
A Ball Goes to School -
Our Experiences from a CPS Design Experiment

Steffen Peter
Ctr. for Embedded Computer Systems

University of California, Irvine
Email: st.peter@uci.edu

Frank Vahid
Dept. of Computer Science and Eng.

University of California, Riverside
Email: vahid@cs.ucr.edu

Tony Givargis
Ctr. for Embedded Computer Systems

University of California, Irvine
Email: givargis@uci.edu

Abstract—Teaching the methodologies of Cyber Physical Sys-
tem (CPS) design requires good examples that are easy to
understand and tools that are commonly used in practice. This
paper presents our experiences during the practical execution of
model-driven design processes applying a range of state-of-the-
art design tools for a novel and simple example from the CPS
domain. The Falling Ball example has several properties that
support teaching basic design principles of CPSs. On one end,
students use a number of modeling tools to design and simulate
the Falling Ball example. On the other end, students actually
build the Falling Ball example using a variety of approaches.
Our methodology teaches not only the tools and how to use them
to design a CPS system but imparted general concepts such as the
need for modeling and the presence of certain technical problems
and challenges. This paper presents the example, the applied tools
and experiences gained during the first test run of this example
in our research group. We plan to use the material presented
here in an introduction to CPS course to be offered at UCI later
in 2013. In this work we share our experiences with the larger
educational community.

I. INTRODUCTION

Most generally, in a Cyber Physical System (CPS), an
integrated computation subsystem (cyber system) interacts
with a physical subsystem. The design of such a CPS usually
requires good understanding of both subsystems and their
interactions. For instance, properties of the cyber system, such
as timing, may influence the outcome of the physical process.
conversely, the correctness of the cyber part cannot be estab-
lished unless an adequate model of the physical subsystem is
well understood and included in the design process.

The CPS groups at UCI and UCR have been working on
a project in the area of CPS since 2012 and are funded by
the NSF. A main objective in these groups is the develop-
ment of an educational program to teach design of CPS to
students. Typically students of computer science have obtained
good knowledge on implementing computation systems, they,
however, likely fail to catch the interactions with the physical
subsystem. Therefore, as part of this educational program it
is imperative that students execute actual examples including
a close interaction between the cyber and the physical sub-
system. While it may be tempting to teach one single large
example using the most-popular development environment we
are of the opinion that such an approach does not reflect the
variety of CPS applications, tools and methodologies. Instead
we propose teaching material that:

• cover a range of simpler examples that are easy to
understand, design and evaluate using a variety of

existing development tools and methodologies,
• allow students to understand the importance of models

and learn their limitations (e.g. precision),
• allow students to gain hands-on experience with state-

of-the-art simulation and modeling tools,
• allow students to experience typical design challenges

and sharpen their attention in crafting solutions.

Several educational example applications exist ranging from
inverted pendulums, connected tanks of fluids, and engine or
boat control [1], to name a few. These examples typically
belong to the domain of control systems, for which the control
algorithms may be complex, are not easily understood and
often distract from the actual design of the system. Instead, we
propose as one rather simple example for a CPS –the Falling
Ball– to be designed by the students. The Falling Ball is about
taking a picture at exactly the moment a falling ball passes a
camera, while the time is predicted based on information from
motion sensors mounted above the camera.

Our groups, consisting of graduate and undergraduate stu-
dents with different educational backgrounds and skill sets,
experimented with the Falling Ball in the Fall quarter 2012. We
implemented the example in practice and in a range of model-
based design and simulation tools recommended in related
work. This paper illustrates the example, the work that was
done, the tools that were used and the experiences we gained.
The paper is structured as follows: After this introduction we
explain the Falling Ball and its design challenges. Then we
outline the tools we used for simulation and briefly describe
experiences gained during this design process. A short sum-
mary and outlook concludes the paper.

II. THE FALLING BALL EXAMPLE

In this section we introduce the Falling Ball example and
illustrate a typical design process for this kind of CPS. We
first introduce the use case, then describe the practical setup
and then outline a model-driven design process.

A. Setup

The example is illustrated in Figure 1(A). The goal of the
system is to take a picture when a falling ball passes a camera
mounted on a pole. To determine timings the system has two
motion sensors. The ball will be dropped from a height initially
unknown to the system, while the height of the sensors and
the camera are known. This –in fact simplistic– example has
some interesting properties of CPSs: First it needs exact timing.



Sensor 1

Sensor 2

Ball

control

drop

(A) (B)

Sensors

Camera

Controller 
board

Ball

Fig. 1. Setup of the Falling Ball example: (A) as schematics, (B) in practice.
.

