
XGRID: A Scalable Many-Core Embedded Processor 
 

Volkan Gunes and Tony Givargis 
Center for Embedded Computer Systems 

University of California, Irvine, USA 
{vgunes, givargis}@uci.edu 

 
 

Abstract—The demand for compute cycles needed by 
embedded systems is rapidly increasing. In this paper, we 
introduce the XGRID embedded many-core system-on-chip 
architecture. XGRID makes use of a novel, FPGA-like, 
programmable interconnect infrastructure, offering scalability 
and deterministic communication using hardware supported 
message passing among cores. Our experiments with XGRID 
are very encouraging. A number of parallel benchmarks are 
evaluated on the XGRID processor using the application 
mapping technique described in this work. We have validated 
our scalability claim by running our benchmarks on XGRID 
varying in core count. We have also validated our assertions on 
XGRID architecture by comparing XGRID against the 
Graphite many-core architecture and have shown that XGRID 
outperforms Graphite in performance.  

Keywords—Multi-core, Many-core, Embedded Processors, 
System-on-Chip Architectures 

I. INTRODUCTION 
Embedded systems have an important place in our daily 

lives. Compute demands of embedded systems have 
increased in recent years for many electronic devices, 
including but not limited to mobile devices, consumer 
appliances, network devices, and military applications. With 
the growing popularity of mobile and real time technology, 
this increase in demand is expected to continue for 
specialized embedded systems to support a wide range of 
new applications. 

To satisfy increasing demands for compute cycles, a 
move toward multi-core processing was unavoidable [1]. 
Multi-core processors make improvements in the 
performance by increasing the number of the processor 
cores on a single chip, with each core operating at an ideal 
clock speeds in order to meet overall power and thermal 
constraints [2]. 

We draw a distinction between a multi-core system, one 
that is limited to 8 or less cores, and a many-core system 
that can scale to tens, hundreds, and even thousands of cores 
on a single chip. A key requirement for any many-core 
architecture is its ability to scale efficiently. With increases 
in the number of cores on a single chip, the performance of 
the overall system becomes limited by shared resources such 
as buses and the memory subsystem [3]. 

In this paper, we present a scalable many-core processor, 
intended for embedded applications. Our many-core 
embedded processor is named XGRID. Further, we outline a 

mapping strategy to efficiently map applications to XGRID. 
The contributions of this paper are: 

• Introduction of a scalable many-core embedded 
processor adopting 2D grid network, inspired by a 
novel FPGA-like interconnect network 

• Optimal mapping of benchmark applications  onto 
target XGRID architecture 

We describe a comprehensive simulation environment 
for XGRID. Our simulation platform, in addition to offering 
a cycle accurate functional execution environment, provides 
detailed performance results to better guide the application 
mapping process.  

II. RELATED WORK AND MOTIVATION 
Various authors have investigated architectural issues 

related to many-core interconnect networks, particularly bus 
based and NoC based approaches [4], [5], [6], [7], [8], [9]. 
As outlined in the earlier studies, bus based architectures are 
not scalable with increasing number of cores. Hence, NoC 
architectures are proposed as a solution to the limitations of 
bus based architectures [10]. NoC architectures offer some 
advantages as well as some challenges. For example, switch 
units, network interfaces, and inter-switch wires result in 
substantial silicon area overhead. Increased networking 
complexity as well as the number of interconnected cores 
within an NoC introduce a considerable trade-off between 
area and performance [11].  

Due to the limitations of bus interconnect and challenges 
of NoC interconnect, we propose a novel FPGA-like many-
core architecture which combines positive attributes of bus 
based (i.e. power efficient and deterministic) and NoC based 
interconnects (i.e. scalable and flexible). The simple and 
low-clock speed nature of XGRID makes it inherently 
power efficient.  

Field-Programmable Gate Arrays (FPGAs) have suffered 
increased power consumption as a result of large scale 
dynamic switching networks [12]. Certainly, static routing 
has some benefits over dynamic routing. For example, in 
static routing, the path for data packet transmission between 
two destinations is always known precisely and can be 
controlled precisely at compile time. Therefore, we propose 
the XGRID architecture that has a low-cost static 
interconnect network, making it compile-time configurable 
with minimal power overhead.  

