
Embedding-Based Placement of Processing Element
Networks on FPGAs for Physical Model Simulation

Bailey Miller
Dept. of Computer Science

and Engineering
University of California, Riverside

bmiller@cs.ucr.edu

Frank Vahid
Dept. of Computer Science

and Engineering
University of California, Riverside

Also with CECS, UC Irvine
vahid@cs.ucr.edu

Tony Givargis
Center for Embedded Computer

Systems (CECS)
University of California, Irvine

givargis@uci.edu

ABSTRACT
Physical models utilize mathematical equations to model physical
systems like airway mechanics, neuron networks, or chemical
reactions. Previous work has shown that physical models can
execute fast on FPGAs (field-programmable gate arrays). We
introduce an approach for implementing physical models on
FPGAs that applies graph theoretic techniques to make use of a
physical model’s natural structure—tree, ring, chain, etc.—
resulting in model execution speedups. A first phase of the
approach maps physical model equations to a structured virtual
PE (processing element) graph using graph theoretic folding
techniques. A second phase maps the structured virtual PE graph
to physical PE regions on an FPGA using graph embedding
theory. We also present a simulated annealing approach with
custom cost and neighbor functions that can map any physical
model onto an FPGA with low wire costs. Average circuit
speedup improvements over previous works for various physical
models are 65% using the graph embedding and 35% using the
simulated annealing approach. Each approach’s more efficient use
of FPGA resources also enables larger models to be implemented
on an FPGA device.

Categories and Subject Descriptors
B.5.2 [Design Aids]: Automatic synthesis
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED
SYSTEMS]: Real-time and embedded systems

Keywords
Real-time emulation, field-programmable gate array (FPGA),
ordinary differential equations, physical models, cyber-physical
systems, differential equation synthesis, high-level synthesis,
system-level synthesis, processing elements, PE networks, graph
embedding, placement, simulated annealing, emulation

1. INTRODUCTION
Fast physical model simulations are required in various domains,
including biomedical engineering, physics, chemistry, and much
more. A physical model represents some observable physical
phenomena, usually as a set of normal, partial differential, or
ordinary differential equations. The set of equations can be solved
using time-stepping equation solvers.

In the cyber-physical system domain, previous work uses physical
models to interact with and test devices such as ventilators [16],
pacemakers [13], and unmanned aerial vehicles [9]. Using
physical model simulations for testing can be preferable over the
actual physical environment when such an environment is
difficult, expensive, or dangerous to create or use. Physical
models may also be more accurate than physical analogs, e.g., a
balloon may capture some of the behavior of a lung, but may not
be able to accurately model various lung diseases.

Our previous research has been able to speed up physical model
simulation up to three orders of magnitude versus multicore
desktop processors, by partitioning physical model computation
across hundreds of processing elements (PEs) on an FPGA [12],
each PE optimized to execute time-stepping equation solvers [11].

Many physical models share the same natural structure as the
corresponding physical system. For example, a Weibel lung
model [27] utilizes a binary tree structure because the lung
physiology itself is a tree in which the trachea is the root and
where gas exchange occurs at the leaves. Similarly, atrial cell
models utilize a three-dimensional mesh structure to simulate the
propagation of electrical signals across tissues of cardiac cells
[29]. Equations of the physical system are grouped naturally, e.g.,
the volume and pressure of a lung branch have data dependencies
and thus should ideally be placed within the same PE to minimize
communication costs. Generally, the natural structure of a
physical model provides an optimal grouping of equations that
minimizes communication costs.

A key contribution of this work is utilizing the natural structure of
simulated physical model during placement of a PE network onto
an FPGA. By using graph embedding techniques that have been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee
FPGA’13, February 11–13, 2013, Monterey, California, USA.
Copyright © 2013 ACM 978-1-4503-1887-7/13/02…$15.00.

Figure 1: Two-phase approach of mapping physical model
equations onto a structured graph of virtual PEs, and mapping
virtual PEs onto a FPGA utilizing graph embedding techniques.

Physical model
equations

Phase Two:
Mapping
virtual PEs
to physical
PEs

EqP2
EqV2

EqP4
EqV4

Physical placement
Structured virtual PE

graph

FPGA

Phase One:
Mapping
equations
to virtual
PEs

EqP1
EqV1

EqP1
EqV1

EqP2
EqV2

EqP3
EqV3

EqP4
EqV4

EqP7
EqV7

EqP2
EqV2

EqP3
EqV3

EqP4
EqV4

EqP7
EqV7

EqP5
EqV5

EqP6
EqV6EqP5

EqV5
EqP6
EqV6

Physical PE
region

 Virtual PE Placed
virtual PE

EqP1
EqV1

EqP3
EqV3

EqP6
EqV6

EqP5
EqV5

EqP7
EqV7

181

extensively researched in graph theory literature, the structure of
the physical model can be embedded onto a two-dimensional grid
of PE elements on an FPGA. By performing graph embeddings,
the resulting circuit incurs less communication cost and enables
higher circuit frequencies, translating to faster execution of
physical models. A secondary contribution is the definition of a
simulated annealing approach that provides cost and neighbor
functions for minimizing distances between PEs placed on a grid
of physical regions on a FPGA, used for unknown model
structures and also for evaluating the first contribution.

Figure 1 details a two-phase approach for embedding a physical
model onto an FPGA. The first phase maps the physical model
equations to a structured virtual PE graph. A structured virtual PE
graph has virtual PE nodes that contain groups of equations, have
connections to other virtual PE nodes, and is structured in the
form of the physical model. Physical placement can then be
performed by defining physical PE regions where virtual PEs may
be mapped, and then either applying the appropriate graph
embedding algorithm or using a general simulated annealing
approach to perform the mapping. In the right side of Figure 1, a
graph embedding algorithm maps a binary tree to a two-
dimensional grid by placing the root in a physical PE region in
middle of the grid, and expanding the child subtrees out in
different directions.

The rest of the paper is structured as follows. Section 2 describes
past work on accelerating physical models, as well as other
applications of graph embedding theory. Section 3 describes some
example physical models with specific structures. Section 4
describes the process of partitioning equations to virtual PEs.
Section 5 describes the mapping of virtual PEs to physical PE
regions, either by using a graph embedding or simulated annealing
approach. Section 6 discusses experiments showing circuit
frequency speedups when using different placement strategies.

