
Fig. 1. Overview

.

FPGA

P
h
y
s
ic

a
l M

o
d
e
l

data_out

MEMs
REGs

Debug Port

MEMs
REGs

Column Dirty Indicator

CACs

data_in

en_w / load

Controller

Controller

Dirty Indicator

Debug

Core

Input Checkpoints

Input tracer (optional)

addr

Output

Secondary

Storage

Compression

Module

An Efficient Compression Scheme for Checkpointing of FPGA-Based

Digital Mockups

Abstract - This paper outlines a transparent and nonintrusive

checkpointing mechanism for use with FPGA-based digital

mockups. A digital mockup is an executable model of a physical

system and used for real-time test and validation of

cyber-physical devices that interact with the physical system.

These digital mockups are typically defined in terms of a large

set of ordinary differential equations. We consider digital

mockups impelemented on field-programmable gate arrays

(FPGAs). A checkpoint is a snapshot of the internal state of the

model at a specific point in time as captured by some controller

that resides on the same FPGA. We require that the model

continues uninterrupted execution during a checkpointing

operation. Once a checkpoint is created, the corresponding

state information is transferred from the FPGA to a host

computer for visualization and other off-chip processing. We

outline the architecture of a checkpointing controller that

captures and transfers the state information at a desired clock

cycle using an aggressive compression technique. Our

compression technique achieves 90% reduction in data

transferred from the FPGA to the host computer under

periodic checkpointing scenarios. The checkpointing with

compression yields 15-36% FPGA size overhead, versus 6-11%

for checkpointing without compression.

I. Introduction

Cyber-physical systems (CPSs) are systems where

computational elements closely integrate and interact with

physical environments. Examples of CPSs include aerospace,

automotive, and medical systems. The functioning of a cyber

device within its physical environment creates a challenge

during the test and validation phase. Specifically, to test and

validate a cyber device, one may conduct the test within a

real physical setting, hence losing key debug capabilities

such as slower/faster than real-time execution, pause and

resume, step-by-step debugging, and deterministic rewind

and replay. Alternatively, a cyber device can be tested within

a simulated environment, where all aspects of the test and

validation are controllable. This paper focuses on the latter.

A case for simulating the physical environment for the

purpose of test and validation of a cyber device is offered by

Miller et al. using so called digital mockups [7]. These

digital mockups are fast and accurate models of physical

systems implemented to execute in real-time (or faster) on

an FPGA. Similar digital mockups are shown to be feasible

for the purpose of test and validation of cyber devices, given

their high degree of configurability, observability, and

controllability. Works such as that proposed by Pimentel [3]

and Huang [8] which utilize FPGAs to simulate physical

models containing large number of ordinary differential

equations (ODEs) further illustrate the feasibility of using

digital high-speed models during test and validation phase of

CPS devices.

To increase the usefulness of FPGA-based digital

mockups, we introduce the design and architecture of a

checkpointing controller, intended to reside on the FPGA

and transparently capture and transfer checkpoints at a

desired clock cycle using an aggressive compression

technique. A checkpoint in this paper is a snapshot of the

internal state of the model at a specific point in time,

captured by the checkpointing controller and transferred to a

host computer for visualization and other off-chip

processing. A preferred checkpointing mechanism allows the

model to execute in an uninterrupted manner during the

checkpointing operation.

In essence, our problem is that of capturing a selected

subset of the internal state of the FPGA, including the

contents of memory blocks and flip-flops. Wheeler [9] and

Graham [10] have solved the problem of retrieving and

restoring data in memory blocks and flip-flops through

design instrumentation. Nevertheless, continuously creating

checkpoints of digital mockups poses new challenges

compared to conventional approaches.

First, FPGA-based digital mockup are compute intensive,

usually solving a large number (hundreds to thousands) of

ODEs in real-time for sufficient model accuracy. The

corresponding state of such complex models may include

hundreds to thousands of variables, making capture and

off-chip transfer of the state impractical. Instead, a common

solution is the use of on-chip memory to hold a checkpoint

prior to transfer, limiting the number of checkpoints. Second,

a digital mockup must continue execution during

checkpointing operations as the mockup is connected to a

cyber device that is expecting continuous behavior.

