
Towards a Timing Attack Aware High-level
Synthesis of Integrated Circuits

Steffen Peter and Tony Givargis
Center for Embedded Systems and Cyber-Physical Systems (CECS)

University of California, Irvine
Email: st.peter@uci.edu

Abstract—Variabilities in the execution time of integrated
circuits are frequently exploited as a side channel attack to
expose secret information of deployed systems. Standard coun-
termeasures analyze and change the explicit timing behavior
in lower level hardware description languages, but their ap-
plication is time consuming and error-prone. In this paper we
investigate the integration of timing attack resilience into the
high-level synthesis (HLS). HLS translates programs expressed
in higher level programming languages, such as C, seamlessly
to synthesizable hardware. We use timing annotations of basic
blocks in C to add scheduling constraints that in the synthesis
process balance the execution time of security-related execution
branches. We integrate our approach to the scheduling of the
open source LegUp HLS tool and apply the proposed method
for the asymmetric cryptography algorithms RSA and ECC.
The results proof the resistance against timing attacks, with a
negligible overhead in synthesis efforts, area, and run-time.

I. INTRODUCTION

Timing attacks are side-channel attacks that extract secret
data from a deployed system by exploiting the fact that the
processing time of the system varies for different data inputs
[1]. Even though timing attacks are well-known, still recent
system implementations are vulnerable, even for crypto imple-
mentations such as RSA [2] and Elliptic Curve Cryptography
(ECC) [3]. Timing attacks might extract secret keys but can
also threaten intellectual property and implementation details
of integrated circuits, since the attacks may disclose algorithm
details and key components. While timing attacks are known
for both software and hardware, in this paper we focus on
vulnerabilities of integrated circuits. The aim of our work is
to guarantee that variabilities of the data input do not result in
a changed timing, specifically that the number of clock cycles
does not leak sensitive information.

A variety of countermeasures against timing attacks exist,
both at higher level algorithm design and low-level implemen-
tation. Examples for low level approaches include path and
timing obfuscation methods [4] or manual balancing of the
HDL code. The application of such approaches is error prone
and complicated since it contains many manual design steps.
On a higher level, timing invariance has been addressed at
the algorithm design, so that operations in different execution
paths are balanced. Examples are the Lopez-Dahab ECC
algorithm [5], or the aimed addition of dummy operations [6].
The problem is that implementations of balanced algorithms
still might leak timing information on lower levels, because
synthesis tools attempt to optimize register transfers and usage
patterns of functional units.

!"#$%&'%()&$*+$*,%
-.)"./0*#%1!2-3!"#$%&'!(%)*+*),$*-.'

/0123-43,&5

6*&*.4'7..-$,$*-.'
/675

6718%.%3,$*-.

23-$%)$%9'
!):%9;<%

=>!?
#):%9;<*.4

23-$%)$%9'=@>'
/A%3*<-45

B

C

Fig. 1. Design flow for secure HLS: A protected HDL implementation is
generated from a system specification, using timing annotations (TAs) to
balance the execution time of sensitive paths. The paper addresses (1) the
addition of scheduling constraints, and (2) TA-generation.

In this paper we study how timing attacks can be addressed
in state-of-the-art high-level synthesis (HLS) tool chains. HLS
translates a higher level description (e.g., in C or System C)
of a system to implementable hardware, solving allocation of
processing elements, binding and scheduling. HLS has found
applications in a range of industrial and academic tools [7],
[8]. These HLS tools improve the design practice of ICs, but
they emphasize performance over security. Timing is only
supported to determine the upper bound or the worst case
execution time.

We propose the design flow shown in Figure 1. The primary
input of the HLS flow is the system specification as C code,
while the output is the secured implementation model in a
hardware description language (HDL). Using a list of protected
variables (LPV), a Timing Annotation (TA) for the C-code
is generated. The TA provides constraints for the HLS and
scheduling to balance the execution paths of the system. The
result of the scheduling is an operation schedule in which all
data and control dependencies originating from the LPV are
time invariant.