2. RELATED WORK
Our past research efforts on fast execution of physical models on
FPGAs [11][12] have achieved orders of magnitude of
acceleration over executing on desktop processors and several
times speedups over graphical processing units, with
improvements even when considering time/dollar-cost. Speedup
was achieved by parallelization of differential equations across
hundreds of PEs, for complete applications and not just kernels.
FPGAs excel at executing physical models because the massively-
parallel local-neighbor communication of physical models
represents an excellent match for FPGA fabrics, avoiding
common memory or external input/output bottleneck problems.
An automated flow was presented that translates a specification of
the physical model into an equation dependency graph, partitions
equations into PEs via simulated annealing, schedules
computations and custom point-to-point communications, and
finally generates HDL for commercial tool synthesis. PEs may be
either generic computation units with an ALU and programmable
instructions, or a custom datapath targeted at a specific equation.

Recent work has shown additional speedups by creating
heterogeneous networks of general, programmable PEs, and PEs
with custom datapaths for solving specific equations [12]. de
Pimentel also utilized an FPGA to accelerate a heart model on an
FPGA [19], and interfaced the simulation with a pacemaker via
analog-digital converters. Tagkopoulos built a custom FPGA for
the simulation of gene regulatory networks [22].

While the above past efforts used heuristics to map equations to
PEs and have relied on commercial tools to place PEs, we propose
that a mapping of equations to PEs that maintains physical model
natural structure and performs placement based on the structure
can yield faster circuits and faster execution of physical models.

The problem of mapping algorithms with communication
structures that differ from the interconnection scheme of the host
architecture was first considered in the 1980s. Bokhari
summarized the issue and offered a heuristic for mapping
algorithm tasks to adjacent processors in a “finite element
machine” array processor [5]. Later, Berman and Snyder offered a
general solution for embedding common structures such as cubes,
meshes, linear arrays, and trees [3]. Much of that research has
been used in distributed and high-performance computing
domains for mapping tasks to processors to minimize
communication costs [4]. VLSI design has also utilized graph
embedding techniques, including minimizing communication
between a binary-tree structured processor network implemented
on an optimally sized square [23].

The general problem of placing logic into a programmable FPGA
fabric has previously been considered as a graph embedding
problem, as opposed to the typical approach of iterative heuristics
and recursive partitioning. Banerjee proposed converting netlists
into hypergraphs and embedding the hypergraphs onto the two-
dimensional grid of FPGA resources using a recursive space-
filling curve [2]. This approach can yield up to 2x faster runtimes
for placement, but yields little improvement to the critical path
delays needed for faster physical model simulations.
Gopalakrishnan proposed a new approach called CAPRI to create
an initial placement of a design based on the embedding of a
netlist into the target FPGA platform [10]. CAPRI models the
routing delays of the target FPGA platform in a metric space and
uses matrix projections to minimize distortion between graph
abstractions of the netlist and platform. These previous works
have focused on mapping to low-level FPGA resources like
CLBs, whereas our work focuses on the best placement of a
network of hundreds of individual PEs in abstracted FPGA
physical regions.

3. PHYSICAL MODEL STRUCTURES
Physical models often have a natural structure associated with a
corresponding layout in the physical world. Consider a human
lung, which begins at the trachea and splits into nearly identical
left and right lobes. Each lung contains more than twenty
additional splits as the airway passage diameters decrease and

Figure 2: Various physical models and graphs of their representative structures.

Weibel lung Atrial heart cells Neuron synapses Wave Hemodynamics

182

eventually are able to support blood-gas exchange alveoli. The
lung has thus often been modeled as a binary tree of twenty or
more generations such that gas flow at the trachea can be used to
compute the pressure and volume of internal branches [27].
Similarly, cell models that simulate electrical activity across heart
atrium walls utilize a three-dimensional mesh structure to allow
neighboring cells to propagate signals. Figure 2 shows some
examples of physical models and their corresponding structures,
which are described below.

Weibel lung: The classical binary tree shaped lung model, in
which an inlet flow at the root of the tree is used to compute
volume and pressure at lower branches [27]. Each node of the tree
computes the volume V and flow F of the corresponding branch:

6_5_43

21

CVCVCFCV
dt

dF

FCVCF
dt

dV

childLchildRii
i

iiparent
i

Atrial heart cells: A 3-dimensional mesh of cells, where each cell
propagates signals to its neighbors [29]. vi is the membrane
potential of cell i and is computed by the following equation.

3232121211))((ccvcvvvvvvc
dt

dv
izzyyxx

i

Neuron synapses: A 1-dimensional array of cells that simulates
the firing of neuron synapses. s is the synaptic variable, v is the
membrane potential, and w is a channel gating variable [21].

iii
i

ii
i

iiiii
i

sccvsc
dt

ds

vwc
dt

dw

sscvcwvc
dt

dv

321

1

11321

)()1(

)()(

Wave: A wave model has a two-dimensional mesh network
structure and is often used to model the propagation of sound,
acoustics, etc [17]. The amplitude of the signal at node i is given
by:

iyyxx
i ucuuuuc

dt

du
 221211)(

Hemodynamics: A model that simulates the circulation of the
human body, and includes submodels for the left/right heart
ventricle and pulmonary/systemic tissues [25]. The hemodynamic
model is arranged in a circular structure. Since there are many
different types of equations to model this system, we omit the
detailed descriptions here.

Large physical models such as those described above can be
partitioned to hundreds of PEs in a network to achieve very fast
simulation speeds. By maintaining the structure associated with
the physical model during physical placement of PEs onto an
FPGA, the routing overhead between PEs can be minimized. The
natural structure of a physical model typically uses an optimally
minimal number and length of wires, because only local
communication between cells, lung branches, etc. is required.

Previous work in physical model simulation attempted to recover
the physical model structure via heuristic annealing algorithms,
after having converted the specification of the physical model's
equations to an equation dependency graph [11]. However,
finding the globally optimal solution for physical models
containing thousands of equations and hundreds of PEs is not
feasible with this approach. Instead of attempting to recover
structures with heuristics, we propose to preserve the connections
as they were modeled so as to minimize communication cost.