2015 IEEE 17th International Conference on High Performance Computing and Communications (HPCC), 2015 IEEE 7th

International Symposium on Cyberspace Safety and Security (CSS), and 2015 IEEE 12th International Conf on Embedded Software

and Systems (ICESS)

978-1-4799-8937-9/15 $31.00 © 2015 IEEE
DOI 10.1109/HPCC-CSS-ICESS.2015.99

1143



III. THE XGRID ARCHITECTURE 
Our embedded many-core processor platform integrates 

processing cores, on-chip memory per core, FPGA-like 
interconnection network and serial high-speed I/O units. We 
call our architecture XGRID, as it consists of a two 
dimensional grid of homogenous cores. Each XGRID core 
strictly follows a Reduced Instruction Set Computer (RISC) 
architecture. Specifically, cores follow a standard five-stage 
instruction pipeline (fetch, decode, execute, memory-access, 
and write-back) and lack the branch prediction and out-of-
order execution capabilities. Per core flash memory is used 
to store program instructions, making XGRID in-system 
programmable. Each core maintains a dedicated instruction 
and data cache. Each core operates at a relatively low clock 
frequency, namely, 100 MHz to 500 MHz. As a result, the 
XGRID cores are lightweight and, hence, low power. The 
compute performance of XGRID comes from the scalability 
in terms of the number of cores that are utilized to execute 
parallel algorithms. 

In XGRID, communication between cores is achieved 
via an FPGA-like interconnection network. FPGAs use rows 
and columns of buses with programmable switching fabrics 
at the intersections of the row/column buses to route 
input/output of logic-blocks. XGRID replaces the FPGA 
logic-blocks with cores and otherwise adopts the FPGA 
interconnect fabric for all communication among the cores. 
As previously mentioned, the difference from an FPGA 
interconnect is that XGRID uses a static interconnect 
network that is compile-time configurable. 

An instance of the XGRID interconnection network with 
two rows and two columns is shown in Fig. 1. The figure 
shows row and column buses in the interconnect network, 
represented as thick lines. Each core has N word-size ports 
to send or receive data over the buses. The port connections 
are represented as thin lines in Fig. 1. Communication buses 
are dedicated, during the programming phase, for bi-
directional I/O between two cores with deterministic 
transmission rates. Appropriate switches need to be set to 
establish a communication between a pair of cores. This 

programming, as with FPGA-programming, is performed 
during the design phase, and the programming bit stream is 
stored in an on-chip flash memory, making the XGRID 
communication infrastructure in-system programmable. 

XGRID uses a strict message passing system of 
communication among cores. The cores can communicate 
with each other via an inter-core communication facility. 
This facility provides, to the software, a primitive 
instruction, called XPORT, which is used to send or receive 
data among cores. Higher-level software routines can be 
built on top of this instruction to facilitate appropriate 
transfer capabilities, such as block transfer protocols.  

We call the established path between two cores a 
communication channel. Communication channels include 
bidirectional buffers to maximize instantaneous throughput 
among cores. The message sent by a core is of word-size. 
Since buffer size is limited, a sending core blocks when its 
send buffer is full. Likewise, a receiving core blocks when 
its receive buffer is empty. The blocking nature of sending 
(XPORT=value) or receiving (value=XPORT) are buffer 
synchronized, using a consumer-producer message passing 
scheme.  

A major advantage of XGRID is that it avoids global 
caches and their associated coherency problem as well as 
shared memory infrastructure having complex on-chip bus 
and memory controllers. In this sense, XGRID is scalable, 
as the cost of additional rows or columns scales linearly, 
namely, consisting of the cost of the new cores and FPGA-
like communication fabric. 

IV. APPLICATION MAPPING 
We follow a general scheme for our design flow of 

application mapping. This scheme includes application 
modeling and the actual mapping stages. Our holistic 
application mapping is shown in Fig. 2. First of all, a 
sequential application is manually partitioned and 
represented as a Kahn Process Network (KPN) where each 
process corresponds to a partition and each communication 
channel between two processes corresponds to a connection 
between two partitions. Then, the hardware architecture 
properties of XGRID and the benchmark application model 
represented as a KPN are fed into an ILP generator. The ILP 
generator produces ILP formulas consisting of variables, 
constraints, and constraint equations related to XGRID 
architecture. Then ILP solver generates a solution that 
reflects an optimal mapping and routing of the application to 
XGRID. The interconnect template creator takes this ILP 
solution and evaluates it against any remaining 
communication channel constraints (i.e. those not directly 
captured by the ILP) of the XGRID. For example, since 
each core in XGRID has a limited number of ports, every 
communication channel in the KPN representation may not 
be mapped into XGRID. Therefore, the KPN representation 
may need a modification to fulfill remaining requirements. 
The interconnect template creator decides whether or not to 
accept the ILP solution. If the solution is not accepted, the 
KPN is modified and the process repeats. Here, the ILP 

