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Abstract
Most cloud services and distributed applications rely on hash-
ing algorithms that allow dynamic scaling of a robust and
efficient hash table. Examples include AWS, Google Cloud
and BitTorrent. Consistent and rendezvous hashing are al-
gorithms that minimize key remapping as the hash table re-
sizes. While memory errors in large-scale cloud deployments
are common, neither algorithm offers both efficiency and
robustness. Hyperdimensional Computing is an emerging
computational model that has inherent efficiency, robustness
and is well suited for vector or hardware acceleration. We
propose Hyperdimensional (HD) hashing and show that it
has the efficiency to be deployed in large systems. Moreover,
a realistic level of memory errors causes more than 20% mis-
matches for consistent hashing while HD hashing remains
unaffected.

CCS Concepts: •Networks→Cloud computing; •Com-
puter systems organization → Reliability; • Comput-
ing methodologies→Massively parallel algorithms.

Keywords: hyperdimensional computing, brain-inspired com-
puting, consistent hashing, rendezvous hashing, distributed
hash tables, cloud computing, load balancing, web caching.
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1 Introduction
An important problem inmany cloud services and distributed
network applications is the process of mapping requests to
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available resources. Example systems include: load balanc-
ing in cloud data centers, web caching, peer-to-peer (P2P)
services, and distributed databases. Difficulty arises in such
highly dynamic systems because resources join and leave the
cluster at any time, due for example to cloud elasticity [1],
server failures, or availability of peers in a P2P network. It is
often desirable to distribute requests evenly among resources
and to minimize the number of redistributed requests when
a resource joins or leaves. A non-uniform mapping results
in overloading of resources and critical failure points.

The simplest hash table solves the mapping problem using
modular hashing. Despite having a great lookup time com-
plexity of O(1), a change in table size (number of available
resources) requires virtually all requests to be redistributed
due to the modulo operation (more details in Section 2).
Consistent hashing [10] and rendezvous hashing [23] are al-
ternative hashing algorithms that minimize redistribution
when the hash table is resized. They prevent resource over-
loading at the cost of increased lookup time—O(log𝑛) and
O(𝑛) respectively.
However, we show that when considered in a dynamic

environment subject to errors and failures (i.e., noise), the
performance of consistent hashing and rendezvous hashing
in minimizing the number of redistributed requests degrades.
Noise can be introduced in many aspects of a system. We
focus on memory errors which can for instance be caused by
soft errors in the form of single event upsets (SEU), multi-cell
upsets (MCUs) or hard errors [5, 21]. MCUs, or burst errors,
occur during a single event and are becoming more common
as the feature size decreases. For 22 nm technology MCUs
are estimated to be 45% of all SEUs [6]. Moreover, analysis
of memory failures in Google’s data centers revealed that
each year a third of the machines experiences a memory
error [19]. More robust hashing alternatives make it pos-
sible for cloud providers to perform fewer memory swaps,
reducing operation cost.
Hyperdimensional Computing (HDC) is an inherently

robust emerging computational model developed by Kan-
erva [9] inspired by neuroscience. HDC tries to emulate
brain-like computing by representing information using
high-dimensional random vectors, called hypervectors. This
representation shares qualities from biological neural sys-
tems such as robustness and efficiency. Representation and
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transformations of data in HDC are performed over hyper-
vectors of fixed dimensions, allowing for massive parallelism.

Fueled by the demonstrated properties of HDC and the
aforementioned limitations of current hashing algorithms,
we propose Hyperdimensional (HD) hashing, a new HDC-
based dynamic hashing algorithm. HD hashing scales simi-
larly to consistent hashing while proving to be much more ef-
ficient than rendezvous hashing. HDC’s highly parallelizable
operations have been exploited in recent research, showing
that special hardware can make HD hashing far superior
in efficiency (more details in Sec. 2.3). Moreover, we show
that our algorithm is significantly more robust against noise.
With 512 servers and a 10-bit MCU, HD hashing is unaffected
while rendezvous and consistent hashing mismatch 4% and
12% of requests, respectively. With MCUs becoming more
common this poses a risk for critical failures.

Our second contribution is a novel HDC encoding for rep-
resenting a circle in hyperdimensional space, we call these
circular-hypervectors. They are a core component of HD hash-
ing as they provide the mechanism for mapping requests to
servers.

