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ABSTRACT
Metrics for set similarity are a core aspect of several data mining

tasks. To remove duplicate results in a Web search, for example, a

common approach looks at the Jaccard index between all pairs of

pages. In social network analysis, a much-celebrated metric is the

Adamic-Adar index, widely used to compare node neighborhood

sets in the important problem of predicting links. However, with

the increasing amount of data to be processed, calculating the exact

similarity between all pairs can be intractable. The challenge of

working at this scale has motivated research into efficient estima-

tors for set similarity metrics. The two most popular estimators,

MinHash and SimHash, are indeed used in applications such as

document deduplication and recommender systems where large

volumes of data need to be processed. Given the importance of

these tasks, the demand for advancing estimators is evident. We

propose DotHash, an unbiased estimator for the intersection size of

two sets. DotHash can be used to estimate the Jaccard index and, to

the best of our knowledge, is the first method that can also estimate

the Adamic-Adar index and a family of related metrics. We formally

define this family of metrics, provide theoretical bounds on the prob-

ability of estimate errors, and analyze its empirical performance.

Our experimental results indicate that DotHash is more accurate

than the other estimators in link prediction and detecting duplicate

documents with the same complexity and similar comparison time.
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1 INTRODUCTION
Many current challenges—and opportunities—in computer science

stem from the sheer scale of the data to be processed [19, 26]. Among

these challenges, one of the most outstanding is comparing collec-

tions of objects, or simply sets1. This demand arises, for example,

in important problems such as comparing text documents or social

media profiles. The challenge is often not the size of each set, but

the number of pairwise comparisons over a large dataset of sets.

This has motivated research on estimating existing set similarity

measures, the main subject of this paper.

The search for methods to compare sets of elements is long-

standing: more than a century ago, Gilbert [23] and Jaccard [35]

independently proposed a measure that is still widely used, known

as the Jaccard index. The metric is defined as the ratio between the

sizes of the intersection and the union of two sets. With the explo-

sion of available data, brought about mainly by the advent of the

Web, the Jaccard index has become prevalent as an essential tool in

data mining and machine learning. Important applications include

information retrieval [55, 63], natural language processing [66, 72],

and image processing [48, 57], among several others [9].

Another academic field in which set similarity has become cru-

cial is network science. This field studies network representations

of physical, biological and social phenomena and is used to under-

stand complex systems in various disciplines [3]. Such networks

are modeled using graphs, a mathematical abstraction tool where

sets are ubiquitous. Marked by its growing relevance, this area

also gave rise to one of the most famous set similarity metrics: the

Adamic-Adar index [1]. The index was proposed as an alternative

to Jaccard for the problem of predicting links, such as friendship or

co-authorship, in social networks.

1
We shall refer to sets, indistinctly, as collections with or without repeated elements.
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Link prediction is a widely studied problem, with applications

in several Web-related tasks, including hyperlink-prediction [74],

recommender systems in e-commerce [45], entity resolution [51],

and friend recommendation in social networks [15, 21], among

others [27]. In this problem, each node is characterized by its set

of adjacent nodes, or neighbors. The intuition is that nodes of sim-

ilar neighborhoods tend to become neighbors. The Adamic-Adar

index is used to compare these sets of neighbors, but unlike Jac-

card, it assigns different weights to neighbors (see Section 2.2).

Adamic-Adar is known to be superior to Jaccard for modeling the

phenomenon of link emergence in networks in various real-world

applications [47, 53]. The success of Adamic-Adar also motivated

the emergence of several metrics with different ways of weighting

neighbors [7, 16, 49], which will be discussed in Section 2.3.

A second prime example of an application marked by demand-

ing an enormous number of set comparisons is the removal of

(near-)duplicate pages in Web search. Eliminating such pages saves

network bandwidth, reduces storage costs and improves the quality

of search results [52]. In this domain, each document is commonly

treated as a set of word sequences. To find duplicates in a corpus of

10 million pages, a relatively small scale for Web applications [52],

it would already be necessary to compute the set similarity metric

about 50 trillion times. It was precisely in the face of this challenge

that the problem of estimating set similarity metrics has become

highly relevant and has triggered numerous scientific endeavors.

MinHash [4] and SimHash [8], the two best-known estimators,

were initially developed for the above-mentioned problem and used

respectively in the AltaVista and Google Web search engines. Other

current applications taking advantage of set similarity estimation

include genomic and metagenomic analysis [41, 56], graph com-

parison [68], collaborative filtering [14], natural language dataset

preparation [42], and duplicate detection of other types of data

such as images [12]. SimHash is also used in locality sensitive hash-
ing (LSH), a technique applied to detect if the similarity of sets

exceeds a given threshold, used in problems such as dimensionality

reduction, nearest neighbor search, entity resolution and finger-

print matching [44]. An important remark is that, despite being

related, LSH and the problem addressed in this paper of estimating

metrics directly are distinct and both individually relevant as we

will discuss in Section 3. This wide range of relevant applications

illustrates the importance and potential of set similarity estimators

to push boundaries of problems where they are applied.

Despite the importance of the estimators mentioned above, pre-

vious works reveal limitations of these techniques. As is common

with estimators, their accuracy is a function of the input as well as

the value to be estimated. In the original MinHash paper, Broder

[4] indicates that the estimator’s accuracy is at its worst when the

Jaccard index is around 0.5. Koslicki and Zabeti [41] show that

the probability of the estimator deviating from the true value in-

creases exponentially with the difference in size between the sets

to be compared. Nonetheless, Shrivastava and Li [65] provides the-

oretical arguments for the superiority of MinHash over the other

baseline, SimHash. More importantly, these techniques are not able

to estimate indices like Adamic-Adar. In Section 5, we will show

experimentally that this limitation makes them less appropriate for

the link prediction and near-duplicate detection problems.

