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Abstract—Cyber-Physical Systems (CPS) are composed of
computation, networking, and physical processes. Model-based
design is a powerful technique to apply mathematical modeling
in CPS design. A model of a physical system is the description of
variations in some aspects and properties of the system such
as motion, velocity, and pressure. The variations of physical
quantities such as motion, velocity, and pressure as a function of
time or space may be captured as a set of Ordinary Differential
Equations (ODE). As such, system engineers model physical
problems using mathematical equations, and then solve these
equations to study the behavior of the target system. Therefore,
fast executable models of physical systems are required espe-
cially for Model-based Predictive Control (MPC) algorithms or
real-time Hardware-In-the-Loop (HIL) simulations. A complex
physical model may comprise thousands of ODEs which pose
scalability, performance and power consumption challenges. One
approach to address these model complexity challenges are
model-to-model transformation, and frameworks and tools that
automate their implementation and development. In this paper,
we present a framework to generate a Harmonic Equivalent
State (HES) Machine model of the physical systems. One of the
merits of the proposed state machine-based model is that the
state machines can eliminate execution of compute-intensive and
iterative tasks for describing the behavior of the physical systems.
The model accommodates reconfigurable parameters that allow
the user to have tradeoff between accuracy and execution time
in CPS design. For validation purposes, we compare our model
performance with state-of-the-art models in terms of execution
time and accuracy. The simulation results indicate that our
generated HES model executes 38% faster than ODE-based
equivalent model with same level of model accuracy.

Index Terms—CPS, Modeling, Simulation, Model-Based De-
sign, Model Generation, State Machine, FFT

I. INTRODUCTION

Model-based design in Cyber-Physical Systems (CPS) pro-
vides abstraction and modeling techniques to integrate the
dynamics of the physical processes with software and commu-
nication components. As opposed to desktop computing, CPS
should be dynamically reconfigurable and adapt to changes
in the environment. Application-specific disturbance models
may be included to predict the effect of unknown physical
disturbances that perturb system behavior and incorporate
these effects on the input and state variables for control
system design. Complex CPS applications such as in industrial
machines, land vehicles, medical equipment, spacecraft, jet
engines require new computer-aided methods for modeling,
simulation and offline design. These methodologies are influ-
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enced by the need for lower time to market and higher quality,
reliability and safety for the CPS design.

In the literature, some research has applied Hardware-in-
the-Loop (HIL) real-time simulation as a technique to improve
estimation accuracy and validate the developed strategies. In
real-time simulation methods, the input and output signals
show the same time-dependent values as the real dynamic
system. The HIL technique aims to model the real world
scenarios in an abstracted environment in which the real
physical system (plant)” is replaced with the ”simulated phys-
ical system”. The models of the physical systems may be
employed to emulate their real behavior with regards to the
laws of physics and enable execution of test scenarios that
would be prohibitively dangerous in a real system. Moreover,
the physical model should account for the impact of measur-
able and unmeasurable intruding components caused by the
surrounding environment (e.g. wind, noise, etc.) in order to
evaluate and verify the robustness of the system under test.
Therefore, dynamic model reduction in terms of accuracy may
benefit HIL in emulating real-life scenarios during testing and
verification. Figure 1 illustrates the application of a real-time
HIL simulation to test the performance of the Controller Unit
in a closed-loop powertrain system model [1]. The Power-
train block includes a group of fully assembled components,
e.g. engine, transmission, drive shafts, differentials, etc., that
generate power and transfer it to the road surface. The power
consumption in the loop is also dependent on the speed of the
vehicle which may be modeled as a time-varying variable in
a Driving Route Model block. For this purpose, the standard
driving cycles such as NEDC, ECE and UDDS [2, 3] as a set
of sampled data from the environment may be applied.
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Fig. 1. Hardware-in-the-loop testing for power train system model.