Therefore, the clock applied to a physical model cannot be

suspended for any period of time; instead, the instantaneous

Ting-Shuo Chou, and Tony Givargis
Dept. Computer Science

University of California, Irvine

Irvine, CA 92697

{tingshuc, givargis}@uci.edu

Chen Huang, Bailey Miller, and Frank Vahid
Dept. Computer Science & Engineering

University of California, Riverside

Riverside, CA 92521

{chuang, bmiller, vahid}@cs.ucr.edu

Fig. 2(a). Example of instrumentation

.

1

Dout_B

Addr_B

Din_A

Dout_A

Addr_A

WE_A

Din_B
Dout_B

Addr_B

WE_B

Din_A

Dout_A

Addr_A

WE_A

Din_1 Addr_1 WE_1 Din_2

Dout_1

Addr_2Freeze WB*

0

1

0

1

Mode*

0 1

0

1

Dout_2

Primary

Memory

Secondary

MemoryRe-synchronization

Controller

Ready

D
irty In

d
icato

r

0

1
0

1

0 1

Fig. 2(b). Timing diagram

.

Primary Memory

Secondary Memory

start to read a checkpoint Any write

Re-synchronize
Ready

Access by the original design Access by the debug core

finish

Access by the Re-synchronization controller

capture of a consistent checkpoint, namely, the creation of a

complete copy of all model variables in a single cycle, is

necessary. Third, a checkpoint must be transferred to the

host computer in a timely manner. Reducing the minimum

time interval between two consecutive checkpoints, thus

increasing the overall checkpointing rate, is desirable [3, 8,

11]. An aggressive compression method, as proposed in this

paper, plays an important role in increasing this rate.

In this paper, we address these challenges using a

checkpointing controller as shown in Fig. 1. We use

secondary storages for duplicating the state of the physical

model. We read data at a certain clock cycle by setting the

secondary storages to read-only mode while the physical

model runs normally. If the instrumented storage is of

memory type (i.e., having an address input), we also insert

compact controllers for keeping data in secondary storages

consistent with those in the physical model. The

check-pointing controller incorporates a compression

scheme that reduces the size of a checkpoint with minimal

additional circuit (area) overhead. Compression substantially

shortens the checkpoint transfer time. To support our scheme,

we introduce specialized caches called Column Accessible

Caches (CACs) that can be written as a row addressable

memory and read as a column addressable memory. We

demonstrate our technique in a framework that currently

supports checkpointing on any Xilinx FPGA-based digital

mockup. The framework consists of a debug soft core

(namely MicroBlaze provided by Xilinx Inc.) and two

design templates, which are secondary storage modules and

compression modules written in VHDL with interfaces as

shown in Fig. 1. The framework minimizes modifications to

the original physical model. We use a human lung and a

medical ventilator cyber device as an example to

demonstrate our techniques [7].

The rest of this paper is organized as follows. Section 2

describes our checkpoint mechanism, the added logic

circuits, and secondary storages. Section 3 describes our

compression scheme and how CACs work. Section 4

provides the performance of our scheme in terms of

compression rate. Section 5 concludes.

II. Checkpointing Architecture

The main component of the proposed checkpointing

mechanism are secondary storage structures to mirror the

model state variables. Here, the model always executes

using its primary memories while the debug core strictly

manipulates the duplicated data in secondary storage.

Hereafter the original memory blocks of the model are

called primary memory. The duplicated memory blocks are

called secondary memory.

Fig. 2(a) shows an example of design instrumentation on a

typical memory block with inputs and outputs such as

data_in, data_out, we (write enable) and addr. The gray

lines and boxes represent the original model circuit and the

remaining circuitry represents the new signals added to

accommodate the debug core. Din_1, Addr_1, Dout_1 and

WE_1 are input to the original model circuit while the debug

core uses the control signal Freeze, WB (write back) and

Mode to execute four operations, as summarized in Table I.