Commendable effort has been devoted to reshaping these tech-

niques to overcome these limitations for specific applications as

we discuss in Section 3.3. Nevertheless, given its relevance, we ar-

gue that it is also important to pursue alternative techniques that

explore new perspectives on the problem. With this in mind, we

propose DotHash—a novel set similarity estimator. Like its prede-

cessors, DotHash is based on creating a fixed-size representation

of sets (often called a sketch, signature or fingerprint in the liter-

ature) that can be compared to estimate the similarity between

the sets. Creating these compressed representations introduces

preprocessing time, but dramatically mitigates the time for each

comparison. The central idea of DotHash is to exploit valuable

features of high-dimensional random vector spaces, in particular

their tendency towards orthogonality [37], to create fixed-dimension

sketches while retaining as much information from the original

space as possible. In Theorem 2, we show that the cardinality of the

intersection of two sets can be estimated, without bias, by a simple

dot product between their DotHash sketches. As the dot product

is such a fundamental operation, we argue that DotHash can take

advantage of recent progress in modern hardware platforms for

enhanced performance and energy efficiency [54, 71].

In addition to the theoretical contribution of a new baseline

framework to the problem of comparing sets in its general formu-

lation, we also show that DotHash has prompt practical relevance.

We conducted experiments with several popular datasets for the

problems of link prediction and near-duplicate detection, which

show that the accuracy obtained by DotHash is higher than that

obtained with SimHash and MinHash. For this, we exploit the fact

that DotHash is able to estimate a more general family of metrics,

which are better adapted to applications, as is the case of Adamic-

Adar for link prediction. It is worth noting that the time complexity

for each comparison is linear in the size of the DotHash sketches

regardless of the metric, since it consists of computing the dot

product between them. As previously mentioned, these pair-wise

comparisons between sketches dictate the overall time complexity.

2 BACKGROUND
In this section, we introduce the most relevant set similarity metrics

for the purpose of our work. We start with the Jaccard and Adamic-

Adar indices, for which we show theoretical and empirical results.

Then, we provide an overview of other metrics that DotHash is

able to estimate directly. It is worth noting that many alternative

set similarity metrics have been proposed, specifically tailored to

better suit specific scenarios by adapting the basic metrics. For

an extensive overview of set similarity metrics we recommend

Martínez et al. [53] and Lü and Zhou [50].

2.1 Jaccard
Consider the sets 𝐴 and 𝐵, and let 𝐴 ∩ 𝐵 denote their intersection

and 𝐴 ∪ 𝐵 their union. The Jaccard index [35] between 𝐴 and 𝐵 is

defined as:

J(𝐴, 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 |

where the vertical bars denote the cardinality of the enclosed set.

This is one of the oldest and most established ways of comparing

sets. Over time, numerous adaptations of this simple metric have
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emerged, specializing it for particularly interesting applications.

Next, we describe one of these adaptations which is widely used,

especially in network science [3].

2.2 Adamic-Adar
The Adamic-Adar index was created for the problem of link predic-

tion in social graphs [1]. Let 𝐺 = (𝑉 , 𝐸) be a graph, composed of a

set of nodes 𝑉 and a set of edges 𝐸. Each 𝑒 = (𝑢, 𝑣) ∈ 𝐸 represents

an edge (or link) between nodes 𝑢, 𝑣 ∈ 𝑉 . With Γ(𝑣) ⊆ 𝑉 we denote

the subset of nodes that are adjacent to 𝑣 , i.e., the neighbors of 𝑣 .
The cardinality of a neighborhood |Γ(𝑣) | is referred to as the degree
of 𝑣 .

In the context of graphs, Jaccard can be used to compare pairs

of nodes by looking at how many connections they have in com-

mon, normalized by the size of the union of their neighborhoods.

Adamic-Adar seeks to improve this comparison based on the intu-

ition that the more popular a node in the intersection is (i.e., the

higher its degree), the less informative it is about the similarity

of the nodes being compared. In the case of social networks, for

example, a common connection with a celebrity says little about

the chance of two people connecting with each other compared to

a less popular mutual friend. To account for this, Adamic-Adar pe-

nalizes the number of connections that each shared connection has

by taking the logarithm of its degree. Formally, the Adamic-Adar

between two nodes is defined as:

A(𝑢, 𝑣) =
∑︁

𝑥∈Γ (𝑢 )∩Γ (𝑣)

1

log |Γ(𝑥) |

2.3 Link prediction metrics
Given the importance of link prediction, several other metrics have

emerged for the purpose of comparing neighborhoods. Similar to

Adamic-Adar, these metrics take the local properties of the nodes

in the intersection into account. Many of these metrics can also

be directly estimated using DotHash. One such example is the Re-

source Allocation index, used to evaluate the resource transmission

between two unconnected nodes through their neighbors which is

defined as:

RA(𝑢, 𝑣) =
∑︁

𝑥∈Γ (𝑢 )∩Γ (𝑣)

1

|Γ(𝑥) |

In Section 4.5, we provide a formal description of the family of set

similarity metrics that DotHash can directly estimate.

3 RELATEDWORK
In this section we describe the two most popular estimators, Min-

Hash and SimHash, which will then be used as baselines for the

evaluation of DotHash. It is important to highlight that we compare

DotHash with these two methods because they constitute the state

of the art for the problem in its most general formulation and are

used in current applications as already mentioned.

3.1 MinHash
MinHash [4] is a probabilistic method for estimating the Jaccard

index. The technique is based on a simple intuition: if we uniformly

sample one element 𝑥 from the set 𝐴 ∪ 𝐵, we have that:

Pr(𝑥 ∈ 𝐴 ∩ 𝐵) = |𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | = J(𝐴, 𝐵)

which makes the result of this experiment an estimator for Jaccard.

However, an important problem remains: how to uniformly sample
from 𝐴 ∪ 𝐵? Explicitly computing the union is at least as expensive

as computing the intersection, that is, it would be as expensive as

calculating the Jaccard index exactly. The main merit of MinHash

is an efficient way of circumventing this problem.

Let ℎ : 𝐴∪𝐵 → N denote a min-wise independent hash function,

i.e., for any subset of the domain, the output of any of its elements is

equally likely to be the minimum (see Broder et al. [5] for a detailed

discussion). Then, we have:

Pr

(
min

𝑎∈𝐴
ℎ(𝑎) = min

𝑏∈𝐵
ℎ(𝑏)

)
=

|𝐴 ∩ 𝐵 |
|𝐴 ∪ 𝐵 | = J(𝐴, 𝐵)

Given the above, the problem of uniformly sampling an element

of the union and checking if it belongs to the intersection can be

emulated as follows: hash the set elements and check if the smallest

value obtained in both sets is the same. Although the result of

this random variable is an unbiased estimator of the Jaccard index,

its variance is high when the Jaccard is around 0.5. The idea of

MinHash is therefore to do 𝑘 such experiments with independent

hash functions and return the sample mean to reduce the variance.