Core 0 Core 1

Core 2 Core 3

High 
Speed IO

High 
Speed IO

High 
Speed IO

High 
Speed IO

Programmable 
Switch

Programmable
Switch

I D

CPU

 
Fig. 1. An instance of XGRID with 2x2 cores,  
I: Instruction Memory and D: Data Memory. 

1144



generator follows the same flow by taking the modified 
KPN (KPN’) as an input for the application model. If the 
solution is accepted, then interconnect template file is 
created. Subsequently, the XGRID simulation framework 
takes care of simulation process to obtain the experiment 
results. The details of the XGRID simulation framework can 
be reached in [15].  

The KPN captures the communication behavior of the 
application. We assume applications are implemented using 
a parallel algorithm, where each task is represented as a 
process in a KPN. Each node of a KPN corresponds to one 
process (i.e. a task or partition from the parallel algorithm). 
The communication between processes is accomplished via 
channels which include unbounded FIFO queues. In a pure 
KPN, a sender never blocks, as the size of the FIFO is 
infinite. However, the receiver may block pending data to be 
sent by the sender. On the other hand, the sending processes 
may be blocked in XGRID, hence introducing a 
performance issue rather than a correctness concern. The 
KPN is annotated with process compute requirements and 
channel communication requirements. These annotations are 
obtained from the application and/or algorithm. 

The mapping phase optimally maps each process of a 
KPN to an XGRID core. Moreover, the mapping phase 
automatically establishes point-to-point communication 
channels, according to the KPN, by programming 
appropriate interconnect switches of the XGRID. The 
mapping problem is formulated as a set of constraints and an 
objective function in the form of integer linear equations as 
described in [15]. The objective function, which we are 
aiming to minimize, is the overall communication cost of 
the system configuration. The ILP solver minimizes this 
total cost function based on the given constraints and 
equations.  

V. EXPERIMENTAL RESULTS 
We have selected a number of benchmarks to validate 

the XGRID architecture, performance profiling, and 
application mapping algorithms. In particular, we have used 
2D DCT (Discrete Cosine Transform), MMUL (Matrix 
Multiplication), and four different versions of sorting 
benchmarks. Sorting algorithm benchmarks consist of the 
QSORT algorithm and three parallel algorithms based on 

QSORT, namely, PARALLEL-QSORT [13], HYPER-
QSORT [13], and PSRS-QSORT [13]. 

For each benchmark, we have extracted a KPN and used 
the ILP approach, presented earlier, to obtain a mapping of 
the algorithm to our XGRID processor. The specific XGRID 
processor, used in our experiments, is a 4x4 grid of 32-bit 
cores, each core having eight 32-bit ports. The 
communication infrastructure is composed of four 32-bit 
buses spanning the space between any two adjacent rows of 
cores. Likewise, the communication infrastructure is 
composed of four 32-bit buses spanning the space between 
any two adjacent columns of cores. There are a total of four 
serial input units, and a total of four serial output units for 
off-chip communication. Each core has a 1 MB data cache 
and a 64 KB instruction cache. 

Fig. 3 shows the performance speedup of 2D DCT 
relative to a single-core implementation for various input 
sizes. The performance degradation of 2D DCT is expected 
in case of larger input matrix sizes since I/O wait has 
considerable effect on the performance for them. On the 
average, our 16-core XGRID achieved 9X improvement in 
the performance of DCT. Fig. 4 shows the performance 
speedup of MMUL relative to a single-core implementation 
for various input sizes. On the average, our 16-core XGRID 
achieved 3X improvement in the performance of MMUL. 
Moreover, the speedup increased as the input size got larger, 
because the initial cost of reading the matrices relative to the 
cost of multiplication diminished. 