We implemented the approach in the open source HLS tool
LegUp [8], using the LLVM compiler back-end and the SDC
scheduler [9]. We tested the approach for a range of benchmark
applications, including implementation for the cryptographic
standards ECC and RSA. The strength of our approach is that
the techniques work fully automated, without notable overhead
in synthesis, area or worst-case performance.

452978-1-5090-5142-7/16/$31.00 c⃝2016 IEEE

II. PRELIMINARIES
As shown in Fig. 1, the HLS process synthesizes an

implementation model in a hardware description language
(HDL) from a system description in a high-level programming
language. Specifically in this paper, we generate a Verilog
program from a C program. To synthesize a system, the HLS
needs to allocate the functional units (FUs), bind operations
to FUs and schedule when the operations are executed.

The scheduler decisions are based on the control and data
flow graph (CDFG). The CDFG contains basic blocks (BB),
operations (Op), data dependencies (Op × Op) and control
flows (BB × BB). A basic block contains a sequence of
operations with data dependencies, but without loops and
branches. Loops and branches are indicated as possible control
paths between BB. The CDFG does not contain scheduling
information, neither for the operations in a BB nor for the
sequence in which BBs are executed. Figure 2 (A) shows a
CDFG with four BBs and one condition at the end of BB1.

The scheduler assigns the operations to states. The state
diagram can be expressed as a a finite state machine with
data (FSMD), as shown in Fig. 2 (B). A state can execute
more than one operation (S2 and S6), if data dependencies are
resolved and no resource conflicts are present. An operation
requires more than one state when it cannot be executed in
one cycle. In Fig. 2, BB2.i2 needs three cycles (S6 to S8).

While the FSMD assigns operations to states, it does not
present a global schedule, but several execution paths exist.
In the example of Figure 2, the program requires 6 cycles if
cond = 1, and 7 cycles if cond = 0. The aim of this paper
is to balance the two possible execution paths, if, and only if
cond is based on data that needs to be protected. In that case,
idle states will be inserted into the FSMD with the aim to
balance the execution time of BBs. In the example of Figure
2 we could add one state between S4 and S5 to balance the
execution time for cond = 0 and cond = 1. We will address
this issue in the scheduler of the HLS.

"4 "5

"6

778

"8

94

774

"8

"8

775

776
"8

94

778:"8

778:"4 778:"5

778:"6

774:"8

775:"8 775:"4

776:"8

774:"4

!"#$%&

!"#$%'

;8

;4

;5

;6

;<

;=

;>

775:"4

775:"4

;?

;@

!"#$%' !"#$%&

1A3%BCDE 173%D;FC

$()(*+,"-
."#)/",*+,"-
0/(#!1*"23/()4"#
4#5)/6!)4"#5

Fig. 2. An example for a (A) CDFG and a possible FSMD (B).

!"#

$$%&
'$()*+,-./

0+1*2/3412*#)0+5. 0+1647820,

!09.5:,.;
<!&"'12./=.5432.

/.>/.*.12324+1

?3,310./

Fig. 3. Extract of the LegUp HLS scheduler tool chain. We added the
Balancer module and annotations into the config.tcl

SDC scheduling: The underlying scheduler of our work
is the SDC scheduler [9]. SDC expresses the scheduling
constraints as a set of integer difference constraints. The set of
constraints is solved by an integer linear programming (ILP)
solver. The general format of the constraints is

∑
i svi ≤ b,

for scheduling variables svi, and the constraint b.
The most important variables we consider in this paper are

the start (svbeg(i)) and the end (svend(i)) states of operations
i ∈ Op. The difference constraints allow to express control
and data dependencies, such as

svbeg(BB1.i2)− svend(BB1.i1) ≥ 1,
latencies, such as

svend(BB3.i2)− svbeg(BB3.i2) ≥ 3,
as well as resource and timing constraints. The typical opti-
mization criterion of the SDC scheduler is to minimize the
total execution time, i.e. minimize the sum of the timings of
the scheduled operations: min

∑
v∈Vop

svbeg(v). The result is
the FSMD in which the scheduling constraints are satisfied
and all operations are assigned to states.