Another use of model-based design in CPS application is
Model Predictive Control (MPC). MPC systems are a class of



control algorithms that estimate the behavior of the physical
system under control through the use of computational models.
The control inputs are optimized to drive the predicted out-
puts of the model towards the desired trajectory. Closed-loop
performance of MPC algorithms is directly correlated with
the accuracy of the physical model. Two general techniques
to eliminate the steady-state offset error in the closed-loop
systems are: 1) including the tracking error in the objective
function of the controller, 2) augmenting the predictive model
with a data-based disturbance model [4]. Most industrial MPC
applications add a constant step disturbance to the output of the
physical model to consider the impact of the disturbance in the
closed-loop system. The work in [5] proposes a robust MPC
algorithm in which a linearized model of a ship is integrated
with a wind disturbance model to solve the problem of the
ship’s control actions in the presence of wind disturbance.
This approach requires the user to design a disturbance model
and integrate it in the loop with predictive model of the
physical system [6]. The state-of-the-art modeling techniques
for HIL simulations and MPC applications followed by our
contributions are summarized in Section II.

II. RELATED WORK

In control system study, the model of the physical system
is developed to conform with dynamical system analysis and
control system design requirements; that is, simplification and
adaptation with respect to state of the system is required [7].
In model-based design applications such as MPC or real-
time HIL simulations, the complexity of the model under
control has direct influence on the global performance of the
system. Specifically, different levels of complexity for the
target physical system shall be provided by the user for a
specific application. The work in [8] proposes an integrated
library of electro-hydraulic models with different complexities.
The purpose of the work is to provide the appropriate model
with regards to the domain and timing requirements in design-
time. However, run-time dynamic disturbance caused by the
environment remains neglected.

Complex physical system models may be implemented as
thousands of ODEs. The ODE description of a system requires
approximations via solver methods such as Euler and Runge-
Kutta, to be suitable for computations in computing devices
[9]. The demand for more accurate and mathematically sound
CPS solutions, cause an increase in resource utilization and
energy consumption [10]. Research in model-based design
techniques for CPS have introduced solutions to overcome
some of the challenges induced by the complexity of ODE
models. One approach is to implement the ODEs on Field-
Programmable Gate Arrays (FPGA) using Lookup Tables
(LUTs) to speed up simulation and enable parallel execu-
tion [11]. In general, even though the FPGA implementation
of ODE models may improve the execution efficiency for real-
time applications, it has implementation challenges regarding
limited resources especially for complex ODE models. Hence,
a better approach of modeling and solving of ODE may be
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required to reduce the complexity not only on FPGAs but
also on general CPUs.

A state space representation of ordinary differential equa-
tions is described in [12] to obtain a discrete-time solution
prior to FPGA implementation. Here, a state space meta
model is introduced to model the ordinary differential equation
and the respective discrete-time solution. Atlas Transformation
Language (ATL) [13] is employed as the framework to imple-
ment the model transformation. Here in this paper, the exper-
imental results are based upon simple first order differential
equations and their technique may not be applicable to more
complex ODE physical models. Moreover, the proposed meta
models may still carry the complexity of thousands of ODEs,
resulting in an implementation overhead that is prohibitive in
most constrained system architectures.

The work in [14] proposes a state-based heart model
generated from real specifications to be used in a closed-
loop system. Implantable cardiac pacemakers monitor and
repair the abnormalities in heart rhythms. HIL simulation of a
pacemaker is essential to test and verify its functionality with
respect to a heart model prior to real implantation. The heart
model is implemented in Simulink environment and the HDL
coder toolbox is used to generate Verilog code for hardware
implementation. The proposed approach is application specific
which requires user expertise to implement the model of the
heart. Moreover, relying on the HDL coder toolbox for more
complex models may require fundamental modifications in the
generated Verilog code.

One solution to challenges that arise from the complexity of
the ODE-based physical models is frameworks and associated
tools that automate model generation and transformation for
the target application [15]. Model transformations conduct
automated and semi-automated mapping of one or couple of
models into another alternative models in order to incorporate
flexibility and compatibility in model-based design for CPS
[16].