PSRS-QSORT is the best among our parallel sorting 
algorithm benchmarks based on QSORT. It does an 
excellent job balancing the number of elements sorted by 
each core [13] and I/O wait takes very little time. The results 
for our parallel sorting algorithm benchmarks can be 
reached in [15]. Our results point out the importance of 
efficient parallel programming on many-core architectures. 
So, the scalability of the different parallel sorting algorithms 
demonstrates the need for careful algorithm design in many-
core implementations. 

In order to validate our scalability claim about XGRID, 
we ran 2D DCT and MMUL benchmarks on XGRID 
varying in core counts. Fig. 5 and Fig. 6 show the execution 
time of 2D DCT and MMUL benchmarks on XGRID with 
different core counts, respectively.  2D DCT benchmarks 
scale well in all core categories. It is expected since DCT is 
a computation intense application and the computation 
dominates the communication in all categories. MMUL 
benchmarks scale well in all categories except the last one 
(i.e. 256 cores) where the performance bottleneck occurs. 
The reason is that MMUL is a communication intense 
application therefore the communication time dominates the 
computation time for increasing number of cores and, as a 
result, causes a decrease in performance.  

We also validated our assertions on XGRID architecture 
by comparing XGRID against Graphite many-core 
architecture. Fig. 7 and Fig. 8 show the execution time 
comparison of 2D DCT and MMUL benchmarks, 
respectively. For the sake of fairness in comparison, we 

 XGRID

ILP 
GENERATOR

KPN

ILP SOLVERILP 
Formula Solution

KPN
MODIFIER

XGRID 
SIMULATION 
FRAMEWORK

Yes

No

KPN '

Results

Interconnect 
Template File

*.map

INTERCONNECT 
TEMPLATE 
CREATOR

Constraints 
Satisfied?

 
Fig. 2. Holistic view of application mapping onto XGRID. 

1145



designated same features for both architectures [15]. We ran 
some of our benchmarks on an open-source simulator for 
Graphite many-core architecture [14], to justify the 
performance of our simulator for XGRID. Graphite 
integrates a set of homogeneous tiles inter-connected by a 
mesh on-chip network that manages the routing of network 
packets. Each tile contains a processing core, a memory 
module, and a network switch [8]. The reasons why we 
chose the Graphite among existing many-core architectures 
are that there is an open-source simulator for Graphite and it 
is well-documented. In addition to that, the Graphite has the 
tile processor architecture with a mesh on-chip network. The 
results show that XGRID outperformed Graphite in 
execution time in all the cases. The details of overall 
simulation results can be reached in [15]. 

VI. CONCLUSIONS 
In this paper, we introduced the XGRID embedded 

many-core processor that makes use of an FPGA-like 
interconnection network. The XGRID architecture offers 
numerous advantages, such as low power consumption (due 
to cores inherently lightweight), hardware supported 
message passing, and most importantly, scalability as more 
processing cores are added. We further describe an 
application mapping algorithm based on Kahn Process 
Networks (KPNs) and Integer Linear Programming (ILP) to 
aid in the mapping of applications on XGRID. 

Our experimental results are very encouraging. A 
number of parallel benchmarks are evaluated on XGRID 
processor using the mapping technique described in this 
work. Results show an average of 5X speedup, a maximum 
of 14X speedup, and a minimum of 2X speedup, across all 
the benchmarks. We observe that, in addition to the need for 
a scalable architecture, scalable parallel algorithms are 
required to exploit the compute power of many-core 
systems. We have validated our scalability claim by running 
our benchmarks on XGRID varying in core count. We have 
also validated our assertions on XGRID architecture by 
comparing XGRID against the Graphite many-core 
architecture and have shown that XGRID outperforms 
Graphite in all performance categories. 

ACKNOWLEDGEMENT 
This work was supported in part by the National Science 
Foundation under NSF grant number 1016789 and 1136146. 
 

REFERENCES 
[1] Herb Sutter. The Free Lunch Is Over: A Fundamental Turn Toward 

Concurrency in Software. Dr. Dobb's Journal, 30(3), March 2005. 
[2] S. Borkar. Thousand Core Chips - A Technology Perspective. In 

Proceedings of Design Automation Conference (DAC), 2007. 
[3] A. Kayi, T. El-Ghazawi, and G. Newby. Performance issues in 

emerging homogeneous multicore architectures. In Proc.of Simulation 
Modeling Practice and Theory, Vol:17, issue:9, pp.1485-1499, 2009. 