These four operations, originating from the debug core, use

Din_2, Addr_2 and Dout_2 to retrieve or restore a

checkpoint. The status signal Ready reflects whether the

primary and the secondary memories are consistent. This

signal is necessary because any write on primary memory

during a checkpoint operation will make secondary memory

inconsistent with the primary memory. During a checkpoint

operation the debug core asserts Freeze to set all secondary

storages to read-only mode. The timing diagram during a

checkpoint operation is illustrated in Fig. 2(b).
Table I

Checkpointing controller signal description

Freeze WB*1 Mode* Description

0 0 0 Normal use. Data at Din_1 are duplicated

1 0 0 Read data in secondary memory
1 1 0 Write back using data in secondary memory

1 1 1 Write back using data at Din_2

A data inconsistency between the primary and secondary

memories triggers the execution of the re-synchronization

process at the end of the checkpoint operation. The

re-synchronization controller, dirty indicator, and the

extended read port of primary memory in Fig. 2(a) are

inserted to resolve consistency between the primary and

secondary memories. The dirty indicator is an array of flags

(one per word) that is set during a checkpoint operation on a

write to a corresponding primary memory word. Using the

dirty indicator, the re-synchronization controller copies the

dirty data from the primary memory to the secondary

memory using extended read/write ports. Fig. 3 shows the

pseudo code of the re-synchronization controller. The

execution time of the re-synchronization controller, at most,

is equal to the depth (number of words) of the primary

memory. Moreover, the checkpoint operation is nonintrusive

as the primary memory is never accessed by the debug core

or the re-synchronization controller as shown in Fig. 2(b).

1 WB* may be set to (Freeze AND WB) and Mode* may be set to

(Freeze AND WB AND Mode) in order to eliminate unnecessary

control signal combinations.

Fig. 3. Re-synchronization controller algorithm

.

1 FOR addr = 0 to DEPTH_OF_MEMORY
2 IF dirty_indicator[addr] == true AND (ADDR@primary_memory != addr
3 OR WE@primary_memory == false) THEN
4 secondary_memory[addr] = primary_memory[addr]
5 ELSE
6 goto Line 2
7 END IF
8 END FOR

The re-synchronization activity is also nonintrusive, as it

utilizes the dual port (2W/2R) memory supported by most

FPGAs.

III. Compression Scheme

Many algorithms have been applied to compress plain text,

images, video, scientific graphs, and so on. According to the

pigeonhole principle, no lossless compression algorithm can

efficiently compress completely random data. In this paper,

we take advantage of the fact that the state information of a

digital mockup is comprised of data generated solving a

large number of ODEs. These ODE circuits output

continuous time values that drift slightly when sampled

frequently. Moreover, when digital mockups are used to

replace physical models, such a human lung or heart, the

solution of these ODEs is restricted to be within a certain

range (e.g., the volume and pressure at any branch of a

human lung can only vary within some narrow range). Based

on these observations, our compression scheme takes a data

differencing approach to reduce data transmission to the host

under periodic checkpointing. Specifically, we outline a

computationally efficient architecture that supports delta

(difference between two consecutive samples) encoding

[15].

A. Column Accessible Cache

A Column Accessible Cache (CAC) is a memory structure

containing K rows of N-bit words. As with traditional

memories, the CAC words are accessed using log(K) row

address bits. However, a CAC as proposed in this work

allows addressing the data using log(N) column address bits

as well.

For our application, using a word as the unit for data

differencing will waste too many bits in common cases.

Assuming only one nibble (4-bits) changes within a word

during the time between two consecutive checkpoints, we

have to encode the changed nibble with seven dummy

(unchanged) nibbles plus the indexing bits since eight

nibbles (i.e., a word) should be encoded as a whole. In this

case, the ratio of indexing bits plus dummy (unchanged) bits

to data (changed) bits is 8.75 (i.e., (7 + 28) / 4). An

unrealistic 8.75 bits are needed to encode a single data bit.

Thus, using a word as the unit of differencing is not efficient.