4. PHASE 1: MAPPING EQUATIONS TO
VIRTUAL PEs
Given the specification of a physical model that enumerates the
physical model equations, a map must be built that groups
equations into a structured virtual PE graph G that maintains the
structure of the physical model. Equations must first be
partitioned to a structured virtual PE graph of unconstrained size.
Second, the graph must be reduced in size via folding to fit into
available resources of the target platform. The target platform,
which is typically an FPGA but could be an ASIC, is the device
that the circuit will be placed on. There are limited resources on
the target platform, thus folding is necessary for physical models
whose structured virtual PE graphs exceed the size of the target
platform.

4.1 Partitioning equations
Let G=(v,e), where v={v1,v2…,vn} is a set of n vertices and
e={e1,e2,…,ek} is a set of k edges between vertices in v. Let
E={E1,E2,...,Em} be the set of equations defined in the
specification of the physical model. The set of vertices v represent
virtual PEs, which may have equations from E allocated to them.
The set of edges e represent communication channels between
virtual PEs. If an edge ei=(v,u) exists, then there exists
dependencies between the equations hosted in v and u. The graph
G and its nodes and edges are defined by the structure of the
physical model; a three-level binary-tree shaped Weibel lung
model thus would have a graph that contains:

Gv={v1,v2,v3,v4,v5,v6,v7}

Ge={(v1,v2),(v1,v3),(v2,4),(v2,v5),(v3,v6),(v3,v7)})

Each equation Ei can be allocated to a vertex vi in G according to
a surjective mapping function f : EGv. The function f depends
on the structure of G, and maps groups of equations that represent
the same physical element, e.g., a lung branch or atrial cell, to a
single vertex. The result of applying the map function f to each
equation yields a structured virtual PE graph G which maintains
the basic structure of the physical model, and where each vertex
(virtual PE) contains equations that represent some physical
element of the physical model.

4.2 Folding
A physical model may be very large – a Weibel model with 11
generations contains 4000 differential equations. In order to meet
the physical constraints of using a real platform when mapping
virtual PEs to physical PEs, the virtual PE graph G must first be
scaled down. We perform graph folding on G by applying a
homomorphic folding function φ that maps the larger graph to a
smaller, more compact version G’ while preserving the structure
of G. In particular, φ maps G to G’, where the size n of the vertex
set of G’ is less than or equal to the number of supportable PEs in
the target platform S; φ : GG’ | G’n < S. φ must also maintain
the topology of G in G’ by either maintaining an existing edge of

183

G in G’, or by merging the equations of vertex a ∈ G into vertex b

∈ G' such that the length of any edge connected to the merged
vertices is constant. Informally, structures that are symmetric can
generally be folded by cutting the graph into two subgraphs, and
merging vertices that share the same position in each subgraph.
Folding of graphs has been previously explored in graph theory
literature [1][7][26]. Aleliunas [1] and Ellis [7] utilized folding
techniques in order reduce the aspect ratio of rectangular graphs
into forms that could be embedded onto a two-dimensional grid.
Other work has developed algorithms for folding strongly
balanced hypertrees in order to embed them into hypercube
structures [26].

The exact definition of φ depends on the physical model structure.
Different physical models can reuse the same folding functions as
long as their structures match, thus a folding function for each
structure type must be identified. A potential pitfall of folding is
that structured virtual PE graph sizes tended to be reduced by
halves, potentially creating a situation where almost half of the
physical PE regions of the target platform are empty. One solution
is to simply manually merge the final few virtual PEs if the size
constraint of the target platform is only slightly less than the size
of the structured virtual PE graph. The following section provides
examples that target binary tree physical models, describing the
mapping function f and folding function φ which result in the
generation of a structured virtual PE graph.

4.3 Lung model example
A small Weibel lung model with three generations of bifurcating
airways is structured as a binary tree with 23-1 = 7 branches, or
fourteen interdependent differential equations for computing the
pressure and volume of each branch. Let the set of equations E in
the specification of the physical model be ordered such that the
first l equations compute the volume and pressure of the root
node, the next l equations compute the left child of the root,
followed by l equations for the right child of the root, and so on.
Equations can thus be initially partitioned to vertices in G via f(ei)
= i / l. The left side of Figure 3(a) shows a representative
structured PE graph, where EqNx represents the equations
allocated to each node.

Consider if the target platform for the three-generation Weibel
lung model is an FPGA that contains only enough resources for
three PEs. Since each vertex in the graph represents a virtual PE
that must eventually be physically placed, an excess of four PEs
will not fit into the device. The graph can be folded as shown in
the right side of Figure 3(a), by merging nodes in such a way as to
maintain the graph structure. Let TR be the root of the graph G,
and T1 and T2 be the subtrees whose roots are the left and right
children of TR, respectively. We fold T2 into T1 by traversing
down each subtree simultaneously, and moving any equations
within the current node of T2 into the equivalent node of T1. The
root node TR is also merged into the root node of T1, otherwise TR

would contain only a single child. This method maintains the
adjacency of vertices in T2 within T1, as long as each subtree is
symmetrical. Non-symmetrical structures can still be folded
imperfectly by merging the vertices in T2 that have no
corresponding vertex in T1 such that a minimum of additional
edge length is required.

5. PHASE 2: MAPPING VIRTUAL PEs TO
PHYSICAL PEs
Once a structured graph of virtual PEs has been created, each
virtual PE must be mapped to a physical location on the target
platform. This mapping must consider both the average and
maximum distances between PEs to reduce congestion and critical
paths introduced via inter-PE communication channels. The
simple solution to this problem is to let a commercial synthesis
tool flatten the design hierarchy, and run heuristic algorithms to
select an appropriate placement. However, a circuit that contains
hundreds of PEs is sufficiently complex such that modern tools
cannot find good solutions without having additional constraints
specified. Our approach defines a two-dimensional grid of
physical PE regions on a target FPGA platform. Each physical PE
region in the grid contains just enough resources to implement a
single PE. Physical PE regions are defined at specific locations to
create a two-dimensional grid that can be addressed using a XY
Cartesian coordinate system. Whether or not the physical PE
region actually contains a physical PE depends on the subsequent
mapping. Virtual PEs can be mapped to physical PE regions on
the grid using either structure-specific graph embedding
techniques that place a guest graph into a host graph
algorithmically, or by a generic simulated annealing approach
with custom cost functions to reduce wire length.