3.2 SimHash
SimHash [8], sometimes indistinctly called angular LSH, is another
popular estimator of set similarity. The sketches of sets are fixed-

length binary vectors and are generated as follows: 1) all elements

of the superset 𝑆 are mapped uniformly to vectors in {−1, 1}𝑑 ; 2)
for each set 𝑋 ⊆ 𝑆 a 𝑑-dimensional vector is created by adding

the vectors of its elements; 3) the SimHash sketch of the set is a bit

string obtained by transforming each positive entry to one and the

non-positive entries to zero. The similarity between pairs of sets is

then measured by the Hamming distance between these sketches.

Despite being a general estimator for set similarity metrics,

SimHash owes its popularity largely to a specific use. Manku et al.

[52] showed an efficient way to solve the following problem: in a
collection of SimHash sketches, quickly find all sketches that differ
at most 𝑘 bits from a given sketch, where 𝑘 is a small integer. This
particular formulation is very useful in the context of duplicate text

detection and its efficient solution led to SimHash being used by

Google Crawler.

The problem described above is an instance of the problem

known as locality sensitive hashing (LSH) which, in general, tries

to detect pairs of objects whose similarity exceeds a threshold by

maximizing the collision probability of the hashes of these ob-

jects [32, 33]. Note that LSH is used to group similar objects and

the output is binary, i.e. two objects are either similar or not [44].
Therefore, we emphasize that the problem of estimating the metrics

directly, addressed in this paper, is different from LSH. Directly

estimating similarity has other possible outcomes, such as ordering

pairs by similarity, which is crucial in some applications like query

optimization [13] and link prediction as we will discuss in Section 5.
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Although SimHash is much more popular in the context of LSH,

for the sake of completeness, but underscoring the above, we con-

sider SimHash as a baseline of the general problem as the method

was originally proposed by Charikar [8]. Despite this, we make

it clear that the other baseline, MinHash, is much more common

in the literature for the problem of estimating the actual value of

metrics as we discuss in the next section.

3.3 Adjacent research and developments
Our primary focus in this study is to address the task of estimating

set similarity metrics in its broadest sense. However, it is important

to acknowledge other advancements in the field that are not directly

aligned with our specific contribution. These advancements, dis-

cussed below, primarily involve enhancements tailored to specific

contexts and applications. It is important to note that our method

is not intended to directly compete with these notable develop-

ments in each individual application, but rather aims to serve as

a new baseline for the general problem. We emphasize, however,

that DotHash also brings practical contributions to the state of the

art. This is achieved by supporting a wider range of metrics, which

is formally defined in Section 4.5. As we will show in Section 5,

this allows for greater accuracy in important problems such as link

prediction and document deduplication.

While MinHash remains the standard framework for estimating

the actual value of set similarity metrics, several techniques have

been proposed to enhance its accuracy and efficiency in specific

application contexts. For instance, Chum and Matas [11] propose

an efficient method to compute MinHash sketches for image collec-

tions using inverted indexing. Another technique, introduced by

Koslicki and Zabeti [41], employs Bloom filters for fast membership

queries and is known as containment MinHash. They demonstrate

the superiority of this technique in metagenomic analysis by more

accurately estimating the Jaccard index when dealing with sets that

significantly differ in size.

Several other works have focused on a variant of the problem that

involves estimating the weighted Jaccard index [70]. For datasets

with sparse data, Ertl [18] and Christiani [10] have explored the

concept of consistent weighted sampling (CWS) [34] with their re-

spective BagMinHash and DartMinHash techniques. Conversely,

when dealing with dense data, methods based on rejection sampling
have been demonstrated to be more efficient [46, 64].

Another important recent endeavor has been to develop LSH

techniques based on deep learning, known as “learn to hash” meth-

ods. These includeDeep Hashing [73] and various others [17, 28, 40].
In general, these techniques do not estimate any particular met-

ric directly, but seek to create sketches that allow for approximate

nearest neighbor search. Another key distinction lies in the method-

ology employed by these approaches. They rely on constructing

trained models through annotated data, where the concept of simi-

larity is derived from the mapping of training examples to a specific

target. Consequently, this similarity may not necessarily extend to

other datasets, making it potentially non-generalizable. In contrast,

the methods discussed in this paper estimate the similarity between

two sets solely based on the sets themselves.

Although “learn to hash” methods have demonstrated promising

accuracy in situations where supervised learning is viable, their

broader adoption has also been hindered by other challenges. These

limitations encompass high costs associated with training and in-

ference, the inherent unpredictability due to unknown bounds in

estimation error, and their high sensitivity to data distribution, often

concealed by the reliance on purely empirical assessments [39, 69].

As a result, traditional methods such as MinHash and SimHash

continue to be utilized in important applications such as the ones

mentioned earlier. Despite the inherent differences and the diffi-

culty of setting up an accurate and unbiased study that delves deep

into both approaches, we believe that a comparative study between

these traditional methods and learning-based approaches would

yield significant value for the scientific community.

4 DOTHASH
We begin by describing a simple method to compute the cardinality

of the intersection between two sets. This provides the basis from

which we describe the intuition for DotHash. The intuition builds

on a generalization of the simple method and a subtle feature of

high-dimensional vector spaces. From it, we show how we can cre-

ate an estimator for the intersection cardinality. We emphasize that

virtually all set similarity metrics are direct functions of the inter-

section cardinality, combined with other easily obtained quantities

such as the size of the sets [53]. The fact that DotHash estimates

the intersection cardinality directly makes it naturally extendable

to all these metrics. One of the few exceptions is a family of met-

rics that assign different weights to the intersection items, such

as the Adamic-Adar index. We conclude this section showing how

DotHash can be adapted to estimate this larger family of metrics as

well, being the first estimator to enable this.

