trace of an example program using the
RIOS preemptive scheduler. The example consists of three tasks
as outlined in the given table; each task is assigned a period with
which to execute their given tick functions, a runtime that
indicates how long the task takes to complete, and a priority
(lower number indicates higher priority). The greatest common
divisor of the set of tasks is 250 ms, thus the timer ISR is
configured to tick at a rate of 250 ms. Each task is initially marked
as ready to run at the start of the system, thus on the first tick of
the ISR, every task is ready to execute. The scheduler executes the
tasks in order of their priority, and is initially able to complete T1,
T2 and a portion of T3 prior to the next tick of the ISR. A second
ISR frame is pushed onto the stack, and T1 is executed by RIOS.
Since T2 is not yet ready, and T3 is marked as running in a lower
stack frame, RIOS skips them and the ISR returns to yield control
back to T3. T3 can not complete its 500ms runtime requirement
before the next ISR tick, thus again a second ISR frame is pushed
onto the stack and the tasks that are ready and have higher priority
are executed. Eventually, after approximately 900 milliseconds,
T3 is able to complete, and the original ISR frame returns to yield
control to the sleeping main() function.

5. CLASSROOM EXPERIENCES
We have utilized the non-preemptive version of RIOS in
introductory embedded systems courses for the past 3 years. RIOS
is used in tandem with a digital e-book and a software toolset,
named PES (Programming Embedded Systems), both of which
were created specifically for the course [12]. The PES tools
include: RIMS, a MIPS-based microcontroller simulator, RIBS, a
graphical state machine designer, and RITS, a timing diagram
viewer to evaluate I/O.

PES focuses on teaching time-oriented programming techniques,
culminating with the introduction of RIOS and multitask
scheduling. Initially, PES introduces the concept of a synchronous
state machine and how state machines can be used to capture
desired behavior. The first examples are single-state machine
systems that do not require scheduling. More advanced systems
are gradually introduced that add additional tasks, and PES
develops the programming techniques to support the additional
complexity. Multitasking is initially introduced by providing a
template for round-robin scheduling that inserts an infinite loop in
the main function code to call separate functions for each task.
Timing is supported by a periodic timer interrupt that sets a flag.
This technique is simple, but does not support tasks with different
periods. To introduce support for scheduling tasks with different
periods, the task struct is described and a RIOS scheduler is
placed into the main code. To allow power-saving modes, RIOS is
moved to the timer ISR and replaced in the main function code by
a call to Sleep(). PES also describes a version of RIOS used to
support event-driven state machine designs. Event triggers can be

added into RIOS easily by adding an additional flag to the task
struct that indicates if the task has been triggered, and by checking
the status of the flag when determining if the task is ready to tick.
The preemptive version of RIOS has not yet been incorporated
into PES, but we hope to include it in future courses. Table 1
describes the progression of PES from simple systems to complex
multitasking systems requiring RIOS.

The culmination of our introductory embedded systems course is
a two-week project. Since we started using PES and RIOS in the
classroom, student projects have become noticeably more
complex. Three years ago, the typical submission used a single
microcontroller, one or two peripherals, and a maximum of three
state machines. The projects yielded by PES-instructed students
typically contain two or three communicating microcontrollers,
multiple peripherals, and five or six state machines. We have
found that students can handle complicated multitasking situations
much easier, and thus the project quality has increased. Examples
and comparison of student projects are available online at
http://www.riosscheduler.org.

6. RIOS VS. RTOS COMPARISON

6.1 Scheduling overhead
A primary metric of the quality of a scheduler is the overhead, or
how much time a program spends determining which task to run
next, and switching contexts to execute the task. Every RTOS
utilizes a timer interrupt to provide a basic method for tracking
time elapsed in the system. We calculate overhead for each RTOS
by starting a separate hardware timer at the beginning of the timer
interrupt, and recording the difference in time when the interrupt
returns. In RIOS, the tick function call is executed within the ISR,
thus we stop the hardware timer whenever a tick function is
currently being executed. Note that due to the inclusion of
profiling code, the overhead is slightly higher in all cases.

The program executed consists of 3 tasks of varying runtime,
priority, and period. Task1 is a short-lived (1ms runtime), high
priority task that executes rapidly (25ms period). Task2 has a
medium-length runtime (5ms), medium priority, and a medium-
length period (50ms). Task3 has a long runtime (25ms), low
priority, and executes rarely (100ms). Each task consists of a
single delay() function call that simulates some computation. The

Figure 7: Stack trace of a 3-task program using the RIOS preemptive scheduler.

Task Period Runtime Priority

T1 250 10 1

T2 500 100 2

T3 1000 500 3

Table 1: Course topics culminate with RIOS

1. Capture simple behavior as a graphical state machine.

2. Translate graphical state machines to C code.

3. Capture more complex systems as multiple state machines.

4. Round-robin multitasking of state machines with same period.

5. RIOS multitasking of state machines with different periods.

main

Program
stack

time

ISR

T1 T2

ISR ISR

ISR

Task3
preempted

T3

T1

T3

T1 T2 All tasks
completed

ISR

T1

T3 T1 T2 T3

250 ms 500 ms 750 ms 1000 ms 1250 ms

T3

0

2000

4000

6000

O
v

e
rh

e
a

d
 (

u
s

)

0

1000

2000

3000

4000

S
iz

e
 (

b
y
te

s
)

RIOS FreeRTOS AtomThreads

0

2000

4000

6000

L
in

e
s
 o

f
c
o

d
e

system is run for 1 second of total time, and the amount of
overhead for each interrupt is added to a global sum. The targeted
architecture is an AVR-ATMega324P, which is a small 8-bit
RISC microcontroller from Atmel that is configured to run with
an 8MHz clock [1]. The timer tick of RIOS and each RTOS is
configured to generate interrupts at the greatest common divisor
of each task period, 25 ms, to minimize unnecessary overhead.
Within 1 second of time, the scheduler is required to perform 10
preemptions of Task3 in order to yield to Task1 or Task2.