This is one example where faster is not necessarily better.
Second, the example can be described in a physical process
that is well understood by the developer, for which the control
system needs a mathematical understanding, and for which it is
obvious that we will not achieve perfect precision. Additionally
the example can be implemented with little manual effort.

B. Practical demonstration setup

We implemented this system in practice, first to demon-
strate its practicability and second to experience problems.
The practical setup is shown in Figure 1(B). The system was
realized with the following components:

• Raspberry Pi (RP) Model B Revision 2.0 with Debian
Linux and standard C development environment,

• Two of Honeywell Through Beam Infrared sensors
(HOA6299 Series), which work by detecting an inter-
rupt of the line of light from the emitter to the detector,

• Logitech HD Webcam C310 attached via USB,
• Two Pyle-Pro Tripod Speaker Stand poles to mount

sensors and camera.

The sensors were mounted on two poles and connected to the
GPIO port of the RP board. The camera was mounted below
the sensors and connected to the USB port of the RP. The
control program was written and compiled in standard C on
the Debian Linux environment. The setup and programming
was done by one undergrad student.

The initial version of the control program did not account
for the delays in sensors, actuators, and computation. Through
a trial and error process the control program was revised with
more and more timing details until it worked. This method
worked for this rather simple example. However, obviously,
such a trial-and-error implementation strategy is unlikely to
work efficiently for complex scenarios. A suggested way to
address this issue is model-based design, which is briefly
discussed in the following sections.

C. Model-based Design Flow

Model-based design (MBD) flows, as for instance de-
scribed in [2], commonly apply an abstract model of the system

Fig. 2. System entities and high level data flow.

consisting of the physical subsystem (PS), the Cyber Subsys-
tem (CS), and the interfaces, in order to simulate the interaction
between the subsystems. This executable simulation of the
system is the starting point for the actual implementation which
is a successive refinement of the model into an implementable
system description. The presence of the simulation allows the
developer to test the refined models in context of the full
system at any time. We illustrate the four steps to establish
the executable simulation for the Falling Ball example next.

1) Define the architecture of the system: The first step is
the description of the interfaces and the data flow between the
physical components. The block diagram for the Falling Ball
example is shown as Figure 2. It consists of the Ball entity,
which contains the PS, the Control entity, which corresponds
to the CS, and the two sensors and the camera component.
The sensors receive information of the height of the ball,
and indicate to the controller when the Ball is in sight. The
controller receives the events, records the times of these events
and triggers the camera after the computed timing. The camera
receives the trigger command from the controller and forwards
the activity to the physical system where it is decided if the
ball is caught.

2) Description of the PS: The second step includes the
description of the physical systems conveniently expressed
as differential equations. In case of the Falling Ball, the
height of the ball is determined by the differential equation
of velocity over time, while velocity is determined by the
differential equation of acceleration over time. This small
system of equations is initialized with a constant acceleration
(gravity=9.81m/s2) and a selected initial height, i.e. the drop
height of the ball.

3) Design of the control program: As the control program
usually cannot be expressed with differential equations it is
necessary to express the physical system as part of the control
with regular expressions. In case of the falling ball this step is
relatively easy and we can apply the basic free fall equations.
Using the known height of both sensors (h1 and h2) and the
time the sensors triggered (t1 and t2), we can compute the
speed of the ball at sensor 2:

v2 =
h1 − h2

t2 − t1
+ a

t2 − t1
2

.

We can use this v2 to compute the expected time (t3) at the
height (h3) with the following equation:

t3 =
at2 − v2 +

√
v2 2 + 2 ah2 − 2 ah3

a
.

Computing this equation is the most complex step in the small
control program:

1) wait for sensor 1: after receiving signal from sensor
1, record the time,



Fig. 3. Simulation results of the ball control model. Red is the simulated
height of the ball, blue is the height of the grabber and green indicates the
grabber signal. (A) is the ideal control, (B) shows the grabber being too late,
and (C) too early.

2) wait for sensor 2: after receiving signal from sensor
2, record the time,

3) compute expected time for actuator,
4) wait until t3, then activate camera while compensat-

ing for the expected delay time in the system.

4) Simulation, and test of the control algorithm: At this
point of the development flow we have the global architecture
and behavioral descriptions for each subsystem. With an appro-
priate Model of Computation (MoC) it is possible to simulate
the behavior of the entire system. This allows the developer to
test the algorithms in first place and further to test the behavior
if parts of the systems deviate from the perfect model.