4.1 Computing the intersection size
A common way of representing sets is by using bit strings [20,

61]. In this representation, an arbitrary order [𝑥1, 𝑥2, . . . , 𝑥𝑑 ] of
the elements of the superset 𝑆 is established. Then, each set 𝑋 ⊆
𝑆 is represented by an |𝑆 |-dimensional binary vector whose 𝑖-th

bit is one if 𝑥𝑖 ∈ 𝑋 , and zero otherwise. Table 1 illustrates this

representation for sets 𝐴 = {𝑎, 𝑏, 𝑐, 𝑑} and 𝐵 = {𝑏, 𝑐, 𝑑, 𝑒}. This
representation is especially common for graphs, where it is called

an adjacency matrix, and each set consists of the neighborhood of

a node.

Table 1: Bit string representation of sets 𝐴 and 𝐵

𝑎 𝑏 𝑐 𝑑 𝑒

𝐴 1 1 1 1 0

𝐵 0 1 1 1 1

It is easy to observe that the size of the intersection between

𝐴 and 𝐵 is given by the number of columns where both elements

are one. This provides a straightforward way to get the size of

the intersection of sets: calculate the dot product between their bit

strings [6, 20].

4.2 Generalization to orthogonal vectors
An alternative way of visualizing the set bit strings, important for

the generalization we propose, is: consider that each element 𝑥𝑖 ∈ 𝑆
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is encoded by an |𝑆 |-dimensional vector of value one in position 𝑖 ,

and zero elsewhere. This representation is usually called one-hot
encoding. From this, we can define the bit string of a set as the sum
of its one-hot encoded elements, as illustrated in Figure 1.

𝐴 = {𝑎, 𝑏, 𝑐, 𝑑}
𝑎 ...
𝑏 ...
𝑐 ...
𝑑 ...

+
𝐴 ...

𝐵 = {𝑏, 𝑐, 𝑑, 𝑒}
𝑏 ...
𝑐 ...
𝑑 ...
𝑒 ...

+
𝐵 ...

.
...

|𝐴 ∩ 𝐵 | = 3

Figure 1: Intersection calculation using one-hot encoding.

In Theorem 1, we show that the dot product results in the inter-

section of sets not only when they are the sum of one-hot encoded

elements, but more generally when we encode the elements using

any orthonormal basis of R |𝑆 | , of which one-hot is a particular

case—the standard basis. Although this, arguably trivial, general-

ization alone may not seem advantageous at this point, in the next

section we show how it is fundamental in the transition from exact

to estimation with our method.

Theorem 1. Consider arbitrary sets𝐴, 𝐵 ⊆ 𝑆 . Let 𝜙 : 𝑆 → R |𝑆 | be
any injective map of their elements to vectors to one of the orthonormal
bases of R |𝑆 | , and let

𝒂 =
∑︁
𝑎∈𝐴

𝜙 (𝑎) and 𝒃 =
∑︁
𝑏∈𝐵

𝜙 (𝑏).

Then, 𝒂 · 𝒃 = |𝐴 ∩ 𝐵 |.
While the above yields a way of representing sets so that we

can compute intersection sizes by simple dot products, notice that

each set is represented using |𝑆 | bits, resulting in a time and space

complexity of 𝑂 ( |𝑆 |). Although this can be useful in certain sce-

narios, clearly this method becomes prohibitively expensive for

very large supersets 𝑆 , for example, in the large scale applications

described in the previous sections. Another problem is that in many

real applications, such as those related to social networks, the sets

change over time, so there is no way to establish the superset size

a priori.

In some cases the time and space complexity can be improved

to 𝑂 ( |𝐴| + |𝐵 |) by restricting 𝜙 (·) to the standard basis encoding,

represented using a sparse vector format so that only the non-

zero elements are stored. With this modification the dot product

can be computed by iterating over both vectors at once, similar to

merging lists. However, because of the overhead of sparse vector

representations, this is mainly useful when |𝐴| + |𝐵 | ≪ |𝑆 |.
There are still limitations to the sparse vector improvement, espe-

cially when even |𝐴| + |𝐵 | is very large. This happens both in social

networks where nodes can have more than a million connections,

and in document deduplication where large documents can hold

many word sequences. In the next section we present a method to

improve the time complexity to a constant value by giving up the

exact intersection size in favour of an estimate.

4.3 Exploiting quasi-orthogonality
The method described above seems unsuitable for large scale appli-

cations as it requires a number of dimensions equal to the size of

the superset. This constraint is imposed by the fact that the smallest

real vector space with |𝑆 | orthogonal vectors is R |𝑆 | . Intuitively,
we need orthogonality so that 𝜙 (𝑥) · 𝒂 = 1 if, and only if, 𝑥 ∈ 𝐴,
and zero otherwise. This ensures that 𝒂 · 𝒃 = |𝐴 ∩ 𝐵 | (for a detailed
discussion see the proof of Theorem 1 in the Appendix A.1). From

an information theory perspective, this guarantees a lossless repre-

sentation of the sets by the sum of the encoded elements, since by

the above operation we can verify exactly which elements make

up the set.

Our proposed estimator, DotHash, relies on a very interesting

property of high-dimensional vector spaces: uniformly sampled
vectors are nearly orthogonal, or quasi-orthogonal, to each other
with high probability [38]. This valuable feature has been explored

in several other domains, especially to model human cognition and

memory [22, 37]. It is based on this insight that DotHash turns the

above method into an estimator for the size of the intersection of

sets.

Instead of using a precisely orthonormal basis of vectors of R |𝑆 |

to encode the elements of 𝑆 , DotHash uses unit vectors sampled

from R𝑑 , with 𝑑 < |𝑆 |. The set sketches (fixed-length representa-

tions) are then built in the same way, by adding the encodings of

their elements, as depicted in Figure 2. Intuitively from the above,

each encoded element would be quasi-orthogonal to all others, al-

lowing to approximate the dot product relations mentioned above.

In Theorem 2 we formalize this idea, showing that the the dot prod-

uct between the DotHash sketches of sets is an unbiased estimator

for their intersection cardinality.

𝐴 = {𝑎, 𝑏, 𝑐, 𝑑}
𝑎
𝑏
𝑐
𝑑

+
𝐴

𝐵 = {𝑏, 𝑐, 𝑑, 𝑒}
𝑏
𝑐
𝑑
𝑒

+
𝐵.

|𝐴 ∩ 𝐵 | ≈ 3

Figure 2: Intersection calculation using quasi-orthogonal
encoding.