5.1 FPGA platform two-dimensional grid
When performing place and route operations on large PE
networks using commercial tools (Xilinx ISE 13.4) and a flattened
netlist, we noticed that the critical path most often manifests
between memories or logic components that belong to the same
PE. Each PE in our design requires two memories (BRAMs), one
multiplier (DSP), and approximately 250 lookup-tables (LUTs).
We expected that communication channels between different PEs
would be the primary cause of delay. Because of the complexity
of large PE networks, the tools are not able to always place
components of the same PE nearby each other. This problem can
be addressed via the use of placement constraints during synthesis
and place and route.

We first utilize Relationally Placed Macros (RPMs) to establish
relative distances between PE memories. RPMs have been shown
to provide faster circuit designs, even with modern tools [20]. On
Xilinx FPGAs, a Cartesian coordinate system is used to specify
the locations of components like DSPs and BRAMs (Figure 4).
BRAM and DSP modules are physically located in homogeneous

Figure 3: Contraction of the PE dependency graph by
folding: (a) binary tree (b) 3-dimensional mesh.

EqN1
EqN2
EqN3

EqN4
EqN6

EqN5
EqN7

EqN1

EqN2 EqN3

EqN4 EqN5 EqN6 EqN7

(a)

(b)

T2 T1

TR

184

columns that stretch the height of the FPGA. We create an RPM
for a PE using the Xilinx RLOC constraint by specifying that the
offset between its instruction and data memories should be X=0,
Y=1, and that the offset between the instruction memory and the
DSP should be exactly X=-4, Y=0. The RPM thus ensures that PE
memories are placed in neighboring BRAMs within the same
BRAM column, and that the related DSP module is in the closest
available location in a neighboring DSP column.

RPMs are useful for ensuring the close locality of BRAM and
DSP modules that belong to the same PE, but we still must
constrain each PE to specific physical PE regions on the target
platform. We utilize the Xilinx AREA_GROUP constraint during
place and route to place PEs into physical PE regions. A selection
of physical components of the FPGA (BRAM, DSPs, and slices)
is first grouped into a pblock. We use the Xilinx PlanAhead tool
to manually create pblocks in a grid structure. Each Pblock
contains enough resources for a PE: two BRAMs, multiple DSPs,
and more than 300 LUTs. The PEs in the design netlist can then
be constrained via the AREA_GROUP constraint to a specific
pblock region. The use of pblocks not only designates an exact
location to place a PE, but also helps the place and route tools by
requiring that the components in a PE hierarchy be placed within
the pblock area. Since the area of the pblock is roughly what is
required of a PE, the resulting PE implementation is densely
packed and optimized. The use of placement constraints helps to
shift the circuit critical path from internal PE connections to PE
network communication channels.

We target a Xilinx XC6VSX475T. The Virtex6 platform contains
approximately 297K LUTs, 2K DSP units, and 1K Block RAM
(36KB each) memories. The grid size that can be constructed is
14x39, yielding a maximum of 504 PEs. For the vast majority of
physical models, 500 PEs is sufficient for much faster than real-
time simulation speeds. We note that our approach is not limited
to one specific tool, platform or vendor; all FPGAs consist of a
regular, reconfigurable fabric and most vendors allow blocks of
resources to be grouped to create uniform structures. We consider
only the specifically denoted FPGA and vendor (Xilinx) above to
ease the discussion.

5.2 Graph embedding based placement
Physical models that exhibit common structures are able to take
advantage of graph embedding techniques during physical
placement. Graph embedding is the process of mapping a guest

graph of architecture g onto a host graph of a different
architecture h. Graph embedding has studied for at least 30 years
by mathematical theorists, and many optimal solutions have been
found for the embedding of structures like trees and meshes onto
grids and hypercubes [6][15][24]. The typical metric that graph
embedding algorithms are evaluated by is maximum dilation, or
the maximum number of nodes that a wire may need to pass
through to be completed. Since in physical model-solving PE
networks the communication channels are point-to-point between
PEs, the dilation is always exactly one. We thus alter the metric’s
definition slightly to be the maximum wire length between any
two PEs. A second important metric is the average dilation, or the
average wire length of all communication channels in the circuit.

By taking advantage of the research on graph embedding
techniques to map virtual PEs to physical PEs on the target
platform, the resulting physical placement can achieve smaller
maximum and average dilation in the circuit. Smaller maximum
dilation implies a reduction in the critical path, since once a PE
has been constrained using RPMs and pblocks the longest wires
for any complex network is typically connected between different
PEs (as opposed to internal PE connections). Lower average
dilation means that less routing resources will be required, which
typically results in faster circuits [28]. In the next sections, we
first define the graph embedding problem. We then show how to
utilize a graph embedding technique called H-tree construction to
embed a binary tree structured physical model into a 2D grid of
PEs.

5.2.1 Graph embedding
The graph embedding problem relates to the general mapping
problem [3], where computational tasks must be placed onto a
host architecture such that communication between PEs is
minimized. Let GT = (VT,ET) be the guest graph, where GT is the
structured virtual PE graph (see section 4). Let GH = (VH,EH),
where GH is a graph that represents the physical PE layout. VH is a
set of all the physical PE regions, and EH is initially empty
because no connections exist until virtual PEs are placed. An
embedding of GT onto GH is a result of applying an injective
mapping function ψV : VT → VH to every vertex in GT. Once the
vertex mapping has been completed and a placement is created,
then an additional mapping ψE : ET → EH can be inferred

automatically by creating an edge e = (u,v) ∈ EH for every edge p

= (l,k) ∈ ET where ψV
-1(l) = u and ψV

-1(k) = v.

The quality of the graph embedding is denoted by the average and
maximum dilation of the result of applying ψV and ψE. Since
dilation in the context of PE networks on FPGAs with point-to-
point communication is wire length, we use a basic Euclidean
distance measure D = sqrt((y2-y1)2 + (x2-x1)2). While possible
to measure dilation using specific FPGA routing architecture
characteristics [10], at a macro level the simple distance between
physical grid locations will suffice.

5.2.2 Example: Binary tree embedding onto 2D grid
Embedded binary trees onto two-dimensional grids is a
thoroughly researched area [6][14][24]. It has been proven that the
graph embedding of a binary tree onto optimally-sized square
grids have an O(sqrt(n)) maximum dilation, where n is the
number of generations of the tree. We utilize the H-tree
construction technique that is used in VLSI for the layout of tree
architectures onto optimally sized square hosts [23][30]. H-tree
construction creates an H-fractal tree shaped liked that of Figure
5, where each subsequent branch of the tree alternates between

Figure 4: A 4x4 grid of physical PEs on a FPGA. Physical PEs
are constrained to specific areas using pblocks.