Therefore, we choose a nibble to be the unit for data

differencing. To ideally track the data changes as a function

of time, eight flags are needed to track the changed nibbles

in a 32-bits word. With these flags, we place the dirty words

with fewer than four changed nibbles into a specialized

cache and then access and encode them using column

addressing, using CACs.

Fig. 4 shows the CAC architecture and a dedicated cache

controller that manages the contents of the CAC. A practical

CAC may be organized as an 8-by-8 two dimensional matrix

of nibbles. Eight single bit dirty column flags are used for

tracking changes in each column. Likewise, every eight

nibbles, within a word, share a dirty column flag. There are

also dirty row flags but, note that, a dirty row flag is not

shared by a row of nibbles; a dirty row flag is shared by the

two nibbles of a column byte, which is a byte in the order of

column (see the CAC architecture in Fig. 4). Each column in

the CAC has one column word, four column bytes, or eight

nibbles. There are 32 dirty row flags in a CAC. The 32 dirty

row flags are actually the bit map of dirty nibbles. The 8

dirty column flags together with the 32 dirty row flags are

used to encode the dirty nibbles.

The CAC Map in Fig. 4 is used to record the address

mappings between secondary memory and the CAC. For

instance, a 7-bits address in a 128-words secondary memory

is mapped to 3-bits address in a CAC. The size of a CAC

Map is the logarithm of the memory depth of secondary

memory multiplied by 8 (i.e., the number of rows in a CAC).

A CAC Map also has 8 additional bits used to indicate which

mapping is valid.

After a checkpoint, data is transmitted to the host using an

encoding scheme as depicted in Fig. 5. The first data field is

ValidEntries that indicates which entry is valid. The field is

8 bits long and mandatory. If there is no valid entry, the

field’s value is zero. The second field is the 8-bits long

NewMapEntryTable that indicates which entry has a new

mapping. If no entry needs update or no entry is valid, this

field can be omitted. The third field is MapEntries, included

only when NewMapEntryTable is set. The field contains

new address mappings as indicated by NewMapEntryTable.

N is the round up value of the logarithm of memory depth.

The fourth field is 8-bits long DirtyColumnFlags, indicating

the dirty columns. The fifth field is DirtyRowFlags. The

dirty row flags are included only when their corresponding

dirty column flag is set. The last field is Nibbles and it

Fig. 4. CAC architecture

.

CAC

MAP
1

/

0

11/0 111/0

Dirty Column Flags

Dirty Row Flags

2
5

6
 w

o
rd

s

Cache

Controller

Case A:

16 + 64(worst case) + 8(00000111) + 4(1111) + 4(1111) + 4(1110)

+ 88(x 3 + x 19)

= 188 bits with 1 misalignment and 3 column accesses

Case B:

16 + 64(worst case) + 8(00011111) + 4(1111) + 4(1111) + 4(1110) +

4(0001) + 4(0001) + 104(x 5 + x 19 + x 2)

= 212 bits with 1 misalignment and 5 column accesses

000

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0

0

0

0

1

1

1

1

1

1

1

1

1

1

1

1

/

0

Secondary

Memory

Column Accessible Cache

NewMapEntryTable MapEntries DirtyColumnFlags DirtyRowFlags Nibbles

8 bits 0~4(M + L) bits0 or 8 bits0 or 8 bits

ValidEntries

0~8N bits

Fig. 5. Encoding format

.

contains the actual data. A nibble is included only when its

corresponding dirty row flag is set. Note that the nibbles that

share the same row dirty flags are included or excluded

together. M and L are integers reflecting the total number of

dirty column and row flags that are set.

Two cases in Fig. 4 are given to illustrate the benefits of

CACs. In Case A, the dirty nibbles are the gray squares. The

total encoded size based on the encoding formant in Fig. 5,

in worst case, will be 188 bits, where we assume all entries

in the CAC Map are valid and require update. The dirty

nibbles are the black and gray squares in Case B. The total

encoded size, in the worst case, will be 212 bits. If a CAC is

not applied, the total size will be 320 bits, which are eight

dirty words plus their 8-bit indexing data. In these two

examples, a CAC yields at least 41% and 34% data size

reduction.