Theorem 2. Consider arbitrary sets 𝐴, 𝐵 ⊆ 𝑆 and any constant
𝑑 ∈ N+. Let𝜓 : 𝑆 → R𝑑 be a uniform randommapping of elements in
𝑆 to unit vectors which are the vertices of a 𝑑-dimensional hypercube,
and let

𝒂 =
∑︁
𝑎∈𝐴

𝜓 (𝑎) and 𝒃 =
∑︁
𝑏∈𝐵

𝜓 (𝑏).

Then, E[𝒂 · 𝒃] = |𝐴 ∩ 𝐵 |, and

Var(𝒂 · 𝒃) = 1

𝑑

(
|𝐴| |𝐵 | + |𝐴 ∩ 𝐵 |2 − 2|𝐴 ∩ 𝐵 |

)
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Using the variance provided in Theorem 2 and the Chebychev

inequalty we can bound the probablity of error by:

Pr( |𝑋 − ` | ≥ 𝜖`) ≤ Var(𝒂 · 𝒃)
(𝜖 |𝐴 ∩ 𝐵 |)2

If we use the observation that each dimension can be interpreted

as an independent sample, we can use the Central Limit Theorem

(CLT) to approximate the probability of error as follows:

lim

𝑑→∞
Pr( |𝑋 − ` | ≥ 𝜖`) = 2

(
1 − Φ

(
𝜖 |𝐴 ∩ 𝐵 |√︁
Var(𝒂 · 𝒃)

))
where Φ(·) denotes the standard normal cumulative distribution

function. In Figure 3 we provide the CLT estimate (solid line) and

the empirical probability (dashed line).

0 25 50 75 100 125 150 175 200

|𝐴 ∩ 𝐵 |
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r
( |𝑋

−
`
| ≥

0
.1
`
)

256

512

1024

Figure 3: Intersection estimate bounds for DotHash. With
|𝐴| = |𝐵 | = 200 and 𝑑 = {256, 512, 1024}. Dashed lines indicate
experimental results.

We can rewrite the CLT (or the Chebychev inequality) to get

the required number of dimensions 𝑑 to obtain an error greater or

equal to 𝜖 |𝐴 ∩ 𝐵 | with a given probability 𝑝:

𝑑 ≈ Var(𝒂 · 𝒃)
©«
Φ−1

(
1 − 𝑝

2

)
𝜖 |𝐴 ∩ 𝐵 |

ª®®¬
2

where Φ−1 (·) denotes the standard normal percent point function.

4.4 Estimating Adamic-Adar
Now that we have established a method for estimating the size of

the intersection, we describe how to adapt DotHash to estimate the

Adamic-Adar index. The idea starts from the fact that 𝒂 and 𝒃 are

sums of the vectors that encode the elements of their respective

sets. Given this and the distributive property of the dot product

over addition, we have:

𝒂 · 𝒃 =
∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

𝜓 (𝑎) ·𝜓 (𝑏)

Observing that E[𝜓 (𝑎) ·𝜓 (𝑏)] = 1 if 𝑎 = 𝑏, and zero otherwise (see

the proof of Theorem 2):

E[𝒂 · 𝒃] =
∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵
E[𝜓 (𝑎) ·𝜓 (𝑏)] =

∑︁
𝑥∈𝐴∩𝐵

1

The right-hand side of this equation is similar to Adamic-Adar in

that both sum values over the intersection items. The key missing

part is that the value to be summed must be a function of the size

of the neighborhoods, not a constant.

In the above case, the summation parameter is one because every

element is encoded to a unit vector. However, the construction of

DotHash allows us to adjust the summation parameter bymodifying

the magnitude of the vectors used to represent each element. To

obtain the Adamic-Adar index, we want each element, in this case

each node, to be encoded in such a way that:

𝜓 (𝑣) ·𝜓 (𝑣) = 1

log |Γ(𝑣) |
Theorem 3 shows how to adapt the vector magnitudes to obtain

the Adamic-Adar index.

Theorem 3. Consider an arbitrary graph 𝐺 = (𝑉 , 𝐸) with nodes
𝑉 and edges 𝐸. Take any constant 𝑑 ∈ N+ and let Γ(𝑣) ⊆ 𝑉 denote
the neighbors of node 𝑣 ∈ 𝑉 . Let𝜓 : 𝑉 → R𝑑 be a uniform random
mapping of nodes in 𝑉 to unit vectors which are the vertices of a
𝑑-dimensional hypercube, and let

𝒖 =
∑︁

𝑥∈Γ (𝑢 )
𝜓 (𝑥)

√︄
1

log |Γ(𝑥) |

and

𝒗 =
∑︁

𝑦∈Γ (𝑣)
𝜓 (𝑦)

√︄
1

log |Γ(𝑦) | .

Then, E[𝒖 · 𝒗] = A(𝑢, 𝑣).

4.5 General family of supported metrics
Building upon the result presented in the previous section, we

naturally extend it to encompass a general formulation of all set

similarity metrics that can be directly estimated using DotHash.

This family includes all metrics of the form:

∑
𝑥∈𝐴∩𝐵 𝑓 (𝑥), where

𝑓 : 𝑆 → R is any function on intersection elements. Besides the

item 𝑥 , the function 𝑓 can use any global parameters such as the

cardinalities of 𝐴, 𝐵 or 𝑆 . The DotHash sketches for this general set

similarly metric are given by:

𝒂 =
∑︁
𝑎∈𝐴

𝜓 (𝑎)
√︁
𝑓 (𝑎) and 𝒃 =

∑︁
𝑏∈𝐵

𝜓 (𝑏)
√︁
𝑓 (𝑏)

and the estimate is obtained by 𝒂 · 𝒃 . Observe that the intersection
size, the Adamic-Adar index, and the Resource Allocation index all

fit into this general framework: the intersection size corresponds to

𝑓 (𝑥) = 1, Adamic-Adar to 𝑓 (𝑥) = 1

log |Γ (𝑥 ) | , and Resource Alloca-

tion to 𝑓 (𝑥) = 1

|Γ (𝑥 ) | . This group of metrics directly supported by

DotHash includes the majority of metrics listed in Martínez et al.