DSP
column

BRAM
column

x

y
FPGA

(0,0) (1,0) (2,0) (3,0)

(0,3) (1,3) (2,3)

BRAMs/DSP

Relationally
Placed Macro
(RPM)

= pblock

185

horizontal and vertical tracks and wire length is halved. This
process is done by splitting the graph recursively into four
subtrees until leaf nodes can be placed. Where each split occurs, a
track is used to host the root of the split and its two children,
which are the roots of the actual 4 subtrees. In Figure 5, the tree is
labeled by breadth-first ordering, such that the root is ‘0’, the left
child is ‘1’, the right child is ‘2’, and so on. Leaf nodes are not
labeled for figure clarity. The thick dashed boxes represent the
subtrees of the first recursive split; the row of vertices ‘0’, ’1’, and
‘2’ have a horizontal track allocated to them. The thin dashed
boxes represent the subtrees created by a second recursive split of
each of the first four subtrees. Additional horizontal tracks are
added for the three relevant parent nodes of each split subtree.
Following the second split, leaf nodes can be placed nearby their
parents.

For optimally-sized square grids, the method demonstrated in
Figure 5 produces optimal results (in terms of dilation). However,
for rectangular-shaped grids such as the 14x39 PE grid available
on our target FPGA, H-tree construction can not be immediately
applied without some modifications. For example, the number of
vertical tracks required for a 7-generation tree using the H-tree
method is 31, or more than twice the number of available columns
in the FPGA PE grid. We can take advantage of the fact that our
FPGA can route wires between PEs diagonally, as opposed to the
strict row-column ordering of previous H-tree considerations [14].
Also, since the width of the target is the limiting factor to the
number of possible recursive splits, it’s not possible to maintain
the nice H-fractal shape of the graph embedding in a rectangular
grid. We therefore define a base case for the bottom k-generations
of a tree that can no longer maintain H-fractal shape, such that an
optimal placement of lower generations and leaf nodes can be
completed.

To embed the tree, we first perform placement via recursive splits
down to the leaves of the tree, than perform compaction and
reordering of rows to further minimize maximum wire length.

1. Separate the grid into 4 quadrants to host the initial split
of the tree.

2. Place the root node M0 and its children L0, R0 in the center
row of the grid. M0 is placed in a column in the center of
the grid. L0 and R0 are placed in a middle column of the
neighboring upper and lower quadrants

3. Place each child of L0 and R0 onto the same vertical track
as its parent, and onto the center row of a quadrant
(Figure 6a).

4. Recursively split each subtree by placing the children of
the subtree’s root on the same row, and allocating
additional rows to host new subtrees (Figure 6b).

5. At generation N-1, utilize a known placement to place the
final levels (non-fractal shape).

The process described in the steps above can be seen in Figure 6.
The binary tree is split into four subtrees and assigned to a
quadrant of the grid. The blue lines mark connections between
physical PE regions that contain a mapped virtual PE, which are
marked with blue dots. The graph embedding follows the H-tree
fractal shape design until the grid becomes too narrow to maintain
the shape when placing the final two generations of the tree. At
that point, a base case known placement is utilized to place the
remaining virtual PEs into physical PE regions with minimal wire
lengths. Note that rows four and ten contain no mapped virtual
PEs, which unnecessarily inflates the maximum wire length. A
simple greedy algorithm can be used to compact the graph
embedding by moving the row with the longest wire until no
improvement can be made.

5.3 Simulated annealing based placement
This section provides a general method for mapping a structured
virtual PE graph to physical PEs by using a simulated annealing
approach. Such a general method can be useful when a physical
model has no obvious structure for which a graph embedding
algorithm could be used, such as an unbalanced or asymmetrical
tree [8]. Simulated annealing also yields useful comparisons to the
graph embedding approach by providing reasonable PE
placements. We define a cost function that considers FPGA
architectural features, critical path length, and wire congestion; it
is shown experimentally that our cost function correlates linearly

Figure 5: Six level binary-tree placed on a square 2-dimensional
mesh. Dashed boxes indicate recursive splits into subtrees.

Figure 6: Embedding 7-level binary tree into a rectangular 2D
grid: (a) Initial split of 4 subtrees (not to scale), (b) Two

additional recursive splits. White rows host root and children
of a split branch. For clarity, not all branches are shown.

0 1 2

3

4

5

6

7 8

9 10

11 12

13 14

M0

R0 L0

M1

R1L1

M2

R2L2

M2

R2L2

t2 t3 t4

lL2 lL2 lR2 lR2

M0

R0 L0

t1 t2 t3 t4

L0

M1 L1 R1

M2

M2 L2
R2

R2

L2

lR2 lR2

lR2 lR2

lL2

lL2

lL2

lL2

M2

M2

0 1 2 3
0
1

2
3

4
5

7
6

10

9
8

11

(a)

(b)

t1

t2

t3

t4

FPGAPhysical PE
regions

Placed
virtual PE

Generations
6,7 base case

R0 M0L0

186

with resulting circuit frequency. We also present a neighbor
function that swaps PEs using vectors based on the placement of
connected PEs. Our neighbor function provides faster
convergence and results in lower cost placements than performing
random swaps of PEs.

5.3.1 Cost function
The cost function of the simulated annealing based placement
approach is defined as:

Cost = w1*Sum + w2*Max + w3*Gaps

Sum is the total of all the wire lengths in the design. By
minimizing the sum of the wire lengths, the wire congestion in the
design is reduced, which impacts critical path timing less. Max is
the maximum wire length in the design. Minimizing Max is the
key goal during simulated annealing, because it will likely
represent the critical path in the circuit. Gaps is the number of
wires that cross an area on the FPGA that must be routed through
or around. For example, on most Xilinx Virtex 6 chips there is a
large gap in the middle for monitoring or programming
components and where user design logic can not be placed (see
Figure 11). Wires through such gaps incur extra routing delays
and thus we strive to reduce the amount of those types of
connections. The constants w1, w2¸ and w3 are weighting
coefficients that can be used as tuning knobs for the algorithm.
Typical values of w1, w2, and w3 are 0.1, 10, and 1 respectively.
w2 is the most critical parameter, and should be selected based on
the total number of wires in the design. If there are many wires,
the w1*Sum factor may be very high, and the maximum wire
length Max factor may not contribute much to the cost of the
current solution – in such cases w2 should be increased to offset
this effect. Figure 7 shows a linear regression representing how
the cost function relates to the resulting circuit frequency of a PE
network placed using simulated annealing.