A CAC serves as a cache of dirty nibbles of the secondary

storage. A cache controller is required for choosing

promising entries (i.e., a word with fewer than four dirty

nibbles). The cache controller executes a simple but efficient

periodic procedure. At the beginning of the procedure, the

controller searches the CAC for entries with more than four

dirty nibbles and removes them to make room for promising

entries. If a dirty word has more than four dirty nibbles,

leaving the dirty word in its original memory block and

reading it through a row access, as well as encoding it, are

more efficient. The cache controller also scans the secondary

memory and adds promising entries into a CAC from top to

bottom on a first come first serve basis. The periodic cache

refreshing procedure always keeps a CAC in good condition,

where all entries in a CAC are very likely to have dirty

nibbles fewer than four. Furthermore, this periodic

procedure carried out by the cache controller of each CAC

offloads (or amortizes) the computation of encoding all dirty

nibbles and words carried by the debug core. Specifically,

the cache controller of each CAC reads the secondary

memory which it attaches to and chooses promising entries

to put in a CAC during the period of normal execution (i.e.,

the white rounded rectangles in Fig. 2(b)). Without these

cache controllers, the debug core would choose promising

entries of each secondary memory in a sequential manner

during a checkpoint operation (i.e., the light gray rounded

rectangles in Fig. 2(b)).

B. Distributed CACs and Global CAC

Intuitively, we achieve better compression rate if a CAC

is filled with dirty words that have fewer than four dirty

nibbles. However, a physical model may have distributed

memory blocks and the number of dirty words with dirty

nibbles fewer than four may not be sufficient to fully utilize

each CAC. Thus, we also propose a global CAC (GCAC),

which consists of several CACs and a single controller that

scans all dirty flags of every memory block.

IV. Experimental Results

We use the Weibel lung model as a case study. The

number of ODEs of a Weibel lung model increases

exponentially as the number of generations (levels) of the

lung model increases. Therefore, the amount of data

presenting states of a Weibel lung model also increases

exponentionally.

A. Weibel Lung Model

The Weibel lung model was proposed by E. R. Weibel

[12]. The left part of Fig. 6 depicts a 4-generation lung

model, including the trachea, the bronchi, and the

bronchioles lung elements. The accuracy of this model, as

well as the number of ODEs, increases as the number of

generations increases. 4-generation, 6-generation,

8-generation, and 10-generation lung models are represented

by 56, 251, 1019 and 4091 ODEs, respectively. In Huang’s

work [8], these ODEs are mapped to several processing

elements (PEs) that can solve ODEs through the

Runge-Kutta method. The values of flow, pressure, and

volume at the joining of two branches are evaluated at one

millisecond time resolution. To meet this time resolution,

more processing elements (PE) [8] are required as the

number of generations increases.

Fig. 7 shows the architecture of a PE. A PE consists of

instruction RAM, data RAM, and an ALU. The instruction

RAM is read only and the values of flow, pressure, and

volume are stored in the data RAM. d1, d2, and d3 are

incoming data lines from other PEs. dout is the output data

line. To checkpoint the lung model and support compression,

we manually insert the secondary storage, the CAC, the dirty

flags, and the controller. The wires needed to connect to the

inserted logic are data, addr and we, as described earlier.

B. Compression Rate Analysis

To explore the benefits of CACs, we built a customized

simulator that cycle-accurately simulates PEs and their

network. The simulated lung models include a 4-generation

Weibel lung mapped to 4 PEs (we4_pe4). weX_peY indicates

the Weibel lung model of X-generation mapped to Y PEs. We

also simulate the input pressure ranging from -500 to 500

mmHg. This range is sufficient to cover possible pressure

Fig. 6. Weibel lung model

.

Number of Generation

1 trachea

2 bronchi

3 bronchioles

4 bronchioles

PE

PE

PE

PE

PE
PE

Input

Fig. 7. PE architecture and instrumentation

.