As an example Figure 3 shows three execution runs as
recorded in the Modelica environment: Figure 3(A) shows the
ideal result when the ball is captured exactly in the moment
the ball passes the camera. Figure 3(B) assumes a small delay
in the camera causing the ball to pass the camera Figure
3(C) assumes a smaller effective gravity constant in the PS -
taking into account air resistance, which results in the camera
triggering too early.

III. MODEL-DRIVEN DESIGN TOOLS

In this section we describe four well-known tools (Model-
ica, Simulink, Ptolemy, SystemC) to design and simulate sys-
tems, and outline experiences we had in our group designing
the ball example with these tools. We chose these tools as they
are frequently recommended for model-based development of
CPSs. The implementation work was executed by graduate
students of computer science in their first to the third year of
study. At the start of the project they had no specific skills in
CPS design or modelling tools.

1) Modelica: Modelica [3] is a professional modeling
language initially from the physical domain. It has been used
to model hydraulic, mechanic, and electrical systems among
others. Therefore, contrary to most design tools computer
engineers typically apply, Modelica centers around the physical
part of the CPS. However, for the cyber parts also algorithmic
control programs can be added. Because Modellica resembles
the well understood object-oriented paradigm, it was straight-
forward to design the four components (physical, control,
sensor, actuator) and connect the ports of the entities according
to the schematic seen in Figure 2. The implementation strategy
for the simulation corresponds mostly to the ideal design
flow introduced in the previous section. The physical part can
be described with differential equations, the cyber-part is a

Fig. 4. CPS system in Simulink. On the left the model of the physical system
(bouncing ball), in the middle the interfaces (sensors and actuator) and on the
right the control program. .

sequence program instruction. Figure 3 shows some results
from the simulations.

Problems during this development were related to errors in
the application of the programming language, which at least
for our system often led to crashes instead of constructive
error messages. A second problem that occurred during the
simulation is related to the well known effect of Zeno-behavior.
In one case the simulation stopped progressing and seemed to
crash. This was caused by the simulation trying to calculate the
bouncing of the ball with infinite precision. This phenomenon
is an important problem and experiencing it helped the students
understand and develop solutions. We could either enforce a
higher time granularity in the simulation or avoid the Zeno
behavior in the model of the PS by adding a condition to stop
bouncing if the altitude is too low.

2) Simulink: The Matlab/Simulink [4] package is often
considered as the industrial standard for simulation of control
systems. The program is not free, but it is available at most
universities. Simlink provides the designer with a set of basic
building blocks which can be parametrized, instantiated in the
simulation environment and then connected via available ports
of the blocks. Figure 4 shows the top level block diagram of
the simulated system.

Using Simulink, the biggest problems we encountered were
related to the design of the control part, as it seemed necessary
to assemble building blocks. It needed a significant amount
of creativity and time to understand and assemble available
building blocks to achieve the intended goals. Another problem
was that automatic settings in the simulation environment
led to unpredictable and wrong simulation results, so that
as solution it was necessary to set a constant time rate. In
general, however, the results were similar to the outcome from
Modelica.

3) Ptolemy: In contrast to the first two tools, Ptolemy
[5] comes from an academic background. While the design
experience, i.e. composing building blocks in a graphical
environment, is similar to Simulink, Ptolemy emphasizes the
model of computation in each block of the system. Beside this
explicit addressing of the MoC, our design experience was very
similar to Simulink. Within Ptolemy, the biggest challenge was
to find the correct building blocks and find a way to assemble
them into a system.

4) SystemC: SystemC is a set of C++ libraries and tools
originating from the domain of electronic systems design to



model and simulate hardware on a higher abstraction level.
Today it is an industry-approved toolset for model-driven
development of complete systems. Contrary to Simulink and
Ptolemy, SystemC is particularity well suited for modeling the
cyber part of the ball example. Due to its origins, SystemC
makes it easy to model the CS including details with regard to
system and processor architectures. In contrast the opportuni-
ties to describe the PS are rather limited. In fact, the physical
model had to be explicitly described similar to traditional test
benches with physical equations computing velocity, accel-
eration, and position for each time step of the simulation.1
The resulting implementation consists of two classes: ball
–simulating the physical subsystem– and controller, which
describes the behavior of the cyber system. Both subsystems
were simulated with a frequency of 1 kHz. The textual output
of the simulation shows internal timing information and if the
ball could be caught by the camera.