2 Background
2.1 Consistent Hashing
Consistent hashing is a common way of distributing requests
among a changing population of servers [13, 22] (often times,
the problem and the technique are referred to as consistent
hashing indistinctly). The algorithm, which gave rise to Aka-
mai [15], is used in many other real-world large scale appli-
cations such as Dynamo on Amazon Web Services [2] and
Google Cloud Platform [3].

To describe consistent hashing, letℎ(·) denote a hash func-
tion that takes requests as inputs (in practice an IP address
or unique identifier, for example) and 𝑆 = {𝑠1, . . . , 𝑠𝑛} a set of
servers. In modular hashing, a request 𝑟 is simply assigned to
𝑠𝑖 where 𝑖 = ℎ(𝑟 ) mod 𝑛. Instead, consistent hashing maps
both requests and servers uniformly to the unit interval [0, 1],
which is interpreted as a circular interval. Thereafter, each
request is assigned to the first server that succeeds it in the
circle in clockwise order. This assignment is usually done in
O(log𝑛) time using binary search.

2.2 Rendezvous Hashing
The basic idea of rendezvous hashing [23], also known as
highest randomweight (HRW) hashing, is very simple. Given
a hash functionℎ(·) that takes as input a server and a request,
each request 𝑟 is assigned to the server 𝑠𝑖 where:

𝑠𝑖 = argmax
𝑠∈𝑆

ℎ(𝑠, 𝑟 )

Each assignment is therefore done in O(𝑛) time, since it is
necessary to compute the hash of the request paired with
each server in the system in order to compute the maximum
value. In practice, Rendezvous hashing is used less often than

consistent hashing, despite distributing the requests more
uniformly, because of the increased time complexity.

2.3 Hyperdimensional Computing
From a comparative study of computing in animal brains and
computer logic circuits [9], Hyperdimensional Computing
(HDC) emerged as a robust and efficient alternative computa-
tion model. The central observation is that large circuits are
fundamental to the brain’s computation. HDC incorporates
this notion by computing with 10,000-bit words (hypervec-
tors), instead of 8-to-64-bit.
Such hyperspaces (short for hyperdimensional spaces)

have properties that explain certain rich brain properties
that are otherwise difficult to reproduce on computers. For
example, hypervectors encode information holographically,
meaning that each of the thousands of bits contains the same
amount of information, ensuring inherent robustness [9, 25].
In addition to representation, the other crucial part of a

computer system is information manipulation, or arithmetic.
The arithmetic in HDC is based on well-defined operations
between hypervectors, such as addition (bundling), multipli-
cation (binding) and permutation. Another important func-
tion is information comparison, which inHDC usuallymeans
measuring the similarity between hypervectors using the
inverse Hamming distance or the cosine similarity. All those
operations are typically dimension-independent, providing
an opportunity for massive parallelism [11, 17].
Computational efficiency is one of the core motivations

aimed at since the conception of HDC and it is envisioned
for and expected to reach full potential in specialized hard-
ware [9]. In addition to the just mentioned parallelizabil-
ity, optimizations such as in-memory processing promise
to further increase the computational efficiency of HDC [7].
Schmuck et al. [18] apply a series of hardware techniques to
optimize HDC, such as on-the-fly rematerialization of hyper-
vectors and special memory architectures, to improve chip
area and throughput at the same time. Particularly impor-
tant to substantiate the claims we make in this paper about
efficiency (see Section 3), they demonstrate an FPGA imple-
mentation that uses deep adder trees to perform inference
in a single clock-cycle.

3 Hyperdimensional Hashing
HD hashing, illustrated in Figure 1, draws inspiration from
consistent and rendezvous hashing, but seeks a solution that
is both robust and efficient by translating the problem into a
hyperdimensional computing task.

Let 𝑆 = {𝑠1, . . . , 𝑠𝑘 } be a set of 𝑘 servers, 𝑅 = {𝑟1, . . . , 𝑟ℓ } a
set of ℓ requests and 𝐶 = {c1, . . . , c𝑛} a set of 𝑛 > 𝑘 hyper-
vectors. We also denote by ℎ(·) a hash function that takes as
input a server or request. The process of adding servers to
the system in HD hashing is similar to consistent hashing,
but instead of mapping them to a unit interval (see Sec. 2.1),

908



Hyperdimensional Hashing: A Robust and Efficient Dynamic Hash Table DAC ’22, July 10–14, 2022, San Francisco, CA, USA

Figure 1. Illustration of the operation of HD hashing. In this
example, after encoding each of the three servers and two
requests to a circular-hypervector, 𝑟1 is assigned to server
𝑠3, which is the server whose hyperspace representation is
closest to its. Likewise, 𝑟2 is assigned to 𝑠2. Note that, unlike
consistent hashing, the direction of rotation does not matter.