Data RAM

ALU

d1

dout

MUX

d2 d3

Instruction

RAM

input_sel

addr

operation

d0

MUX

reg

data_sel

we

Inst_no

Data RAM

(Secodary Storage)

CAC

Dirty Flags

Controller

weaddrdata

values of a human lung. The input pressure oscillates at the

frequency of around 15 times/minutes, which is the general

breath rate of an adult. We summarize our simulation

parameters and their possible values in Table II.
Table II

Simulation parameters and possible values

Input parameter Possible value

lung model we4_pe4, we6_pe8,

we8_pe16, we10_pe196

input pressure -500 ~ 500 mmHg

input oscillation rate 10 ~ 20 times / minute
input shape square and sine

interval between checkpoints 10 ~ 1000 ms

The size of checkpoints is used to identify the

performance of our compression method. We compare the

size of checkpoints of our approaches (CACs and GCAC) to

four other approaches, which are Raw, Deflate, Dirty Word

Tracking (DWT) and Dirty Nibble Tracking (DNT). Raw

represents the size of checkpoints without any compression.

Deflate stands for the famous data compression algorithm

used in zlib [14] and gzip [13]. We serialize the data in

memory blocks and feed the result into Deflate. DWT and

DNT are the basic data differencing techniques using dirty

flags to track dirty words or nibbles. As a unit of

differencing, DWT-approach uses a word whereas DNT-

approach uses a nibble. In order to have a fair comparison,

we include complete indexing bits for each approach. The

calculation of the size of each approach is listed as follows.
Raw=∑(NumberPEWidth+PEDataRAMSize)

Deflate=∑(NumberPEWidth+PEDataRAMComressedSize)

DWT=∑(NumberPEWidth+MaxNumberDirtyWordWidth+

(WordEncodingWidth × NumberDirtyWord))

DNT=∑(NumberPEWidth+MaxNumberDirtyNibbleWidth+

(NibbleEncodingWidth × NumberDirtyWord))

CACs=∑(NumberPEWidth+CACEncoding+

MaxNumberDirtyWordWidth+
(WordEncodingWidth × NumberDirtyWordInRAM))

GCAC=GCACEncoding +

∑(NumberPEWidth+MaxNumberDirtyWordWidth+

(WordEncodingWidth × NumberDirtyWordInRAM))

Here, NumberPEWidth is the logarithm of the number of

PEs. For a lung model mapped to 256 or fewer PEs

(common case), an 8-bit byte is used. PEDataRAMSize

presents the size of the data RAM of a certain PE.

PEDataRAMCompressedSize presents the compressed data

size of the data RAM of a certain PE based on the Deflate

algorithm. MaxNumberDirtyWordWidth is the logarithm of

maximal number of dirty words, which is the size of a data

RAM block. For PEs having data RAM up to 256 words

(32-bits), a byte is used. WordEncodingWidth is

MaxNumberDirtyWordWidth plus 32 (i.e., the size of a

word). The calculation for MaxNumberDirtyNibbleWidth is

similar to MaxNumberDirtyWordWidth. The length of

CACEncoding and GCACEncoding are calculated based on

the encoding format in Fig. 5.

Fig. 8 shows the average size of a checkpoint for different

intervals between checkpoints. Results are obtained from

averaging the size of 800 checkpoints under these

parameters: the lung model is we6_pe8 and input oscillation

rate is 15 times per minute; the intervals between two

successive checkpoints are 10, 50, 100, 500, and 1000ms

and the interval between cache refreshing is set to tenth of

the interval between checkpoints. The average size of

checkpoints generated by each approach increases as the

interval between checkpoints increases; intuitively, data is

more likely to be modified over larger time intervals. We

observe that differencing techniques, including CACs-,

GCAC-, DWT- and DNT-approach, outperform the Raw-

and Deflate-approach in the majority of cases. Hence, we

conclude that for FPGA-based mockups of physical systems,

data differencing techniques can reduce the size of a

checkpoint by 90%.