In this paper we present an automation framework to
generate dynamic state machine model of a physical system
augmented with a disturbance feature for Cyber-Physical Sys-
tems (CPS) applications. The model accommodates reconfig-
urable parameters that allow the user to have tradeoff between
accuracy and execution time in CPS design. The accuracy
of the physical signal may get adjusted during runtime to
adopt to the system performance and robustness in the case
of sudden changes that may impact the system dynamics. Our
contributions in this work can be summarized as follows:

1) Designing a dynamic reconfigurable state machine model
for targeted physical systems.

2) Providing tunable parameters to adjust the granularity of
the generated model for adaptation to coarse-grained time

critical situations or fine-grained safety critical scenarios.

3) Develop an automated framework to generate the model
and its executable C code. The code may be implemented

in a hardware-in-the-loop for final system testing and inte-



gration. Design objectives, model accuracy, and execution
time, facilitate the evaluation and verification of the model
for embedded systems implementation.

The rest of the paper is organized as follows; Section III
describes the proposed automated framework that captures
physical systems as a set of generated state machine equiva-
lents. We demonstrate the performance of our framework using
two benchmarks and present the results in Section IV. Finally,
we state our conclusions in Section V.
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Fig. 2. High level architecture of the proposed framework illustrates the HES
machine model generation process.

III. METHODOLOGY

In this work, we propose Harmonic Equivalent State (HES)
Machine model generation framework that captures sampled
data of a physical signal as the input in respective time win-
dows. HES Machine generates reconfigurable state-machine
model of the physical system with an intrinsic disturbance
feature to adjust the overall model accuracy with respect to
proposed tuning parameters for dynamic accuracy. Moreover,
the execution time of the model may be adjusted in trade-
off with accuracy in order to adapt to coarse-grained time
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critical situations or fine-grained safety critical scenarios. The
main contribution of the proposed modeling framework is the
inclusion of frequency domain properties in signal synthesis
to adopt the reconfigurability feature to the model. Also, as
opposed to ODE equivalents, the proposed framework do not
perform compute-intensive and iterative tasks to solve the
proposed physical model.

The high-level architecture of the proposed framework is
depicted in Figure 2. The whole framework is based on the
concept of signal decomposition and synthesis to generate
a reconfigurable state machine model of a target physical
system. The input to the framework is sampled signal of size
N. Fast Fourier Transform (FFT) algorithm is employed to
decompose the signal and derive the frequency information. A
synthesis algorithm is presented to integrate the decomposed
components of the physical signal in the form of a set of
concurrent state machines. The synthesis algorithm employs
(N/2+41) inverse of the signal harmonic frequencies and
respective FFT coefficient values, as the periods and output
magnitudes of concurrent state machines respectively. Band-
pass filter is used to translate the output square waves of
the concurrent state machine models into sinusoidal signals.
The sinusoidal output signals, one per state machine, represent
the signal harmonic components. Finally, the harmonic com-
ponents are integrated to generate a dynamic state machine
model for the target physical system. The decomposition
(analysis) and synthesis algorithms are described in details in
the following sections.

A. Decomposition

The input to the proposed framework is N number of
samples for a given physical signal in time windows of length
T. The FFT algorithm is used to derive the frequency spectrum
of the physical signal on each time window. Later on, this
frequency domain information is employed to synthesize the
signal into a state machine model representation.

1) Frequency Domain Information:

The FFT algorithm on a sampled signal of size N decom-
poses the signal into a series of (N/2+1) sine and cosine
wave components which are referred to as basis functions.
The process of calculating the frequency domain information
of the signal from time domain representation is called decom-
position and the inverse process is signal synthesis [17]. The
basis functions are a set of sine and cosine waves oscillating at
signal harmonic frequencies. For a sample signal represented
as array x[] of size N in time domain, the FFT algorithm cal-
culates the frequency domain signals X[ as two arrays of size
(N/241). The arrays contain the coefficients (amplitudes) of
the sine and cosine components as imaginary part imX[] and
real part reX|[] of X[ respectively for harmonic frequencies
frX]|. The output values of the FFT algorithm, frX[], reX[],
and im X[ are defined as input parameters for the subsequent
synthesis process.