HD hashing assigns (or "encodes" in HDC terminology) each
server to a hypervector. To distribute requests among servers,
HD hashing also encodes each request. Let us represent this
encoding by the function Enc : 𝑆∪𝑅 → 𝐶 . Then, HD hashing
encodes every server and request as follows:

Enc (𝑥) = 𝐶
[
ℎ(𝑥) mod 𝑛

]
(1)

where 𝑥 is either a server or a request and 𝐶 [ℎ(𝑥) mod 𝑛]
denotes the hypervector at position ℎ(𝑥) mod 𝑛 in 𝐶 .

With all servers and requests encoded to the hyperspace,
each request 𝑟𝑖 is mapped to server 𝑠 𝑗 , such that:

𝑠 𝑗 = argmax
𝑠∈𝑆

𝛿
(
Enc(𝑠), Enc(𝑟𝑖 )

)
(2)

where 𝛿 is a given similarity metric between a pair of hy-
pervectors such as inverse Hamming distance or the cosine
similarity. The operation above is the one mentioned in Sec-
tion 2.3, and it is called inference due to the first applications
of HDC in learning tasks. This is exactly the operation that
Schmuck et al. [18] show to be optimizable to the extreme
of a single clock-cycle in special hardware. In other words,
by using hardware accelerators for HDC each mapping in
HD hashing could be executed in O(1) time.

One remaining, but crucial, question is: how do we create
the set of hypervectors 𝐶? Similar to consistent hashing, we
map servers and requests onto a circle. We then map the
request to the server that is assigned to the nearest node on
the circle according to Eq. 2. To accomplish this, we introduce
circular-hypervectors as a way of representing a circle in
hyperspace such that the closer a node is on the circle the
more similar its hypervector. More properties of circular-
hypervectors and the process to create them are described
in the next section.

4 Circular-Hypervectors
To understand circular-hypervectors we first describe ran-
dom and level-hypervectors, both types are used to represent

Figure 2. Pairwise cosine similarities between hypervec-
tors 𝑖 and 𝑗 within different sets of 12 basis-hypervectors.
An alternative visualization in which each hypervector is
represented by a node is shown below. The colors indicate
the similarity with the yellow reference node.

information in hyperspace, a process called encoding. Encod-
ing strategies have already been proposed for various types
of input data, such as images [12], time series [8] and text [14].
The process usually starts by generating a set of randomly
sampled hypervectors that represent discrete atomic pieces
of information (e.g. discretized amplitudes of a signal, values
of a feature, symbols or identifiers). From these so-called
basis-hypervectors more complex objects like the ones listed
above can be encoded by combining and manipulating the
basis-hypervectors using bundling, binding and permutation
operations.

The basis-hypervectors can be correlated with each other
depending on what they represent. For example, consider
temperature. Clearly there is a stronger correlation between
closer temperatures. On the other hand, for symbols such
as letters, this correlation does not necessarily exist. Natu-
rally, the most successful encoding techniques are able to
translate these correlations into hyperspace. For this reason,
categorical data (letters for example) are encoded with in-
dependently and uniformly sampled random-hypervectors,
while scalar information (e.g. temperature) is represented
using level-hypervectors [16].
Level-hypervectors are created by quantizing an inter-

val to 𝑚 levels and assigning a hypervector to each. The
similarity between hypervectors is proportional to the dis-
tance between the intervals. This correlation is achieved by
assigning a random 𝑑-dimensional hypervector to the first
interval, and after this, subsequent intervals are obtained by
flipping 𝑑/𝑚 random bits at each interval. As a result, the
last hypervector is completely dissimilar to the first one.