The scheduling overhead of RIOS, FreeRTOS, and AtomThreads
are shown in Figure 8(a). RIOS requires ~1250 microseconds of
overhead, approximately 30% of the overhead required by
FreeRTOS or AtomThreads. RIOS is faster because of its
simplicity. RIOS does not check for stack overflow, or if tasks are
ready to unblock. Also, RTOSes tend to implement extra function
calls within the scheduler, e.g., FreeRTOS calls the functions
vTaskIncrementTick() and vTaskSwitchContext(), which requires
prologue and epilogue stack management and thus require a few
more cycles per tick. For best comparisons, the RTOSes were
made as lean as possible. The FreeRTOS build does not include
semaphores, queues, mutexes, and most of the API calls except
those necessary to enable periodic tasks (vDelayTaskUntil). The
majority of extra delay per tick (~50 ms) in FreeRTOS compared
to RIOS comes from the subroutine to check for ready tasks.

6.2 Binary and code size
An important metric of a scheduler is the size of the compiled
scheduler code. Embedded systems are often limited by memory
size, and thus a scheduler should be small so that space exists for
the application. Figure 8(b) shows compiled binary sizes of RIOS,
FreeRTOS, and AtomThreads for a sample application. All
programs were compiled using the –Os flag. All extra modules
not required, such as semaphores and mutexes, were not linked
into the RTOS builds. As shown in Figure 8(b), RIOS requires an
executable of only 830 bytes, compared to 3668 and 2172 bytes
for FreeRTOS and AtomThreads, respectively.

The amount of source code of a scheduler is important when
considering an educational environment. If the objective is to
teach basic scheduling techniques to students, than interpreting
thousands of lines of codes spread amongst 10 files is a
distraction. The main benefit of RIOS is that a small amount of
readable code can enable multitasking, albeit without some of the
features supported by complete RTOSes. We used the open source
tool cloc [4] to determine the amount of actual lines of code of
each RTOS. cloc filters out blank lines and comments, thus Figure
8(c) shows the raw number of lines of code. The RIOS sample
program consists of 116 lines of code. FreeRTOS and
AtomThreads consist of 4242 and 733 lines, respectively.
FreeRTOS is much larger than AtomThreads or RIOS because
FreeRTOS contains more features and modules (which can be
disabled at runtime for producing comparably sized binaries).

Nonetheless, RIOS provides a comprehensible approach for
students in an educational environment.

7. CONCLUSION
We presented non-preemptive and preemptive versions of RIOS, a
lightweight scheduler for embedded systems. It was shown that
basic multitasking of periodic tasks can be performed in
approximately a dozen lines of code. Compared to FreeRTOS and
AtomThreads, RIOS requires 95% less code, is 70% faster, and
results in 71% smaller binaries on average. RIOS requires that
tasks are periodic, however when coupled with the synchronous
state machine programming model RIOS may provide an effective
platform for teaching embedded multitasking. Marked
improvements in student project quality has been noted while
using RIOS in introductory embedded programming classes.

8. ACKNOWLEDGMENTS
This work was supported in part by a U.S. Department of
Education GAANN fellowship and by the U.S. National Science
Foundation (CNS 1016792, DUE 0836905, CPS 1136146).

9. REFERENCES
[1] Adya, A., Howell, J., Theimer, M., Bolosky, W. J., and

Douceur, J. R. 2002. Cooperative Task Management Without
Manual Stack Management. USENIX.

[2] Atmel Corporation. 2012. http://www.atmel.com/.

[3] Barry, R. FreeRTOS. http://www.freertos.org/.

[4] Danial, A. 2006. cloc: Count Lines of Code. Northrop
Grumman Corporation.

[5] Engelschall, R. 2000. Portable multithreading: the signal
stack trick for user-space thread creation. USENIX 2000.

[6] Engelschall, R. 2005. Gnu pth - the gnu portable threads,
http://www.gnu.org/software/pth/.

[7] Labrosse, J. J. 1998. Microc/OS-II (2nd ed.). R & D Books.

[8] Lawson, K., AtomThreads. http://atomthreads.com/.

[9] Levis, P., Madden, S., Polastre, J., Szewczyk, R.,
Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M.,
Brewer, E., and Culler, D. 2004. TinyOS: An operating
system for wireless sensor networks. In Ambient
Intelligence. Springer-Verlag.

[10] Nacul, A.C., Givargis, T. 2005. Lightweight Multitasking
Support for Embedded Systems using the Phantom
Serializing Compiler. DATA '05.

[11] Samek, M. and Ward, R. 2006. "Build a Super Simple
Tasker", Embedded Systems Design.

[12] Vahid, F., Givargis, T., Miller, B. 2012. Programming
Embedded Systems, An Introduction to Time-Oriented
Programming. UniWorld Publishing, Lake Forest, CA.

[13] Quantum Leaps. http:///www.state machine.

Figure 8: Comparison of (a) scheduling overhead for 1 second of execution time, (b) compiled binary size, and (c) lines of code.

(a) (b) (c)