We also compare the performance of the CACs-approach

with that of the GCAC-approach. Here, the compression rate

is defined as the size of checkpoints generated by CACs-

and GCAC-approach divided by the size of checkpoints

generated by the DWT-approach. We further define the

cache fill rate to be the ratio of the number of entries inside

CACs or GCAC to the maximal number of entries they can

hold. A CAC fully filled with valid entries has cache fill rate

equaling to one. We perform exhaustive search on input

parameters and get thousands of checkpoints for analysis.

Fig. 10(a) and 10(b) shows the relations between the

compression rate and cache fill rate. The black line in Fig.

10, generated by linear line-fitting, indicates the trend of

data. As the cache fill rate increases, the compression rate

drops. The slopes of the black lines in Fig. 10(a) and 10(b)

are -0.24 and -0.36, respectively. Generally, GCAC-

approach yields lower compression rate than CACs-

approach at the same cache fill rate. Statistically, we can

conclude that GCAC-approach works better than CACs-

approach. Another observation from Fig. 10(a) and 10(b) is

that most points have a compression rate smaller than one,

indicating that the size of checkpoints generated by the

CACs/GCAC-approaches is smaller than that of the

Fig. 8. Average size of checkpoints

.

0

5000

10000

15000

20000

10ms 50ms 100ms 500ms 1000ms

A
ve

ra
ge

 s
iz

e
 o

f
ch

e
ck

p
o

in
ts

 (
b

it
s)

CACs GCAC Raw Word Nibble Deflate

Fig. 10(a). Cache fill rate v.s compression rate (CACs)

.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

m
p

re
ss

io
n

 R
at

e

Cache Fill Rate

Fig. 10(b) Cache fill rate v.s compression rate (GCAC)

.

0

0.2

0.4

0.6

0.8

1

1.2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

m
p

re
ss

io
n

 R
at

e

Cache Fill Rate

DWT-approach in the majority of cases.

C. FPGA Area Overhead Analysis

To further validate our architecture and evaluate the area

overhead in terms of FPGA resources, we implemented

checkpointing and synthesized it using the Xilinx ISE 13.2

tool chain. Table III lists the FPGA resources taken by the

original design (2nd and 4th columns) and resources taken

by our chekcpointing module (3rd and 5th columns).

RAM128X32S refers to the checkpointing module used to

instrument a 128-words memory block. The other modules

are also named similarly. The resource overhead includes

secondary storages, dirty indicators, and all the controllers.

We see that the module used to instrument bigger memory

blocks has smaller overhead since the overhead of a

controller is nearly constant while the overhead of the dirty

indicators and the secondary memory are proportional to the

size of the corresponding memory block that is instrumented.

Table III also lists the FPGA resources consumed by a CAC

and compression engines (i.e, CAC_32X1, CAC_64X1 and

CAC_128X1). CAC_32X1 includes a CAC, the cache

controller, the CAC Map and the dirty flags attached to

32-words secondary memory. CAC_64X1 and CAC_128X1

are named literally. The required resources do not increase

excessively when compared to a CAC.

Table III

FPGA area overhead of checkpointing and compression engine

 LUTs LUTs (modified) Slice Slices(modified)

BRAM36 0/1 200/2 0 72

RAM128X32S 100 434 (334%) 31 170

RAM64X32S 66 319 (383%) 21 112

RAM32X32S 16 177 (1006%) 4 57

RAM32X16S 8 119 (1387%) 2 54
CAC 320 - 87 -

CAC_32X1 457 - 138 -

CAC_64X1 476 - 147 -
CAC_128X1 484 - 144 -

Table IV

FPGA area of Weibel lung models

 LUTs Slices BRAM

we4_pe4 7317 2832 52
we4_pe4_D 7779(6%) 3132 52 (0%)

we4_pe4_DC 8408(15%) 3363 52 (0%)
we6_pe8 8769 3720 56

we6_pe8_D 9875(13%) 3841 56 (0%)

we6_pe8_DC 11235(28%) 4505 56 (0%)
we8_pe16 12963 4747 64

we8_pe16_D 14431(11%) 5459 64 (0%)

we8_pe16_DC 17621(36%) 6656 64 (0%)

Table V summarizes the resource overhead on different

generation Weibel lung models. weX_peY stands for the

X-generation lung model mapped to Y PEs. The suffix _D

refers to the version with instrumentation of checkpointing

mechanism. The suffix _DC refers to the version with

checkpointing mechanism and compression support. The

resource overhead is mostly LUTs and slices with minimal

BRAM requirements.