[4] W. Zhang, et al. Design of a Hierarchy-Bus Based MPSoC on FPGA. 
In Proc. of Inter. Conference on Solid-State and Integrated Circuit 
Technology (ICSICT), pp. 1966-1968, 2006. 

[5] E. A. Carara, et al. HeMPS - a Framework for NoC-based MPSoC 
Generation. In Proc. of IEEE Inter. Symposium on Circuits and 
Systems (ISCAS), pp. 1345 - 1348, 2009. 

[6] S.V. Tota, et al. A Case Study for NoC Based Homogeneous MPSoC 
Architectures. IEEE Transactions on Very Large Scale Integration 
(VLSI) Systems, March 2009. 

[7] S.V. Tota, et al. MEDEA: a hybrid shared-memory / message-passing 
multiprocessor NoC-based architecture. In Proceedings of Design, 
Automation, and Test in Europe (DATE) Conference, pp. 45-50, 2010. 

[8] J. E. Miller, et al. Graphite: A Distributed Parallel Simulator for 
Multicores. In IEEE 16th International Symposium on High 
Performance Computer Architecture (HPCA), Jan. 2010. 

[9] S. Bell, et al. TILE64-processor: A 64-core SoC with mesh 
interconnect. In Proc. of IEEE Int. Solid-State Circuits Conf., pp. 88–
598, Feb. 2008. 

[10] L. Benini and G. DeMicheli. Networks on Chips: A New SoC 
Paradigm. IEEE Trans. on Computers, vol. 35, no. 1, pp. 70-78, 2002. 

[11] U. Y. Ogras, J. Hu, and R. Marculescu. Key research problems in 
NoC design: A holistic perspective. In Proc. of CODES+ISSS, pp. 
69–74, Sep. 2005. 

[12] L.Shang, A.Kaviani, K.Bathala. Dynamic Power Consumption in 
Virtex-II FPGA Family. In International Symposium on FPGAs, 
pp.157-164, 2002. 

[13] M. J. Quinn. Parallel programming in C with MPI and OpenMP. 
McGraw-Hill Higher Education, 2004. 

[14] Graphite Simulator Source Code. [Online]. Available: 
https://github.com/mit-carbon/Graphite/wiki 

[15] V.Gunes and T.Givargis. XGRID: A Scalable Many-Core Embedded 
Processor. Center for Embedded Computer Systems (CECS) at UCI, 
Technical Report # TR 13-03, 2013. Retrieved from 
http://cecs.uci.edu/files/2013/04/TR-13-03.pdf 

                          
 Fig. 3. 2D DCT speedup (single-core vs XGRID)      Fig. 5. 2D DCT running on XGRID of various size      Fig. 7. 2D DCT comparison (XGRID vs GRAPHITE)   

                        
  Fig. 4. MMUL speedup (single-core vs XGRID)        Fig. 6. MMUL running on XGRID of various size        Fig. 8. MMUL comparison (XGRID vs GRAPHITE)  

32x32 64x64 128x128 256x256
0
2
4
6
8

10
12
14
16

Input Matrix Sizes

S
pe

ed
up

16 64 128 256
0

1

2

3

4 x 10
4

Number of Cores

E
xe

cu
tio

n 
T

im
e 

(S
ec

)

 

 

DCT 256x256
DCT 512x512

32x32 64x64 128x128 256x256
0

2000

4000

6000

8000

10000

12000

14000

Input Matrix Sizes

E
xe

cu
tio

n 
T

im
e 

(S
ec

)

 

 

XGRID
GRAPHITE

128x128 256x256 368x368 512x512 880x880
0

1

2

3

4

5

6

Input Matrix Sizes

S
pe

ed
up

16 64 128 256
0

2

4

6

8

10

12

14

Number of Cores
E

xe
cu

tio
n 

T
im

e 
(S

ec
)

 

 

MMUL 256x256
MMUL 512x512

128x128 256x256 368x368 512x512
0
5

10
15
20
25
30
35
40

Input Matrix Sizes

E
xe

cu
tio

n 
Ti

m
e 

(S
ec

)

 

 

XGRID
GRAPHITE

1146


