
Accelerating Permute and N-gram Operations for
Hyperdimensional Learning in Embedded Systems

Pere Vergés
Department of Computer Science

University of California, Irvine
pvergesb@uci.edu

Igor Nunes
Department of Computer Science

University of California, Irvine
igord@uci.edu

Mike Heddes
Department of Computer Science

University of California, Irvine
mheddes

Tony Givargis
Department of Computer Science

University of California, Irvine
givargis@uci.edu

Alexandru Nicolau
Department of Computer Science

University of California, Irvine
nicolau@uci.edu

Abstract—Hyperdimensional computing (HDC) is a novel com-
puting framework that has gained significant attention for its
ability to accelerate machine learning algorithms. Its fast learning
and inference capabilities make it an ideal technique for various
fields, including machine learning. HDC utilizes high-dimensional
holographic vectors, which are vectors with independent and
identically distributed dimensions, to represent information. This
unique representation allows HDC to leverage highly paralleliz-
able arithmetic operations such as bundling, binding and permute.
These simple and highly optimizable operations make HDC an
efficient framework for classification in embedded systems. HDC
has demonstrated remarkable accuracy in learning patterns from
sequenced data. In this paper, we propose a method to enhance
the permute operation, which is crucial for maintaining the
order of symbols or measures in real-time data. Our method
enhances the efficiency of HDC’s permute operations by a factor
of 10×. Furthermore, by applying the same idea to n-gram
encoding, we achieve a speedup of 14×, resulting in up to
26.8× speedup on a real application, compared to a state-of-
the-art HDC prototyping library. To achieve this improvement,
we utilized SIMD operations and shifted entire SIMD data blocks
rather than individual elements. As a result, we demonstrate that
real-time inference can be conducted rapidly in applications that
are utilized in embedded systems with constrained computational
and memory resources, such as those for recognizing emotions,
gestures, and language.

Index Terms—Embedded Systems, Machine Learning, Hyper-
dimensional Computing, Vector Symbolic Architecture, High-
Performance Computing, SIMD

I. INTRODUCTION

Hyperdimensional Computing (HDC) [1], also known as

Vector Symbolic Architectures (VSA) [2], is an emerging

brain-inspired computational framework [3], [4] that encodes

data using high-dimensional vectors caller hypervectors. HDC

has shown significant benefits in terms of reduced memory

and computational resource usage, while maintaining high

accuracy in machine learning tasks [5]. As a result, HDC has

emerged as a viable solution for resource-constrained environ-

ments, including embedded systems with limited processing

power, memory, and energy [6]. The inherent robustness of

HDC against hardware errors [7], such as bit upsets, is due

to its utilization of vectors with identically and independently

distributed dimensions. This property is a crucial feature for

Internet of things (IoT) devices, which ensures that such errors

and noise only have a negligible impact on the algorithm’s

accuracy [8], making HDC a robust option for IoT devices

that are often subject to potential hardware failures [9]–

[12]. HDC’s high level of parallelism enables multi-threaded

embedded devices to achieve significant speedups [13], [14].

Additionally, the utilization of SIMD vector operations can

significantly enhance the speed of HDC by reducing the

number of load and store operations performed [15]. Fur-

thermore, HDC has allowed power-constrained IoT devices

[16] to achieve real-time classification with low latency by

exploiting its ease of high-speed parallel processing. As such,

HDC has shown significant potential for being a powerful

technique for accelerating machine learning algorithms in

embedded systems. These properties make HDC a solid option

for tackling problems such as speech recognition [17], image

processing [18], and sensor data analysis [19], which are

typically tasks carried out by embedded devices that require a

rapid response time.

Hyperdimensional learning solves real-time classification

tasks by using a learning model that relies on encoding data

into hypervectors, achieved through three operations: bundle,

bind, and permute. Among these operations, permute is par-

ticularly important for encoding temporal data, allowing the

model to capture the information’s sequence or ordering. The

permute operation is widely utilized in numerous applications

in combination with the n-gram encoding [10], [19]–[24] (see

Section IV-B), which is used to group various types of data,

such as letters, words, phrases, and time-series, among others.

TABLE I: Execution time (ms) of permute(4) of size 10000.