III. BALANCING EXECUTION PATHS

In this section we add new scheduling constraints and
variables to balance the execution time of different paths in the
FSMD. We extend the tool chain of the LegUp open source
HLS tool and its SDC scheduler. As highlighted in Fig. 3,
which outlines the LegUp tool chain, we add a Path Balancer
module parallel to the SDC module. Like the SDC module,
the Balancer uses the intermediate code representation of
the C program, generated by LLVM, and adds scheduling
constraints that are solved by an ILP solver to generate a
preferable schedule. In this section we discuss the Balancer
and the required annotations in the C-code and the external
configuration file config.tcl that helps to parametrize the
synthesis process.

A. Scheduling Variables for BBs
The SDC scheduler performs the scheduling for each BB

separately, so that timings for operations within a BB are fixed.
However, BBs might be executed earlier or later depending on
the run-time branch decisions. To balance executions paths in
this environment, it is our aim to instruct the scheduler to
add idle states into shorter BBs, so that all possible execution
paths that follow a security-related branch require an equal
amount of clock cycles. To balance the execution time of

2016 IEEE 34th International Conference on Computer Design (ICCD) 453

BBs, variables for the relative start and end time of BBs are
required. Therefore we add new scheduling variables:

• svbeg(BBi) is the relative start time of basic block i,
which is bound to the earliest start state svbeg(op) of any
operation op ∈ BBi

• svend(BBi) is the relative end time of basic block i,
which is bound to the latest end state svend(op) of any
operation op ∈ BBi

• latency(BBi) is the total execution time of basic block
i, which is difference between end and start time of BBi:
latency(BBi) = svend(BBi)− svbeg(BBi).

The three new variables facilitate a range of options to
constrain the execution time. For instance, by constraining
latency(BBi) to a certain value, we enforce the relative
difference of start and end state of the BB, which in turn
constrains the assigned state for the first and the last operation.
Therefore, the scheduler has to insert idle states, if latency
exceeds the number of actual operations.

B. Static BB Latency Constraints
Assumed the identifiers of the BBs and the required states of

each BB are known, the latency of the BBs can simply be con-
strained by defining a fixed latency variable. Practically that
can be achieved by adding an annotation in the config.tcl
configuration file. config.tcl is evaluated in the Balancer,
so that the parameter

set_parameter Cycles_BB_i n
defines latency(BBi) = n, i.e., the latency of BBi is
constrained to n.

One advantage of the direct BB annotations is that it does
not require changes of the C code. However, the identification
of BB-id in practice is non-trivial as it requires insight into
enumerations of the intermediate LLVM representation.

C. Automatic Path Balancing
Now we discuss approaches that do not need that detailed

low-level knowledge. Instead we balance execution paths
that follow a branch automatically. First, we consider paths
consisting a single BB only, then we describe an algorithm to
identify and annotate paths with nested sub-branches.

1) Balancing single BB-Paths: Execution time variability
are generally caused by conditional branches such as

if cond then BBx else BBy,
so that either BBx or BBy are executed, depending on
condition cond. Considering that binary structure, we can
constrain the latency of the two BBs with the scheduling
constraint latency(BBx)− latency(BBy) = 0.
The constraint enforces the faster of the two BBs to extend
its latency and add idle cycles, because the BB with the
higher latency cannot reduce its latency without violating other
scheduling constraints. In case of the example in Fig. 2, we
would enforce that the latency of the two BBs following
the conditional statement in BB1 are equivalent, that is,
latency(BB2) − latency(BB3) = 0. Since BB3 requires 3
cycles and BB2 needs 2 cycles, this constraint would force
BB2 to add one idle state.

The BBs of the two paths do not need to be addressed
directly, when we label and identify the conditional statement
in the C code, and balance the following two BBs.