5.3.2 Neighbor function
The neighbor function in a simulated annealing algorithm moves
the current state of the design in order to explore the solution
space of the problem. The neighbor function presented here
attempts to cluster connected PEs together, hopefully reducing
wire lengths in the process. A random physical PE region P1 that
contains a mapped virtual PE V is first selected to be moved. Each
connection e = (P1,Pp) in V is evaluated, where Pp is the physical
PE region of the virtual PE connected to V. A vector v = (r,θ) is
built such that r = sqrt(dx2 + dy2) and θ = tan-1(dy/dx), where dx
and dy are the differences in the x and y coordinates between P1
and Pp. An average of all the connection vectors yields a target

vector that identifies a physical PE region that would reduce the
average wire length of the connections to the PE if the virtual PE
were placed there. If the target physical PE region does not have a
virtual PE mapped, than the virtual PE is moved onto the target
physical PE region. If the target physical PE region does have a
virtual PE mapped, than an evaluation of the target physical PE
region and each of its neighbors in the grid takes place to
determine the best candidate for a swap. The target physical PE
region and its neighbors have their connections’ vectors averaged
in turn. The region that has an average connection vector endpoint
closest to P1 is selected to be swapped. If any of the neighbors do
not contain mapped virtual PEs, than the empty neighbor is
automatically selected to be swapped. Figure 8 shows how the
neighbor function works. A random PE P1 is first selected. An
average of the two connections of P1, e1 and e2, yields a target
vector that denotes an area of the platform where P1 should be
placed to minimize the wire lengths of e1 and e2. Each candidate
physical PE region in the area has its connections averaged
(Figure 8b). The candidate physical PE region that has an average
connection vector closest to P1 is in the top left, thus a swap
would occur with the top left PE (P2) and P1.

Figure 9 shows the convergence of the design cost towards a final
solution for 50K iterations of the simulated annealing algorithm
while implementing a neuron model utilizing 256 PEs. Using our
custom neighbor function, the resulting cost is 50% less than
given by the random alternative.

Figure 7: Simulated annealing cost function correlates with
resulting circuit frequency. A variety of different physical

models are represented.

Figure 8: The neighbor function picks two PEs (P1,P2) by
randomly selecting P1, (a) finding candidates for P2 by

averaging P1’s connections (e1, e2), and (b) picking P2 based
on the distance between P1 and a candidate's average

connection vector endpoint.

Figure 9: Convergence of custom neighbor function compared
to random swaps.

P2

Target vector

e1

Best candidate to
swap with P1

Candidates to
swap with P1

P1 e2

Randomly
selected PE

P1

Average connection
vectors of swap
candidates

(a) (b)

Cost function correla tion

R2 = 0.80

0

50

100

150

200

250

300

0 200 400 600 800
Cost

F
re

qu
en

cy
 (M

H
z)

Convergence analysis

0

500

1000

1500

2000

2500

0 10000 20000 30000 40000 50000

Iteration #

C
ur

re
nt

 c
os

t

Custom neighbor Random neighbor

187

5.3.3 Annealing temperature schedule
The cooling schedule used during simulated annealing can cause
dramatic differences in the obtained solution [18]. To verify that
we chose the correct schedule for this problem, we have
experimented with linear, geometric, and exponential type cooling
schedule functions. We found that both linear and geometric
schedules produce a solution with a similar cost for a given
physical model, while the exponential schedule (α = 0.99) yields a
solution that is highly dependent on the initial random placement
and does not generally produce a good result. This is due to the
quickly decaying nature of the exponential function, which makes
it difficult to escape local minima in the solution space. All
experiments in this paper utilize a geometric cooling schedule.

6. EXPERIMENTS
To evaluate graph embedding as a technique for accelerating
physical model simulations on FPGAs, we implemented a number
of physical models of varying size on a Xilinx XC6VSX475T-
2ff1156 FPGA. The physical models include a Weibel lung that is
structured as a binary tree, a one-dimensional neuron array, and a
two-dimensional grid of neurons. Each physical model is
implemented using both 256 and 500 PEs. We use Xilinx ISE
13.4 software to synthesize and implement VHDL descriptions of
the PE networks for all experiments, with flags ‘-ol high’ and ‘-xe
normal’ to encourage the tool to work hard at achieving timing
closure. Note that to implement the 11-generation Weibel model,
we use 500 physical PEs. Recall that the target platform is
constrained to 504 physical PEs. We fold the Weibel model to a
structured virtual PE graph of 512 nodes, and then manually
merge a few of the leafs until the size constraint is met. The
alternative is to continue folding the structured virtual PE graph
until the size constraint is met, which would result in 256 virtual
PEs and almost 50% of the available resources unutilized.

For each physical model, we implemented three methods of
placement for the PE networks. The first method utilizes the
compiler from previous work [11] to partition the physical model
equations to PEs and generate a custom communication network.
No constraints are used to map the PEs to specific physical PE
regions; we rely on the Xilinx tools to place and route PEs onto
the target platform. The second method first creates a structured
graph of virtual PEs, folds it to fit FPGA platform constraints, and
then utilizes the simulated annealing approach of section 5.3 to
map virtual PEs to physical regions. For the simulated annealing
algorithm in all cases we utilize a geometric cooling schedule, and

let the algorithm run for 50K iterations to reach a steady state. The
weighting constants (w1,w2,w3) are (0.08,10,1). The third method
creates a structured virtual PE graph of the physical model, folds
it to fit the FPGA target platform size constraint, and then uses a
graph embedding algorithm specific to the selected physical
model. The Weibel model uses a H-tree graph embedding as
described previously. The one-dimensional neuron model is a
linear array of 6400 neurons, thus the graph embedding that is
used places PEs into rows and connects the rows at the edges to
form a Hamiltonian path amongst all PEs. The two-dimensional
neuron model consists of a two-dimensional 64x64 mesh of
neurons, where each neuron is connected to at most 4 neighbors.
The graph embedding for the two-dimensional neuron model is a
direct mapping onto the two-dimensional grid of FPGA physical
regions, after folding the original physical model.