V. Conclusions

In this paper, we presented a transparent checkpointing

mechanism and an application-specific compression scheme,

targeting FPGA digital mockups of physical systems. We

proposed a Column Accessible Cache (CAC) to support the

compression scheme. We evaluated the size reduction of

checkpoints through distributed CACs and global CAC

(GCAC). We observed that a compression approach based

on GCAC works better than CACs. Statistically, both

schemes provide an additional compression rate of 5% to

20% using our proposed data differencing approach. Data

differencing combined with GCAC achieves 90% reduction

in the size of periodic checkpoints. We evaluated the

resource overhead of our checkpointing architecture using a

digital mockup of a human lung mapped to a Xilinx Virtex5

FPGA. We observed a reasonable 6% to 11% increase in the

FPGA area utilization. When compression support was

included, we observed a 15% to 36% resource overhead in

terms of FPGA area utilization. This additional overhead

may be justified in applications where transparent, high

frequency checkpointing is required.

Acknowledgements

This work was supported by the National Science

Foundation (1016789, 1136146).

References

[1] Michigan Instruments. Training and Test Lung (TTL) and PenuView

http://www.michiganinstruments.com/resp-ttl.htm, 2009.
[2] Drosdol, Johannes, F. Panik, “The Daimler-Benz Driving Simulator: A

Tool for Vehicle Development,” Society of Automotives Engineers, 1985.

[3] J. C. G. Pimental, Y. G. Tirat-Gefen, “Hardware Acceleration for Real
Time Simulation of Physiological Systems,” Engineering in Medicine and

Biology Society, 2006.

[4] Ashish Gholkar, Amitay Isaacs, Hemendra Arya, “Hardware-In-Loop
Simulator for Mini Aerial Vehicle,” Sixth Real-Time Linux Workshop, NTU,

Singapore, Nov. 3-5, 2004.
[5] B.M. Hanson, M.C. Levesley, K. Watterson, P.G. Walker,

“Hardware-in-the-loop-simulation of the cardiovascular system, with assist

device testing application,” Medical Engineering & Physics, Volume 29,
Issue 3, pp. 367-374, April 2007.

[6] Z. Jiang, M. Pajic, A. Connolly, S. Dixit, R. Mangharam, “Real-Time

Heart Model for Implantable Cardiac Device Validation and Verification,”
22nd Euromicro Conference on Real-Time Systems, pp. 239-248, 2010.

[7] B. Miller, F. Vahid, T. Givargis, “Digital Mockups for the Testing of a

Medical Ventilator,” in IHI, 2012.
[8] C. Huang, F. Vahid, T.Givargis, “A custom FPGA processor for physical

model differential equation solving,” Embedded Systems Letters, 2011.

[9] T. Wheeler, P. Graham, B. Nelson, B. Hutchings, “Using Design-Level
Scan to Improve FPGA Design Observability and Controllability for

Functional Verification,” in FCCM, 2001.

[10] P. Graham, B. Nelson, B. Hutchings, “Instrumenting bitstreams for
debugging FPGA circuits,” in FCCM, 2001.

[11] M. Yoshimi, Y. Osana, T. Fukushima, H. Amano, “Stochastic

simulation for biochemical reactions of FPGA,” in FPL, 2004.
[12] E. R. Weibel, Morphometry of the Human Lung. Berlin, Germany:

Springer-Verlag, 1963.

[13] L. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data
Compression,” IEEE Transactions on Information Theory, May 1977

[14] zlib: Compression library http://zlib.net/.

[15] S.T. Klein, T.C. Serebro, D. Shapira, “Modeling delta encoding of
compressed files,” in DCC, 2006.

http://zlib.net/