2) Balancing Paths with Sub-Branches: For systems con-
taining nested branches in the paths that need to be secured, a
manual annotation is not trivial, since we need to ensure the
equivalent latencies of all possible execution paths. Therefore,
starting from the annotated security-related branch statement,
we need to

1) identify the earliest point of reconvergence,
2) identify all adjacent BBs between the secure branch and

the point of reconvergence, and
3) tie the schedule for all pairs of adjacent BBs: i.e.

svbeg(BBdrain)− svend(BBsource) = 1.
The requirements can be implemented, applying the BB

graph structure from the LLVM intermediate representation.
We achieve the timing invariance by extending the schedules
of each separate BB, so that all feasible execution paths result
in the same number states.

IV. EVALUATION

We implemented the presented techniques, i.e. the support
for the timing annotation, the balanced scheduling, and the
verification for the LegUp HLS tool chain and applied it to
two generic benchmark applications and two cryptographic
systems. We compare systems that were synthesized with and
without the path balancing. The evaluated systems are:

• the Max that computes the maximum of two 32 bit
numbers,

• the SRA algorithm to compute an approximation for√
a+ b, while the assumed secret is b,

• the 2048-bit modular exponentiation (xe mod p) of the
RSA crypto algorithm, with the secret exponent e, and

• the 233-bit (kP) point multiplication of the ECC crypto-
graphic algorithm [5], with the secret factor k.

For ECC and RSA we used pre-synthesized units for the
algebraic operations in the finite field, which means that the
complex multipliers were not synthesized in the HLS process.

Each system was synthesized with three settings:
1) No annotations (NOA), i.e., the original design,
2) Static balancing (STA), as discussed in Sec. III-B, and
3) Automatic path balancing (APB), discussed in Sec. III-C.
The run time was measured empirically by applying various

random test inputs, including data inputs with all bits set
to 0 and all bits set to 1. We provide the data for the
technology-dependent properties as percentage in relation to
the original design. The systems were synthesized for an
ALTERA Cyclone V FPGA, simulated with Modelsim 15.
The area is based on the reported FPGA utilization, the power
consumption is estimated using the Quartus PowerPlay tool.
The synthesis time includes the required time for the HLS but
does not include time for hardware synthesis and mapping. The
experiments were conducted on a i7 PC with 16GB RAM.

In Table I we see that the execution time varies for all of
the original designs. That means that all tested original designs
contain timing side-channels that might be exploitable.

454 2016 IEEE 34th International Conference on Computer Design (ICCD)

TABLE I
SYNTHESIS, EXECUTION TIME, AND VERIFICATION RESULTS.

Design case synth execution time area longest path power
time [sec] [cycles] [%] to original design

Max
NOA 4 10-11 - - -
STA 4 11 =0.0 =0.0 -0.5
APB 4 11 =0.0 =0.0 -0.5

SRA
NOA 4 23-26 - - -
STA 4 26 =0.0 =0.0 -0.2
APB 4 26 =0.0 =0.0 -0.2

ECC
NOA 6 12952-13416 - - -
STA 6 13414 +0.0 =0.0 -0.0
APB 7 13414 +0.0 =0.0 -0.0

RSA
NOA 8 0.1-1.6mio - - -
STA 9 1,598,356 +0.2 =0.0 -5.2
APB 9 1,594,260 +0.2 =0.0 -5.2

The execution time for the annotated designs is invariant
for all tested designs. For the RSA case the execution time
for the static annotation is slightly larger than the one for the
automatic balancing. This is caused by the fact, that without
complete knowledge of the basic blocks and their operations,
a manual annotation leads to wrong, unsatisfiable, or non-
optimal schedules, which is a known limitation of manual
annotation approaches and motivated our work towards the
automatic balancing. It should be noted that with manual fine
tuning the static approach could result in the same figures as
the automated annotations.

Overall we see that the average execution time of the
balanced designs is clearly higher than the original designs,
while the worst case execution times are similar to the
original designs. That observation is not surprising since the
fundamental idea of our work is the addition of idle states
to balance execution paths. Therefore the additional run-time
is a trade-off for security, that is already know for low-level
countermeasures such as [6].