6.1 Results
Figure 10 shows the resulting circuit frequencies of implementing
PE networks on an FPGA with the above three techniques. The
'NoPhys_XlnxPlcmt' columns do not use physical placement
constraints. 'Phys_SimAnnlPlcmt' columns use simulated
annealing to map virtual PEs to physical PE regions.
'Phys_EmbedPlcmt' uses an embedding approach appropriate to
the implemented model. For the same model, all three approaches
use the same RTL description of the circuit. The graph embedding
approach is almost always able to produce a circuit that tops 300
MHz. The ceiling for the circuit frequency in a PE network is
approximately 310 MHz for the selected platform. The ceiling can
be determined by implementing a circuit with a single PE and
evaluating the critical path of the internal datapath. It is not
possible for a network of PEs to go faster than the ceiling, and any
decrease in performance can be attributed to critical paths
introduced by inter-PE connections. The graph embedding
approach is typically able to minimize the critical path length and
thus provide placements that allow the circuit to approach the
frequency ceiling. The only embedding example that could not
reach the ceiling of 310 MHz is the 11-generation Weibel lung
model using 500 PEs. Because the two-dimensional grid of the
physical PE regions is narrow, an optimal embedding of the tree
cannot occur. Wire lengths between successive generations are
much longer, resulting in longer critical path delays.

Some data points of the method using no physical placement
constraints are marked 'N/A'. This indicates that the Xilinx tools
were not able to place and route the design due to high

Figure 10: Frequencies of PE network implementations simulating a Weibel lung and 1D/2D neuron networks. Each PE network
was placed with (i) no physical region constraints, (ii) physical regions selected by simulated annealing, and (iii) physical regions

selected by embedding the model structure onto the FPGA grid. Points marked ‘N/A’ could not be routed because of high
complexity. (i), (ii), and (iii) all use the same RTL description during synthesis, but (ii) and (iii) use region constraints.

0

100

200

300

400

w eibel9gen_256pe w eibel11gen_500pe nueron1d_256pe nueron1d_500pe nueron2d_256pe nueron2d_500pe

F
re

q
u

e
n

cy
 (

M
H

z)

NoPhys_XlnxPlcmt Phys_SimAnnlPlcmt Phys_EmbedPlcmt

 N/A

188

congestion. The compiler that partitioned the equations and
created the communication network could not adequately reduce
the data dependencies between PEs for these large physical
models, resulting in an overwhelming number of wires in the
network. Note that the designs are routable if we use either a
simulated annealing or graph embedding approach, which
indicates that graph embedding or a simulating annealing
approach enable implementation of physical models on an FPGA
that previously could not be implemented on the FPGA.

6.2 A look inside the FPGA
Figure 11 shows a graphical depiction of the placement of the first
few generations of a nine generation Weibel model on 256 PEs, as
captured by the Xilinx PlanAhead tool. An overlay of nodes and
connections shows where virtual PEs have been mapped onto the
FPGA. Figure 11(a) shows how Xilinx ISE implements the PE
network in the absence of additional constraints that map to
specific physical regions. Due to the complexity of the circuit, the
resources of a single PE can be spread over a wide area, thus we
have marked only the approximate central location of the first four
generations of the left subtree of the graph. Note that if we do not
specify placement constraints, the tool places PEs at non-optimal
locations such that the wire distances between PEs can be very
long. For example, the wires between node two and its children
five and six span more than halfway across the entire design.

Figure 11(b) depicts a typical result of using the simulated
annealing algorithm. Each black block indicates where a virtual
PE was mapped to a physical PE location. An empty space in the
grid means that no virtual PE was mapped to the grid at that
physical region. The effect of the simulated annealing algorithm
can be seen by evaluating the placement of the virtual PEs onto
the grid. Nodes that share connections tend to be grouped
together, while overall the tree tends to expand outward from the
center of the grid. Leaf nodes are grouped towards the outside of
the grid. Figure 11(c) shows an embedding of the tree onto the
host grid using the graph embedding approach. Recall that the
center of many common (Xilinx) FPGAs contains immutable

logic, and thus minimization of the routing across the center is
desired. The embedding requires only a single wire across the gap,
at the second generation of the tree.

We also measured the static and dynamic power of each case
using the Xilinx XPower Analyzer. The unconstrained placement
uses approximately 20% less power on average than both the
simulated annealing and embedding constrained placement
approaches.

7. CONCLUSION
We presented an approach for fast physical model simulation on
FPGAs that makes use of the physical model's structure to
improve performance. The approach's first phase maps physical
model equations to a structured virtual PE graph and groups
related equations. The approach's second phase maps the
structured virtual PE graph to a two-dimensional grid of FPGA
physical regions by using either a graph embedding or simulated
annealing technique. The graph embedding and simulated
annealing techniques provide 65% and 35% average increases in
circuit frequencies, respectively, compared to placements that do
not map to specific physical regions.

8. ACKNOWLEDGEMENTS
This work was supported in part by the National Science
Foundation (CNS1016792, CPS1136146), the Semiconductor
Research Corporation (GRC 2143.001), and a U.S. Department of
Education GAANN fellowship.

9. REFERENCES
[1] Aleliunas, R., and Rosenberg, A.L. 1982. On Embedding

Rectangular Grids in Square Grids. Computers, IEEE
Transactions on , vol.C-31, no.9, pp.907-913, Sept. 1982.

[2] Banerjee, P., Sur-Kolay, S., Bishnu, A., Das, S., Nandy, and
S.C., Bhattacharjee, S. 2009. FPGA placement using space-
filling curves: Theory meets practice. ACM Trans. Embed.
Comput. Syst. vol. 9, no. 2, Oct. 2009.

Figure 11: Different placements of a 256 PE Weibel lung model. The virtual PEs of the physical model are labeled in breadth-first
order, where 0 is the root. Dark nodes are closer to the root. (a) Unconstrained placement of PEs performed by Xilinx tools. (b)

PEs mapped to physical PE regions by simulated annealing. (c) PEs mapped to physical PE regions via a graph embedding
algorithm. Empty (lighter) space in the circuits could be used to implement other logic, such as tracing or debug support.

(a) (b) (c)

0 1

5

23

24 26

25

13 14

3 7

15

16 18

17

10

19

20 22

21 27

28 30

29

4

11

2

9

12

6

8

2

3

4

5

6
7

8

9 10

0

1

0

1

4

5

7

8

10

12

16

15

17
18

20
19 21

22

23 24

25
26

9

11

29

27

28

30
14

6
13

23

189

[3] Berman, F., and Snyder, L. 1987. On mapping parallel
algorithms into parallel architectures, Journal of Parallel and
Distributed Computing, vol. 4, no.5, Oct. 1987, pp 439-458.