[53] and Lü and Zhou [50].
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Figure 4: Link prediction accuracy results while varying the number of dimensions 𝑑 and hashes 𝑘 .

5 EXPERIMENTS
In this section we present experiments comparing DotHash to the

baselines presented in Section 3. The main goal here is to pro-

vide empirical evidence on the advantages of DotHash in the link

prediction and duplicate detection tasks. All the methods were im-

plemented using PyTorch [58] and the Torchhd library [29], and

ran on a machine with 20 Intel Xeon Silver 4114 CPUs, 93 GB of

RAM and 4 Nvidia TITAN Xp GPUs. The experiments, however,

only used a single CPU or GPU. We repeated each experiment 5

times on the CPU and 5 times on the GPU. The code is available at:

https://github.com/mikeheddes/dothash.

Table 2: Statistics of the graph datasets

Dataset Nodes Edges Median degree

Drugs 4,267 1,334,889 446

Wikipedia 11,631 341,691 13

Facebook 22,470 342,004 7

Epinions 75,879 508,837 2

Slashdot 82,168 948,464 6

Proteins 576,289 42,463,862 43

5.1 Datasets
An overview of the datasets used is shown in Table 2. To compare

the methods under different circumstances, we consider a range

of common benchmarks used in the literature that have different

characteristics and are associated with different applications. For

the link-prediction task we evaluate each method on the following

datasets:

• Drugs [24]: This dataset represents the interaction between

drugs, where the joint effect of using both drugs is signifi-

cantly different from their effects separately.

• Wikipedia [62]: This dataset represents a webpage network

where each node represents a web page and the edges repre-

sent hyperlinks between them.

• Facebook [62]: A network of verified Facebook pages where

nodes correspond to Facebook pages and edges are the mu-

tual likes between pages.

• Proteins [67]: Is a protein network where nodes represent

proteins from different species and edges show biological

meaningfulness between the proteins associations.

• Epinions [59]: Represents the who-trusts-whom social net-

work of the general consumer review site Epinions.com,

where each node represents a user, and each edge is a di-

rected trust relation.

• Slashdot [43]: Represents the Slashdot social network as of

February 2009, where each node is a user and each edge is a

directed friend/foe link.
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For the document deduplication we use the following datasets:

• CORE Deduplication Dataset 2020 [25]: This dataset consists

of more than 1.3M scholar documents labeled as duplicates

or non-duplicates.

• HarvardDataverse Duplicate Detection Restaurant dataset [2].

This dataset consists of a collection of 864 restaurant records

containing 112 duplicates.

• Harvard Dataverse Duplicate Detection cddb dataset [2]:

This dataset contains a set of 9,763 records with 299 dupli-

cated entries, with each row representing information about

a particular audio recording.

5.2 Link prediction
This experiment aims to demonstrate a practical advantage of

DotHash.While the baseline estimators, MinHash and SimHash, are

limited to estimating the Jaccard index, DotHash offers the ability

to estimate more complex metrics, known to be more effective for

certain applications, including link prediction. We evaluate the ac-

curacy of each estimator in solving the link prediction problem. The

problem consists of inferring which links will appear in the future,

called the inference time interval, given a snapshot of a graph [47].

In practice, the task is seen as a ranking problem for pairs of nodes,

i.e., the approaches compare pairs of nodes and predict that the

most similar pairs are those that are likely to connect in the future.

The quality of the methods is evaluated based on how well

they rank pairs that effectively form in the inference time interval,

against random pairs that do not connect. These edges are respec-

tively called the positive and negative samples. The most popular

metric, Hits@𝐾 , counts the ratio of positive edges that are ranked𝐾

or above the negative edges [31]. The Jaccard, Adamic-Adar, Com-

mon Neighbors, and Resource Allocation indices are all used in the

literature for establishing this ranking.

The results, presented in Figure 4, provide evidence to substan-

tiate the claim that estimating more appropriate metrics makes

DotHash a better estimator for the link prediction problem. By

employing sufficient dimensions and selecting suitable metrics,

DotHash consistently outperforms the baselines across all datasets

and approaches the exact indices, shown in dashed lines. Each

solid line represents the mean of the values observed in the five

repetitions, and the corresponding colored shades show the 95%

confidence interval. Importantly, as explained in the previous sec-

tion, the adoption of DotHash does not impose a significant addi-

tional computational burden compared to the baseline methods.

Figure 5 shows the normalized execution time of each method on

the same datasets. For more details on execution times, please refer

to Appendix B.

5.3 Document deduplication
The detection of duplicate documents was the first major appli-

cation to motivate the development of set similarity estimators.

Both MinHash and SimHash were developed and became popular

for their use in deduplicating web pages in Google and Alta Vista

search engines. With our experiments in this section we seek to

show how DotHash compares to these methods in this important

problem.
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Figure 5: Normalized average execution time of different
methods, relative to MinHash with 𝑘 = 8 running on CPU.
The average is calculated over all link prediction datasets.

Once again, we took advantage of the broader capability of

DotHash to estimate a metric richer than the Jaccard coefficient be-

tween documents. While MinHash and SimHash give equal weight

to shingles (sequences of words) when comparing documents, with

DotHash we can assign different weights to reflect how important

each shingle is to each document in the corpus. Our intuition is

that the more important a term is to identify each text, the more its

presence in different texts indicates their similarity.

One of the most popular ways of evaluating how important a

term is to a document is by the inverse document frequency, or
IDF [36]. The measure is widely used in the information retrieval

literature for text mining [30, 60], and is defined as:

idf (𝑥) = log

|𝐷 |
|{𝑑 ∈ 𝐷 : 𝑥 ∈ 𝑑}|

where |𝐷 | is the number of documents in the entire corpus and

|{𝑑 ∈ 𝐷 : 𝑥 ∈ 𝑑}| the number of documents that contain the term

𝑥 . Given this, we can compare documents 𝐴 and 𝐵 not only by the

number, but also by the importance of common shingles, as follows:

sim
idf

(𝐴, 𝐵) =
∑︁

𝑥∈𝐴∩𝐵
idf (𝑥)

which is in the family of functions that DotHash can estimate.