Circular-hypervectors are an extension to level-hypervectors
that eliminate the discontinuity in similarity between the
last and first interval, as visualized in the similarity profiles
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in Figure 2. By removing the discontinuity, the hypervectors
become a set with circular correlation.
The procedure for generating circular-hypervectors, il-

lustrated in Figure 3 and detailed in Algorithm 1, starts
with a single random-hypervector, uniformly sampled from
the hyperspace of dimension 𝑑 (generated by the function
random_hypervector(𝑑) in the algorithm). From there, in-
spired by the creation of the level-hypervectors, a sequence
of transformations (T) are made to create 𝑛/2 level corre-
lated hypervectors. Such transformations consist of XORing
(also called binding in HDC, represented by the symbol ⊕)
with what we name transformation-hypervectors (t), which
are placed in a queue (𝑄). The second half of hypervectors
are then obtained by performing backward transformations
(T−1): the transformation-hypervectors are popped from 𝑄

(first-in-first-out) and sequentially bound to the current vec-
tor in order to generate the next one.

Figure 3. Illustration of the process to create circular-
hypervectors. The curved arrows represent transformation-
hypervectors being inserted in/removed from 𝑄 .

Algorithm 1: Creation of circular-hypervectors
Input :Two integers 𝑛 and 𝑑 .1
Output :A set {c1, . . . , c𝑛} of 𝑛 𝑑-dimensional

circular-hypervectors.
1 Define an empty queue 𝑄 // Transformation Hv Queue

2 c1 ← random_hypervector(𝑑)
/* Perform forward transformations (T) */

3 for 𝑖 ∈ {2, . . . , 𝑛2 } do
4 t← 0𝑑 // 𝑑-dimensional zeros vector

5 Flip 𝑑/𝑚 random bits of t
6 c𝑖 ← c𝑖−1 ⊕ t
7 Enqueue(𝑄, t)
/* Perform backwards transformations (T−1) */

8 for 𝑖 ∈ {𝑛2 + 1, . . . , 𝑛} do
9 t← Dequeue(𝑄)

10 c𝑖 ← c𝑖−1 ⊕ t
11 return {c1, . . . , c𝑛}

Figure 4. Average request handling duration as the number
of servers in the pool increases.

5 Results and Discussion
5.1 Experimental setup
We have created a purpose build emulation framework to
empirically verify our results. The emulator consists of two
modules, a hash table and a generator. The generator emu-
lates the requests from the outside world being sent to the
hash table. The hash table module reads incoming requests
from a buffer and uses a hashing algorithm to map them to
an available server. Servers are added and removed using two
special case requests, a join and leave request, respectively,
with a unique identifier of the server. This functional emu-
lator can be used to determine the computational efficiency
of various hashing algorithms as well as their robustness to
memory errors as we will describe next.

Since we do not have access to specialized HDC hardware
and building the hardware is outside the scope of our work
we had to implement the HDC operations using commod-
ity hardware. To closely match the parallel nature of HDC
hardware, we decided to implement HDC operations on a
GPU.We used an Nvidia TITAN Xp GPUwith 3840 cores and
12 GB of memory. The GPU’s communication overhead was
reduced by performing mappings in batches of 256 requests.

Each test was performed with different numbers of servers
in the pool, going up to 2048. This scale is enough to show the
results and trends of interest, but it is important to emphasize
that like the other methods HD hashing can scale to much
larger clusters, and even be used hierarchically (standardway
to scale such hashing systems [20, 24]) to handle extremely
high numbers of servers.

5.2 Efficiency
We executed each hashing function in our emulator to em-
pirically determine its computational efficiency. First the
generator sends 𝑛 join requests to add available servers to
the hash table module. Then, the generator sends 10,000 re-
quests and tracks the wall-time. From this we determine the
average time to handle a request.
1For ease of understanding, this version assumes that 𝑛 is even. To generate
a set of odd cardinality of circular-hypervectors, simply generate 2𝑛 and
return just {c1, c3, c5, . . . , c2𝑛 }.
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Figure 5. Percentage of mismatched requests when a number of bit errors occur.

Figure 6. The discrepancy between the distribution of re-
quests per server obtained by each algorithm and the uniform
distribution, for different numbers of servers and bit errors,
measured with the Pearson’s 𝜒2 statistical test.