[4] Bhatelé, A., and Kalé, L.V. 2008. Benefits of Topology
Aware Mapping for Mesh Interconnects. Parallel Processing
Letters, vol.18, no.4, pp.549-566, 2008.

[5] Bokhari, S.H. 1981. On the Mapping Problem. Computers,
IEEE Transactions on , vol.C-30, no.3, pp. 207-214, March
1981.

[6] Chen, W.K., and Stallmann, M. 1995. On embedding binary
trees into hypercubes. J. Parallel Distrib. Comput. 24, 2
(February 1995), 132-138.

[7] Ellis, J.A. 1991. Embedding Rectangular Grids Into Square
Grids. IEEE Transactions on Computers, pp. 46-52, Jan.
1991.

[8] Gabryś, E., Rybaczuk, M.,and Kędzia, A. 2005. Fractal
models of circulatory system. Symmetrical and asymmetrical
approach comparison, Chaos, Solitons Fractals, vol. 24, no.
3, May 2005, pp 707-715.

[9] Gholkar, A., Isaacs, A., and Arya, H. 2004. Hardware-In-
Loop Simulator for Mini Aerial Vehicle, Sixth Real- Time
Linux Workshop, NTU, Singapore, Nov. 2004.

[10] Gopalakrishnan, P., Li, X., and Pileggi, L. 2006.
Architecture-aware FPGA placement using metric
embedding. In Proceedings of the 43rd annual Design
Automation Conference (DAC '06). ACM, New York, NY,
USA, pp. 460-465.

[11] Huang, C., Vahid, F., and Givargis, T. 2011. A Custom
FPGA Processor for Physical Model Ordinary Differential
Equation Solving. Embedded Systems Letters, IEEE , vol.3,
no.4, pp.113-116, Dec. 2011.

[12] Huang, C., Miller, B., Vahid, F., and Givargis, T. 2012.
Synthesis of custom networks of heterogeneous processing
elements for complex physical system emulation. In
Proceedings of the eighth IEEE/ACM/IFIP international
conference on Hardware/software codesign and system
synthesis (CODES+ISSS '12). ACM, New York, NY, USA,
pp. 215-224.

[13] Jiang, Z., Pajic, M., and Mangharam, R. 2011. Model-Based
Closed-Loop Testing of Implantable Pacemakers. Cyber-
Physical Systems (ICCPS), 2011 IEEE/ACM International
Conference on, pp.131-140, April 2011.

[14] Lee, S.K., and Choi, H.A. 1996. Embedding of complete
binary trees into meshes with row-column routing. Parallel
and Distributed Systems, IEEE Transactions on , vol.7, no.5,
pp.493-497, May 1996.

[15] Matic, S. 1990. Emulation of hypercube architecture on
nearest-neighbor mesh-connected processing
elements. Computers, IEEE Transactions on , vol.39, no.5,
pp.698-700, May 1990.

[16] Miller, B., Vahid, F., and Givargis, T. 2012. Digital mockups
for the testing of a medical ventilator. In Proceedings of the

2nd ACM SIGHIT International Health Informatics
Symposium (IHI '12). ACM, New York, NY, USA, pp. 859-
862.

[17] Motuk, E., Woods, R., and Bilbao, S. 2005. Implementation
of finite difference schemes for the wave equation on FPGA.
ICASSP.

[18] Nourani, Y., and Andresen, B. 1998. A comparison of
simulated annealing cooling strategies. Journal of Physics A:
Mathematical and General, vol. 31, no. 41, 1998.

[19] de Pimentel, J.C.G., and Tirat-Gefen, Y.G. 2006. Hardware
Acceleration for Real Time Simulation of Physiological
Systems. Engineering in Medicine and Biology Society,
2006. EMBS '06. 28th Annual International Conference of
the IEEE , vol., no., pp. 218-223, Aug. 2006.

[20] Singh, S. 2011. The RLOC is dead - long live the RLOC.
In Proceedings of the 19th ACM/SIGDA international
symposium on Field programmable gate arrays (FPGA '11).
ACM, New York, NY, USA, pp. 185-188.

[21] Terman, D., Ahn, S., Wang, X., and Just, W. 2008. Reducing
neuronal networks to discrete dynamics, Physica D:
Nonlinear Phenomena, vol. 237, no. 3, March 2008.

[22] Tagkopoulos, I., Zukowski, C., Cavelier, G., and
Anastassiou, D. 2003. A custom FPGA for the simulation of
gene regulatory networks. In Proceedings of the 13th ACM
Great Lakes symposium on VLSI (GLSVLSI '03). ACM,
New York, NY, USA, pp. 132-135.

[23] Ullma, J.D. 1984. Computational Aspects of VLSI. W. H.
Freeman & Co., New York, NY, USA.

[24] Ullman, S., and Narahari, B. 1990. Mapping binary
precedence trees to hypercubes and meshes. Parallel and
Distributed Processing, 1990. Proceedings of the Second
IEEE Symposium on , pp. 838-841, Dec. 1990.

[25] van Meurs, WL. 2011. Modeling and Simulation in
Biomedical Engineering: Applications in Cardiorespiratory
Physiology. McGraw-Hill Professional.

[26] Wagner, A.S. 1991. Embedding all binary trees in the
hypercube. Parallel and Distributed Processing, Proceedings
of the Third IEEE Symposium on , pp. 104-111, Dec 1991.

[27] Weibel, E.R. 1963. Morphometry of the Human Lung.
Berlin, Germany: Springer-Verlag 1963.

[28] Xilinx, 2010. Inc. Virtex-6 FPGA Routing Optimization
Design Techniques.
http://www.xilinx.com/support/documentation/white_papers/
wp311.pdf

[29] Zhang, H., Holden, A.V., and Boyett, M.R. 2001. Gradient
model versus mosaic model of the sinoatrial node.
Circulation. vol. 103, pp. 584-588.

[30] Zienicke, P. 1990. Embeddings of Treelike Graphs into 2-
Dimensional Meshes. In Proceedings of the 16th
International Workshop on Graph-Theoretic Concepts in
Computer Science (WG '90). London, UK, pp. 182-192.

190