In Table 3 we show the comparative results between the three

estimators for the near-duplicate detection problem in the three

different datasets described in Section 5.1. For each estimator we

present the near-duplicity detection accuracy in terms of Hits@25

and execution time in seconds. The number of hash values and

dimensions for MinHash, SimHash, and DotHash were set to 128,

500, and 10,000, respectively. These values were chosen to ensure

comparable accuracy and enable the observation of differences in

computational efficiency between the algorithms.

The numerical results presented indicate that DotHash is able to

surpass the accuracy of MinHash in all datasets, even with a number

of dimensions in which its execution time is between 0.5 and 3×
faster. The same is observed in the comparisonwith SimHash, which

obtains the lowest accuracy in all cases. These empirical results

reinforce the findings observed in the link prediction experiments,

highlighting the advantage of DotHash. By efficiently estimating

richer metrics through a single dot product computation between
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set sketches, DotHash consistently delivers superior cost-benefit

compared to other estimators.

Table 3: Accuracy and computation time (in seconds) results
in the detection of duplicate documents.

Dataset Metric MinHash SimHash DotHash

CORE 20’ Hits@25 0.6246 0.3991 0.6286
Time 0.0269 0.0284 0.0088

Rest Hits@25 0.9598 0.7745 0.9819
Time 0.0014 0.0011 0.0006

cddb Hits@25 0.9058 0.6496 0.9085
Time 0.0094 0.0084 0.0066

6 CONCLUSION
We propose DotHash, a new baseline method for estimating the sim-

ilarity between sets. The method takes advantage of the tendency

to orthogonality of sets of random high-dimensional vectors to

create fixed-size representations for sets. We show that a simple dot

product of these sketches serves as an unbiased estimator for the

size of the intersection of sets. DotHash allows estimating a larger

set of metrics than existing estimators. Our experiments show that

this makes it more appropriate for link prediction and duplicate

detection tasks. Adding the theoretical and practical contribution,

we see DotHash as a new framework for a problem of increasing

relevance in data mining and related areas.
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A THEOREM PROOFS
In this section we provide the proofs of the theorems presented in

the main paper.

A.1 Intersection cardinality by dot product
Theorem 1. Consider arbitrary sets𝐴, 𝐵 ⊆ 𝑆 . Let 𝜙 : 𝑆 → R |𝑆 | be

any injective map of their elements to vectors in one of the orthonormal
bases of R |𝑆 | , and let

𝒂 =
∑︁
𝑎∈𝐴

𝜙 (𝑎) and 𝒃 =
∑︁
𝑏∈𝐵

𝜙 (𝑏).

Then, 𝒂 · 𝒃 = |𝐴 ∩ 𝐵 |.

Proof. By the definitions of 𝒂 and 𝒃 ,

𝒂 · 𝒃 =

(∑︁
𝑎∈𝐴

𝜙 (𝑎)
)
·
(∑︁
𝑏∈𝐵

𝜙 (𝑏)
)

Using the distributivity of the dot product over addition, we can

rewrite the above equation as:

𝒂 · 𝒃 =
∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

𝜙 (𝑎) · 𝜙 (𝑏)

Because 𝜙 is injective, i.e., 𝜙 (𝑎) = 𝜙 (𝑏) if, and only if, 𝑎 = 𝑏, and

based on the orthogonal property of orthonormal vectors, 𝜙 (𝑎) ·
𝜙 (𝑏) = 1 if 𝑎 = 𝑏, and zero otherwise. Then,

𝒂 · 𝒃 =
∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

1(𝑎 = 𝑏) =
∑︁

𝑥∈𝐴∩𝐵
1 = |𝐴 ∩ 𝐵 |

□

A.2 Intersection cardinality estimate by dot
product

Theorem 2. Consider arbitrary sets 𝐴, 𝐵 ⊆ 𝑆 and any constant
𝑑 ∈ N+. Let𝜓 : 𝑆 → R𝑑 be a uniform random mapping of elements
in 𝑆 to unit vectors which are the points of a 𝑑-dimensional hypercube,
and let

𝒂 =
∑︁
𝑎∈𝐴

𝜓 (𝑎) and 𝒃 =
∑︁
𝑏∈𝐵

𝜓 (𝑏).

Then, E[𝒂 · 𝒃] = |𝐴 ∩ 𝐵 |, and

Var(𝒂 · 𝒃) = 1

𝑑

(
|𝐴| |𝐵 | + |𝐴 ∩ 𝐵 |2 − 2|𝐴 ∩ 𝐵 |

)
Proof. By the definitions of 𝒂 and 𝒃 ,

𝒂 · 𝒃 =

(∑︁
𝑎∈𝐴

𝜓 (𝑎)
)
·
(∑︁
𝑏∈𝐵

𝜓 (𝑏)
)

Applying the linearity of expectation and distributivity of the dot

product over addition, we have:

E[𝒂 · 𝒃] = E
[∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

𝜓 (𝑎) ·𝜓 (𝑏)
]
=

∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵
E[𝜓 (𝑎) ·𝜓 (𝑏)]

Given that𝜓 maps uniformly to unit vectors which are the points

of a 𝑑-dimensional hypercube, the elements of 𝜓 (·) are sampled

uniformly at random from

{
− 1√

𝑑
, + 1√

𝑑

}
. When 𝑎 = 𝑏,

E[𝜓 (𝑎) ·𝜓 (𝑏)] = E[𝜓 (𝑎) ·𝜓 (𝑎)] = E
[
𝑑∑︁
𝑖=1

𝜓 (𝑎)2𝑖

]
=

𝑑∑︁
𝑖=1

1

𝑑
= 1

where the right-hand subscripts denote the dimension of the vector.