For various numbers of 𝑛, ranging from 2 to 2048 in pow-
ers of 2 the results are shown in Figure 4. The O(𝑛) time
complexity of rendezvous hashing is clearly evident as is
the superior computational efficiency of consistent hashing
with respect to rendezvous hashing. Our HDC implementa-
tion using commodity hardware has a very similar scaling
profile to consistent hashing. This confirms our belief that
HDC hardware can appropriately be simulated by a GPU.
However, as highlighted in Section 3, we expect the use of
HDC accelerators to reduce the request handling time to a
constant with the extreme of a single clock-cycle.

5.3 Robustness
As motivated before, the other main goal of HD hashing is to
be a robust alternative to consistent and rendezvous hashing.
In order to assess the performance of each hashing algorithm
in an environment subject to noise, two experiments were
performed using the emulator’s noise injection capabilities.
The first and most important, whose results are in Figure 5,
shows how the ability of each technique to map keys to
the correct value degrades when a certain number of bits in
memory are randomly flipped. Ibe et al. [6] show that for
22 nm technology, 4-bit and 8-bit bursts occur 10% and 1%
of the time, respectively. Moreover, errors within a machine

are found to be strongly correlated, if a machine experienced
an error it is 13-228 times more likely to experience another
error in the same month [19]. To capture such features of
a realistic scenario, we test each hashing technique in the
range of 0 to 10 bit flips.
In our experiments, HD hashing confirmed our expecta-

tions, turning out to be far superior as none of the requests
sent were matched to the wrong server. Meanwhile, in both
consistent and rendezvous hashing an increasing percentage
of mismatches occur, depending on the noise level.

In the second experiment we tested how uniform the dis-
tribution of requests among servers is and how uniform they
remain when bits of the hash values are randomly inverted.
For evaluation, we used the following Pearson’s chi-squared
test [4] to measure goodness of fit between our observed
frequency distribution and the uniform distribution:

𝜒2 =
∑
𝑠𝑖 ∈𝑆

(
𝑅 (𝑠𝑖 ) − 𝐸

)2
𝐸

where 𝑅(𝑠𝑖 ) is the number of requests mapped to server 𝑠𝑖
by the algorithm and 𝐸 =

|𝑅 |
|𝑆 | is the uniformity expectation

where |𝑅 | and |𝑆 | are the total number of requests and servers,
respectively. The results, illustrated in Figure 6, show that not
only does HD hashing distribute requests more uniformly
than consistent hashing in an ideal scenario, but also that the
presence of bit errors worsens the uniformity of consistent
hashing even more, while that of HD hashing remains intact.
To make the plot more readable, we omit the rendezvous
hashing result. Note, from the description of the algorithm in
Section 2.2, that rendezvous hashing is based only on the out-
put of the hash function, that is, a pseudo-random number.
Therefore, its assignment is perfectly (pseudo-) uniform and
is not affected by bit errors. Rendezvous hashing, however,
still suffers from mismatches and the method has less appli-
cability due to its lower efficiency as illustrated in Figures 5
and 4, respectively.
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6 Future work
Besides being a central component of our work, circular-
hypervectors provide a way to represent periodic informa-
tion that has not been available in the HDC literature thus
far. Consider, for example, the seasons of the year, clearly
there is a periodic relationship between them. Several other
time-related examples can be listed such as hours of a day
or days of a week, as well as other angular data such as di-
rections, geolocation or color spaces. Whether this can be
used to improve data representation in HDC, for instance in
machine learning applications, is a promising direction of
future work.
Our method can utilize the work by Schmuck et al. [18]

that shows howHDC accelerators can optimize server lookup
(inference in HDC) to a single clock-cycle. Realizing an imple-
mentation of the HD hashing algorithm in special hardware
is future work.

7 Conclusion
We propose Hyperdimensional (HD) hashing—a novel algo-
rithm based on Hyperdimensional Computing (HDC) which
allows dynamic scaling of the hash table with minimal re-
hashing, a problem found in some of the most popular web
applications. Through an emulation framework, we compare
our method with consistent and rendezvous hashing and
the experimental results show that HD hashing is the only
approach that guarantees both efficiency and robustness. HD
hashing scales similar to consistent hashing, while both are
significantly more efficient than rendezvous hashing. Consis-
tent hashing suffers from more than 20% mismatches with a
realistic level of memory errors, which are common in large-
scale cloud systems, while HD hashing remains unaffected.
This superior level of tolerance to bit errors reduces the
chance of critical failures in load balancing and web caching
systems, among others.
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