B. Synthesis

The synthesis function for sampled signal z[i] of size N
is represented in equation 1 [17]. The arrays reX|[] and
imX]|| are the normalized coefficients of the sine and cosine
waves with index k running from 0 to N/2 for the respective
harmonic frequencies.

N/2 N/2
x[i] = Z reX [k|cos(2nki/N) + Z imX|[k]sin(27ki/N)
k=0 k=0

6]

1) HES Machine Synthesis Algorithm:

State machines can be used to break complex systems into
manageable states and state transitions. Therefore, the state
machine model of computation fits the synthesis function
components as concurrent state machines with time-interval
behavior. A global clock conducts the trigger to update the
state variables and output actions. The components of the
physical signal may all be generated by a five-state syn-
chronous harmonic state machine (HES Machine).
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Fig. 3. 5-State synchronous state machine with the inverse of the signal
harmonic frequency as the period.

The architecture of the five-state synchronous harmonic
equivalent state machine is depicted in Figure 3. Each state
machine is designed to represent a harmonic frequency com-
ponent of the physical signal. Outputs of each state machine
are two square wave signals approximating the sine and cosine
components in equation 1. The square waves will later be
integrated into the synthesis function. Inverse of the harmonic
frequency is the period and FFT coefficient values are the
magnitudes for the corresponding square waves. One period
of the square wave signals is divided into four phases that
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are represented by the outputs of the states S1, S2, S3, and
S4. The transitions between theses four states and phases are
triggered at each Period/4 elapse of time. Finally, (N /2+1)
harmonic equivalent concurrent state machines are integrated
to synthesize the physical signal. We have utilized this five-
state synchronous state machine architecture for our model to
highlight the strength of state machines in representation of
physical systems. Other state machine designs may be applied
for the purpose of this paper and are in queue for our future
work.

Algorithm 1 illustrates the structure of the Tick function for
the executable state machine model of computation. HES[i]
represents a data structure that includes associated data val-
ues per harmonic state machine. Here, ¢ is the index for
harmonic state machine ranging from 0 to (IN/241). The
parameter HES;,, stores the number of concurrent harmonic
state machines which are synthesized in a signal synthe-
sis process and may be selected as framework parameters
for design configuration. The output array values computed
by the FFT algorithm, reX|[] and imX][] and frX]], are
placed in the HES data structure to represent HES[i].real,
HES[i].imag and HES]i].period respectively. The variable
HES[i].elapsedTime is tracked on each call of the Tick
function. When (HES[i].elapsedTime >  HES[i|.period/4)
condition evaluates to true, a state transition occurs and an
output action is determined with respect to the current state.
N samples of signals are fed into the HES machine model
generator in intervening time windows of 7'. Each execution
of the Tick function updates the HES[i].elapsedTime variable
by adding 7,.; values. The values for the new time window are
evaluated when the HES|[i].elapsedTime variable surpasses
the value 7' and resets to zero.

The generated square waves are to be translated into
sinusoidal equivalents to represent the sine components of
the original physical signal. A band-pass filter is applied to
attenuate the unwanted square wave frequencies. In future
work, we plan to apply further measurements to compensate
for filter error. (N/2+1) sinusoidal signals are integrated to
synthesize the decomposed signal according to Equation 1.
The tool generates an executable C code in state machine
representation for the physical signal to be implemented on
a target platform.

2) HES Machine Tuning Parameters:

Two tuning parameters HES;,, and T, are proposed to
adjust the HES Machine model in order to meet system
requirements (e.g., accuracy and timing).