And when 𝑎 ≠ 𝑏,

E[𝜓 (𝑎) ·𝜓 (𝑏)] = E
[
𝑑∑︁
𝑖=1

𝜓 (𝑎)𝑖 𝜓 (𝑏)𝑖

]
=

𝑑∑︁
𝑖=1

E[𝜓 (𝑎)𝑖 𝜓 (𝑏)𝑖 ] = 0

Thus, E[𝜓 (𝑎) ·𝜓 (𝑏)] = 1(𝑎 = 𝑏), which ensures that:

E[𝒂 · 𝒃] =
∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

1(𝑎 = 𝑏) =
∑︁

𝑥∈𝐴∩𝐵
1 = |𝐴 ∩ 𝐵 |

Moreover, the variance of the estimator is obtained as follows,

where 𝑟𝑖 (𝑎, 𝑏) = 𝜓 (𝑎)𝑖 𝜓 (𝑏)𝑖 and we use the definitions of 𝒂, 𝒃 , and
the dot product,

Var(𝒂 · 𝒃) = Var

(
𝑑∑︁
𝑖=1

∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

𝑟𝑖 (𝑎, 𝑏)
)

Since each dimension of 𝜓 (·) is sampled independently from an

identical distribution (i.i.d.),

Var(𝒂 · 𝒃) =
𝑑∑︁
𝑖=1

Var

(∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵

𝑟𝑖 (𝑎, 𝑏)
)

We then separate the equal from the non-equal pairs of 𝑎 and 𝑏

and note that when 𝑎 = 𝑏 their elements are identical thus their

outcome has no variance, this gives:

Var(𝒂 · 𝒃) =
𝑑∑︁
𝑖=1

Var

( ∑︁
𝑥∈𝐴∩𝐵

𝜓 (𝑥)2𝑖

)
+ Var

©«
∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵\{𝑎}

𝑟𝑖 (𝑎, 𝑏)
ª®¬

=

𝑑∑︁
𝑖=1

Var
©«
∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵\{𝑎}

𝑟𝑖 (𝑎, 𝑏)
ª®¬

Using the property of linear combination of random variables we

get,

Var(𝒂 · 𝒃) =
𝑑∑︁
𝑖=1

∑︁
𝑎∈𝐴

∑︁
𝑏∈𝐵\{𝑎}

Var(𝑟𝑖 (𝑎, 𝑏))

+
∑︁

𝑥∈𝐴\{𝑎}

∑︁
𝑦∈𝐵\{𝑥,𝑏}

Cov(𝑟𝑖 (𝑎, 𝑏), 𝑟𝑖 (𝑥,𝑦))

Lastly, we observe that the covariance is
1

𝑑2
when (𝑎, 𝑏) = (𝑦, 𝑥)

giving the variance:

Var(𝒂 · 𝒃) =
𝑑∑︁
𝑖=1

1

𝑑2

(
|𝐴| |𝐵 | + |𝐴 ∩ 𝐵 |2 − 2|𝐴 ∩ 𝐵 |

)
=
1

𝑑

(
|𝐴| |𝐵 | + |𝐴 ∩ 𝐵 |2 − 2|𝐴 ∩ 𝐵 |

)
□
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Figure 6: Node signature comparison time in the link prediction tasks.

A.3 Adamic-Adar estimate by dot product
Theorem 3. Consider an arbitrary graph 𝐺 = (𝑉 , 𝐸) with nodes

𝑉 and edges 𝐸. Take any constant 𝑑 ∈ N+ and let Γ(𝑣) ⊆ 𝑉 denote
the neighbors of node 𝑣 ∈ 𝑉 . Let𝜓 : 𝑉 → R𝑑 be a uniform random
mapping of nodes in 𝑉 to unit vectors pointing to the corners of a
𝑑-dimensional hypercube, and let

𝒖 =
∑︁

𝑥∈Γ (𝑢 )
𝜓 (𝑥)

√︄
1

log |Γ(𝑥) | and 𝒗 =
∑︁

𝑦∈Γ (𝑣)
𝜓 (𝑦)

√︄
1

log |Γ(𝑦) |

Then, E[𝒖 · 𝒗] = A(𝑢, 𝑣).

Proof. By the definitions of 𝒖 and 𝒗,

𝒖 · 𝒗 =
©«

∑︁
𝑥∈Γ (𝑢 )

𝜓 (𝑥)
√︄

1

log |Γ(𝑥) |
ª®¬ · ©«

∑︁
𝑦∈Γ (𝑣)

𝜓 (𝑦)
√︄

1

log |Γ(𝑦) |
ª®¬

Applying the linearity of expectation and distributivity of the dot

product over addition, we have:

E[𝒖 · 𝒗]

= E


∑︁

𝑥∈Γ (𝑢 )

∑︁
𝑦∈Γ (𝑣)

(
𝜓 (𝑥)

√︄
1

log |Γ(𝑥) |

)
·
(
𝜓 (𝑦)

√︄
1

log |Γ(𝑦) |

)
=

∑︁
𝑥∈Γ (𝑢 )

∑︁
𝑦∈Γ (𝑣)

E

[(
𝜓 (𝑥)

√︄
1

log |Γ(𝑥) |

)
·
(
𝜓 (𝑦)

√︄
1

log |Γ(𝑦) |

)]

=
∑︁

𝑥∈Γ (𝑢 )

∑︁
𝑦∈Γ (𝑣)

√︄
1

log |Γ(𝑥) |

√︄
1

log |Γ(𝑦) |E[𝜓 (𝑥) ·𝜓 (𝑦)]

From the previous proof we have that E[𝜓 (𝑥) ·𝜓 (𝑦)] = 1(𝑥 = 𝑦),
giving:

E[𝒖 · 𝒗]

=
∑︁

𝑥∈Γ (𝑢 )

∑︁
𝑦∈Γ (𝑣)

√︄
1

log |Γ(𝑥) |

√︄
1

log |Γ(𝑦) | 1(𝑥 = 𝑦)

=
∑︁

𝑥∈Γ (𝑢 )∩Γ (𝑣)

1

log |Γ(𝑥) | = A(𝑢, 𝑣)

□

B DETAILED EXPERIMENTAL RESULTS
In this section we present additional experimental results. We be-

lieve that the results presented in the main paper are sufficient

to substantiate our main claims. Still, the results below should re-

veal more details to those interested in, for example, exploring the

DotHash framework in future work.

B.1 Time to compare node signatures in link
prediction

The results in the Figure 6 show the time taken to compare the

sketch of the sets created by each method in the link prediction

datasets. For each of the methods and datasets, we show the CPU

and GPU times for different sketch dimensions 𝑑 , in the case of

DotHash and SimHash, and minwise hash functions 𝑘 for Min-

Hash. The lines represent the mean over 5 runs of calculating the

represented metric for all edges in the test set.
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