Performance and Overhead: In general the measured over-
heads of synthesis time, area, longest path, and power con-
sumption are negligible. The synthesis time increases by up
to 10%. The increase is expected and is caused by processing
time in the added Balancer module, as well as for additional
constraint processing in the ILP solver. We expect that at
tighter integration of the Balancer and the SDC scheduler
could reduce the overhead further.

The longest path, is not affected by the path balancing for
any of the tested designs. This result was expected because
the longest combinatorial path typically is part of the data
path which should not be affected by the added complexity of
the control path.

The added states in the control path cause the small increase
of area for the synthesized design. Overall the area is only
affected marginally, which also means that, at least for our test
cases, the idle-cycle-imposed reduction of resource utilization
did not lead to any reduction of functional units or registers.

The power consumption is affected marginally, showing a
small reduction of average power consumption, most notable
for the RSA design. This behavior is expected since idle states
naturally reduce the power consumption of a system.

V. CONCLUSIONS

High-Level Synthesis (HLS) is an important technique to
improve the quality and productivity of designing integrated
circuits (ICs). In this paper we have shown that HLS is
also suitable to facilitate resistance of an IC against timing
attacks, without the need for the designer to address the timing
manually in a low-level hardware description language. We
have shown how a system specification in C-code can be
translated to an HDL description that provides time invariance
on all security-related paths of the design.

Key contribution for the time invariance is the generation
of new scheduling constraints, which reflect annotations re-
garding the timing of security-related branches and execution
paths. Integrated in an HLS tool chain the scheduling con-
strains are considered in the schedule generation and result
in time-balanced control paths. One strength of the presented
approach is the compatibility to established HLS optimizations
since we solely add scheduling constraints without interfering
with other synthesis steps.

The paper outlined a practical implementation of the frame-
work in the open source LegUp HLS tool chain. The practical
evaluation for a range of benchmark applications as well as an
Elliptic Curve Cryptography (ECC) and RSA implementation
could demonstrate the practicability as well as a negligible
overhead for synthesis time, as well as area overhead, longest
path, and power consumption of the synthesized designs.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation under NSF grant numbers 1563652 and 1136146.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems,” in Advances in CryptologyCRYPTO96, 1996, pp.
104–113.

[2] B. Mao, W. Hu, A. Althoff, J. Matai, J. Oberg, D. Mu, T. Sherwood, and
R. Kastner, “Quantifying timing-based information flow in cryptographic
hardware,” in International Conference on Computer Aided Design (IC-
CAD), 2015.

[3] X. Fan, S. Peter, and M. Krstic, “Gals design of ecc against side-
channel attacks - a comparative study,” in Power and Timing Modeling,
Optimization and Simulation (PATMOS), 2014.

[4] R. S. Chakraborty and S. Bhunia, “Harpoon: an obfuscation-based soc
design methodology for hardware protection,” Computer-Aided Design of
Integrated Circuits and Systems, IEEE Transactions on, vol. 28, no. 10,
pp. 1493–1502, 2009.

[5] J. López and R. Dahab, “High-speed software multiplication in
f2m,” in INDOCRYPT, 2000, pp. 203–212. [Online]. Available:
citeseer.csail.mit.edu/lopez00highspeed.html

[6] M. Rostami, F. Koushanfar, and R. Karri, “A primer on hardware security:
Models, methods, and metrics,” Proceedings of the IEEE, vol. 102, no. 8,
pp. 1283–1295, 2014.

[7] W. Meeus, K. Van Beeck, T. Goedemé, J. Meel, and D. Stroobandt, “An
overview of todays high-level synthesis tools,” Design Automation for
Embedded Systems, vol. 16, no. 3, pp. 31–51, 2012.

[8] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “Legup: An open-source high-
level synthesis tool for fpga-based processor/accelerator systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13, no. 2,
p. 24, 2013.

[9] J. Cong and Z. Zhang, “An efficient and versatile scheduling algorithm
based on sdc formulation,” in Proceedings of the 43rd annual Design
Automation Conference (DAC), 2006, pp. 433–438.

2016 IEEE 34th International Conference on Computer Design (ICCD) 455