1) Machine Size (HES;;) is the number of harmonic
concurrent state machines to be integrated during the
synthesis process ranging from 1 to (N/2+1). The model
accuracy may be adjusted with respect to this parameter
by inclusion/elimination of certain harmonic frequencies.
Time Resolution (7;.) parameter indicates the small-
est time unit in the proposed framework by which the
generated state machine will be executed. The proposed
framework tracks the value of 7T, as an actual wall-clock

2)



Algorithm 1: Global Tick Function
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Input: index of the state machine ¢
global variable HES

global variable magnitudel, magnitude?2
const timeResolution

switch HES[i].state do

case —1
| HES][i].state = S1

case S1

if HES[i].elapsedTime > HES[i|.period/4 then
HES[i).state = S2
HES]i|.elapsedTime = 0

else
| HES[i].state = S1

case 52
if HES[i].elapsedTime > HES[i|.period/4 then
HES]i].state = S3
L HESi].elapsedTime = 0

else
| HES[i].state = S2

case S3
if HES[i].elapsedTime > HES[i|.period/4 then
HES]i].state = §4
L HES[i).elapsedTime = 0

else
| HES|[i].state = S3

case 54
if HES[i].elapsedTime > HES[i|.period/4 then
HES]i].state = S1
L HES]i|.elapsedTime = 0

else
| HES][i].state = S4

oljherwise
| HES[i].state = —1

switch HES[i].state do

case S1
magnitudel [i||[HES|i].N1] = HES|i].real x 1.0
| magnitude2|i|| HES|t].N1| = HES|t].imag x 1.0
case S2
magnitudel [i||HES|i].N1] = HES|t].real x —1.0
| magnitude2|i|| HES|t].N1| = HES|t].imag x 1.0
case S3
magnitudel [t||HES|i|.N1| = HES|i|.real x —1.0
| magnitude2|i|| HES|1].NI| = HES|i].imag x —1.0
case 54
magnitudel [i||HES|i].N1] = HES|i].real x 1.0
| magnitude2|i|| HES|1].NI| = HES|i].imag x —1.0
otherwise
magnitudel [i||[HES|i].N1] = HES|i].real x 1.0
| magnitude2|i|| HES|t].N1| = HES|i].imag x 1.0

HES [i].elapsedTime+ = timeResolution

HES[i] .NI + +
return
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(real) time. The parameter 7}, specifies the timer values
for the periodic programmable interval timers to trigger
the interrupt service routine (ISR).

IV. EXPERIMENTAL RESULTS

A. Implementation and Setup

Simulation experiments are conducted using data for real
physical signals and the global clock of the state machine
model is updated by interrupt handlers of the operating system.
The framework is implemented using C/C++ programming
language in order to enable it to be highly portable for
compilation and execution. The process from data acquisition
to model generation is automated and reconfigurable with
respect to model parameters. Our specific experiments were
performed on a PC with a quad-core Intel Core i5 and 8
GB of DDR3 RAM. The performance of the proposed model
generation framework is evaluated using two examples of ECG
signal and NEDC signal. It needs to be noted that one of the
merits of our framework is its applicability to any example
and application of physical signals.

« ECG Signal: The electrocardiogram (ECG) digitized signal
is provided by PhysioBank [18] as the reference signal. The
signal consists of 7200 double-sized sample values recorded
with 720 Hz sampling frequency and 12-bit resolution in
T'=10-seconds window of time. The model is reconfigured
at run-time to serve for HIL testing of implantable medical
devices such as pacemaker, smart ECG monitor, etc. [19].

« NEDC Signal: The New European Driving Cycle (NEDC)
is selected from driving cycle standards (ECE, UDDS, etc.)
that are typically employed in model-based vehicle design
applications [2]. The NEDC signal contains vehicle velocity
data that is captured from a Simulink block [20]. The
signal is 8192 double-sized values sampled at frequency of
10 Hz in T'=819.2-seconds window of time. The generated
dynamic HES Machine model may be reconfigured at
run-time to emulate the system behavior in presence of
environment disturbance or mis-prediction of trajectory.