A. Results

Modeling the Falling Ball with each of the four tools
described in the previous sections could be finished by the
graduate students within 3 to 4 weeks, spending 10 hours per
week for practical work on average. This does not include the
time for studying related literature and research on discovered
phenomena. Each student started without any prior knowledge
of the development environment The relatively short time
needed for the project has been to some degree caused by
the low complexity of the chosen example but also by the
rich resources of tutorials and examples for each evaluated
platform available in the Internet. We encouraged to look for
a bouncing ball example as starting point which is available for
most CPS-related platforms. As this ramp-up phase for tools
was relatively low, one major challenge for the students was
to realize a good structure and system architecture in the tools.
Without adequate initial planning the implemented systems
became messy resulting in an unpractical tight entanglement
of physical and computational components. We had to provide
the high level architecture as introduced in Figure 2 to separate
PS and CS as well as the interfaces. Otherwise the outcome is
hardly comparable and is not suitable as basis for other design
challenges. Other errors were related to the development of
the equations in the control part, mostly caused by wrong
application of Newton laws equations. Some students used a
wrong starting point, so that the simulation was set up in a
way that the drop starts at a known position (usually 0) and
the distances are relative to this drop position. Other challenges
such as Zeno behavior, selection of the appropriate MoC and
the selection of the correct simulation resolution were already
mentioned in the sections above. To solve these questions and
to discuss the progress we had weekly meetings. Discussing
the problems triggered more general questions related to the
design of CPS such as: If the equations already are complicated
to solve correctly in this small example, how can we design
more complex systems? If Modelica is good for physical
simulation and SystemC is good for the computation, can
we combine both of them? How and why does simulation
frequency affect the simulation outcome, and how can we be
sure that we still learn something from varying results?

1Recent extensions [6] allow to simulate physical systems described with
differential equations but we have not applied this package in our project

From the practical side we learned about workings of the
tools and their strengths and limitations. Modelica seems to be
best suited to simulate physical systems, while SystemC seems
to be optimal for the design of the computational system.
Simulink is a powerful tool suite with capabilities we could not
entirely comprehend in this small project. Ptolemy is valuable
with regard to teaching MoCs which are important in CPS
design with their continuous and discrete behavior.

As a final aspect, the availability of the practical set up
of the Falling Ball has additionally contributed to the learning
experience, as it first, delivered actual parameters from the real
world to the simulations, and second, we can try and refine the
practical program applying results from the simulations.

IV. CONCLUSIONS

The experiences we described in this paper underline the
importance of practical experiments with actual tools in the
domain of CPS design. We showed that a model-driven design
process using state-of-the-art design tools is possible in a rela-
tively short time span. The lessons we learned include knowl-
edge how to use the tools, how to perform the architectural
and planing phase, how to develop and design computations
and how to execute the simulations and make use of the
results. We could execute all these design steps for the Falling
Ball example, which has several challenging properties to
support teaching basic design principles of CPSs. The simple
ball example has been valuable as it allowed the students to
do each step on their own - including the development of
the physical subsystem and the development of the control
program. playing with the system, we could experience how
small changes, in particular in the delay of the sensors, have
significant impact on the systems correctness. The lessons we
learned in this experiment likely help instructors to teach CPS
design to students and we plan to use the material presented
as parts for a full course to be offered at UCI later in 2013.

ACKNOWLEDGMENT

We thank Ting-Shuo Chou, Volkan Gunes, Ina Liu, and
Abhinav Parvathareddy for their contributions to this experi-
ment. This work was supported in part by the National Science
Foundation under NSF grant numbers 1016789 and 1136146.

REFERENCES

[1] K. Bauer and K. Schneider, “Teaching cyber-physical systems: A pro-
gramming approach,” in Workshop on Embedded and Cyber- Physical
Systems Education (WESE), 2012.

[2] J. Jensen, D. Chang, and E. Lee, “A model-based design methodology
for cyber-physical systems,” in Wireless Communications and Mobile
Computing Conference (IWCMC), 2011 7th International. IEEE, 2011,
pp. 1666–1671.

[3] OPENMODELICA - Homepage, 2013, http://www.openmodelica.org.
[4] Simulink - Simulation and Model-Based Design, 2013,

http://www.mathworks.com/products/simulink/.
[5] J. Eker, J. Janneck, E. Lee, J. Liu, X. Liu, J. Ludvig, S. Neuendorffer,

S. Sachs, and Y. Xiong, “Taming heterogeneity-the ptolemy approach,”
Proceedings of the IEEE, vol. 91, no. 1, pp. 127–144, 2003.

[6] C. Grimm, M. Barnasconi, A. Vachoux, and K. Einwich, “An introduction
to modeling embedded analog/mixed-signal systems using systemc ams
extensions,” Tech. Rep., 2008.