The generated signal models of the proposed framework
for ECG and NEDC examples are compared in Figures 4(a)
and 4(b) with their original signals. The results justify the
validity of our proposed model generation framework for
signal synthesis and state machine model generation with
average of 0.1% error in model accuracy.

B. Analysis and Verification

1) Performance Metrics:

Two performance metrics of execution time and precision
are considered for comparing the performance of our HES
Machine model with state-of-the-art models.

« Execution Time: is the time required by the computer to
perform a given set of computations.

+ Root Mean Squared Error (RMSE): is the quality factor
to measure the error between the values evaluated by the
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2) Parameter Analysis:

The performance of the proposed state machine model
generation framework is evaluated under variations of two
parameters by which the model may be configured:

1) Time Resolution (7;,): Figure 5(a) illustrates the change
in model accuracy for NEDC and ECG examples with
respect to variations in 7)., parameter values. The results
shows improvement in model accuracy for smaller values
of T, in case of need for finer physical model.

2) Machine Size (HES;;;.): the variations in model accuracy
with respect to different values of parameter HES;,, is
illustrated in Figure 5(b). Here, The accuracy of the model
improves for larger values of HES;;,.. In our experiments,
the harmonic frequencies and their corresponding state
machines are sorted in ascending order to select HESj;;.
number of state machines for integration. Other selection
algorithms may be applied in accordance with target
application which may further improve the precision of
the generated model.

3) Comparison to State-of-the-Art:

We evaluated the performance of the proposed framework
and generated model in comparison with an ODE-based ECG
signal generator, ECGSYN [21]. The model in [21] emulates
the quasi-periodic waveform of the ECG signal by tracing
around a limit cycle in x-y plane. The ECG signal is gen-
erated by using a series of exponentials formulated to follow
PQRST-waveform in the z-direction. (P, @, R, S, T) represent
the peaks in ECG signal for one complete heartbeat. The
model of motion dynamics is defined as a set of following
differential equations

T=ar—wy 3)
4)
)]

Y = axr + wy

2

1€P,Q,R,5,T

=

(l,A@z exp(—AHiQ/QbiQ) — (Z — Z())

where w is the angular velocity, « equals to (1 — /22 + y?)
and Af equals to (6 — 6;)%2n. Also, § = arctan(y, z)
and a; and b; are model coefficients. The fourth-order Runge-
Kutta method [22] is applied to solve the ordinary differential
equation model. The performance of HES and ECGSYN
models in terms of execution time and accuracy is evaluated
for time interval of 7=16 seconds. The functions involved in
execution of the HES model are FFT function, state machine,
band-pass filter, and integration for signal synthesis. The
experimental results in Figures 6 and 7 illustrate the behavior
of the generated HES model in terms of execution time and
accuracy based on variations in framework parameters: 7
and HES;;,.. The execution time overhead of the generated
HES model is attributed to three main functions: state ma-
chine, filter and integrator. The figure shows variations in
execution time for different model parameter configurations.
Table I shows the execution time values for state-of-the-art



model ECGSYN with respect to corresponding accuracy of faster than ECGSYN model. In future work, we plan to take

the model. The frequency f; represents the step size for the
ODE solver and is considered as the model parameter to adjust
the accuracy accordingly.

0.18
0.16
0.14
0.12
0.10
0.08 &
0.06 =
0.04

0.02

0.00

(volts)

RMS

Execution Time (sec)

OO RRRNNN
oo DON N

»
QQ

S S S
S

Q

5
N

NN

\
N
. Q

$» \
N S
Q. .
Time Resolution (sec)

B State Machine C—JFilter BB Integration —e— RMSE

Fig. 6. Time complexity and error analysis of the proposed HES model with
respect to “Time Resolution” parameter.

0.09
8.0
7.0
6.0
5.0
4.0
3.0
2.0
1.0
0.0

0.08

RMSE (volts)

Execution Time (sec)

=

50

0.07

100 200 300
Machine Size

I State Machine [—JFilter B Integration —®—RMSE

400 500

Fig. 7. Time complexity and error analysis of the proposed HES model with
respect to "Machine Size” parameter.

The results in Figure 6 shows that the execution time
increases as the model accuracy improves with smaller values
for T}.; parameter. Moreover, Figure 7 show that smaller values
of HES,;. reduce the execution time since less number of
state machines are to be generated and integrated. As shown
in the picture, for HES;;,, larger than a certain value, the
change in model accuracy will be marginally negligible. We
can use this property to improve the execution time for coarse-
grained time critical situations. The generated ECG signal with
fs=720 is considered as the reference signal for HES and
ECGSYN models to be evaluated; that is, this reference signal
is given as the input to our proposed framework to generate
the equivalent of reconfigurable HES model. For fairness of
comparison, the execution time of the proposed HES model is
compared with ECGSYN for the same range of accuracy as
shown in Figure 8. The results for HES model is derived for
HES;;,.=50 which includes 50 harmonics in synthesis of the
generated signal. The experimental results show that for same
level of model accuracy, the HES model may be executed 38%
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measurements to replace the filter for further improvement in
model performance.

TABLE 1
COMPLEXITY ANALYSIS OF THE ECGSYN STATE-OF-THE-ART MODEL
WITH RESPECT TO "FREQUENCY” PARAMETER.

Model f E.xecutlon RMSE (volts)
Time (sec)

720 0.988 0.000
718 0.966 0.178
715 0.960 0.176
710 0.956 0.164

ECGSYN 705 0.949 0.151
700 0.949 0.170
690 0.949 0.179
650 0.911 0.244
600 0.919 0.213

The improvement in execution time is due to the novel
approach to solve the HES model in contrast to ODE models
(ECGSYN). The proposed state machine-based model do not
execute compute-intensive and iterative tasks to describe the
behavior of a physical system. Moreover, concurrent operation
of the state machines are perfectly suitable for intrinsic parallel
characteristics of physical systems. In other words, it allows
multiple sub-state machines to react to a set of events at the
same time. In general, the time complexity of a solver to solve
N samples of ordinary differential equations may grow with
respect to ¢/ N, where ¢’ is a constant factor defined by the
type of the discretization algorithm, numerical ODE solver,
number and order of the ordinary differential equations in the
physical model. On the other hand, the time complexity of
the proposed HES model grows with the term c/N, where
c is determined by the model parameters HES;,, and T,.
Therefore, our HES Machine model is suitable for systems
that are more tolerable against model error in tradeoff for
reduction in execution time. Here, the ECGSYN includes three
simple first-order ordinary differential equations which results
in small value of ¢’. However, we expect that execution of
the HES model equivalent to more complex ODE models
with larger values of ¢’ will present even smaller values for
execution time.

V. CONCLUSION

In this paper, we presented an automated model genera-
tion framework for physical systems in CPSs. The proposed
method utilizes frequency information properties to generate
a dynamic state machine model of the physical system. Two
tuning parameters are provided to adjust the granularity of the
generated model for adaptation to coarse-grained time critical
situations or fine-grained safety critical scenarios. Simulation
is conducted to evaluate performance of the framework and
model using two real physical signals of ECG and NEDC.
Moreover, the generated state machine model is compared
with ODE-based state-of-the-art equivalent model in terms of
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Fig. 8. Comparison of execution time versus error for the proposed model
HES and state-of-the-art ECGSYN.

accuracy and execution time. The simulation results indicate
that our generated model surpasses the state-of-the-art model
by 38% in execution time for same level of model accuracy.
The proposed dynamic state machine system may be an
excellent replacement for complex ODE solvers when used
for testing or embedding CPSs.
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