Method Time (speed up)

Shuffle (HDCC) 80

SIMD shift (OURS) 8 (10×)

253

2023 IEEE 29th International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA)

2325-1301/23/$31.00 ©2023 IEEE
DOI 10.1109/RTCSA58653.2023.00037

20
23

 IE
EE

 2
9t

h
In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 E
m

be
dd

ed
 a

nd
 R

ea
l-T

im
e

Co
m

pu
tin

g
Sy

st
em

s a
nd

 A
pp

lic
at

io
ns

 (R
TC

SA
) |

 9
79

-8
-3

50
3-

37
86

-0
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
RT

CS
A5

86
53

.2
02

3.
00

03
7

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 14,2023 at 18:26:16 UTC from IEEE Xplore. Restrictions apply.

In order to accelearte hyperdimensional learning, particu-

larly the permute operation, we propose leveraging the innate

multithreaded parallelism of HDC, as well as its ease to use

Single Instruction to Multiple Data (SIMD) operations. Our

research presents a novel approach for enhancing the efficiency

of the permute operation and n-gram encoding. The permute

operation is typically executed through circular shifting of

the hypervector, which involves a significant number of load

and store operations on memory. This process can become

particularly burdensome due to the high dimensionality of the

hypervectors. Our proposed solution reduces the number of

load and store operations on the order of the SIMD vector size

by shifting the SIMD blocks that constitute the vector rather

than a single element within the high-dimensional vector.

This technique achieves a speedup of 10×, compared to the

conventional single-element shift approach. Additionally, we

apply this approach to the widely used n-gram encoding by

utilizing the SIMD block shift in conjunction with the addition

and multiplication of SIMD blocks. This methodology not

only reduces memory consumption compared to the state-of-

the-art prototyping library Torchhd1 [25], but also increases

the speed of the operation by 14×, as compared to the

single element shift approach. The resulting acceleration of the

permute operation and n-gram encoding, coupled with parallel

and SIMD operations, significantly improves the response time

of machine learning in embedded systems.

TABLE II: Execution time (ms) of 4-gram of size 10240000.

Method Time (speed up)

Naive 1246.7

Shuffle (HDCC) 346.7 (3.59×)

SIMD shift (OURS) 84.8 (14.7×)

II. RELATED WORK

Previous works proposing hardware accelerations for Hy-

perdimensional computing include in-memory platforms [13],

application-specific integrated circuit (ASIC) accelerators for

binarized models [26] [27] and acceleration by exploiting com-

putational reuse [28]. These approaches have utilized specific

hardware implementations and have targeted specific platforms

to accelerate HDC computing. In contrast, our work aims to

accelerate the permute operation for embedded systems with-

out focusing on any specific target hardware. Our motivation is

to enhance the inference and training time of HDC applications

used in resource-limited systems, which utilize the permute

operation or n-gram encoding to represent sequenced data.

HDC is widely used to solve classification problems involving

sequences or time series, where the permute operation plays a

crucial role. Some important examples are introduced below.

Emotion recognition has been a popular area of research

for HDC. In [18], the authors demonstrated that HDC was

1Torchhd: https://github.com/hyperdimensional-computing/torchhd

capable of classifying the effective response of multiple in-

dividuals from electroencephalogram (EEG) data, with per-

formance comparable to the state-of-the-art. The encoding

used included a component that encoded temporal relations,

achieved through the permute operation. Similarly, in [20],

HDC was applied to solve the emotion recognition problem for

embedded systems, utilizing the n-gram encoding to encode

temporal signals.

Gesture recognition studies in HDC have shown that tra-

ditional machine learning techniques cannot provide real-

time training and model updates for real-time electromyogram

(EMG) analysis, and HDC helps bridge this performance gap.

In previous works [19], [21], [22], [24], the best encoding

approaches for this task utilized either the permute or n-gram

operation to encode the temporal position of each sample.

Language recognition is another area where HDC has shown

outstanding results. In [23], the authors used a classification

approach to identify different languages based on letter n-

grams, achieving an accuracy of 96.7%. The same approach

was also applied in [29], for Arabic languages.

DNA pattern matching is yet another area where HDC has

been used. The permute operation has been utilized as part of

its pattern-matching strategy [10].

Additionally, a recent study [24] has demonstrated that HDC

is a promising technique for efficient biosignal processing,

especially when the data is noisy and non-stationary. The study

showcases how different biosignals, such as EMG, EEG, and

electrocorticography (ECoG), can be encoded using HDC to

solve classification problems.

In all the above-mentioned cases, the encoding approach

incorporates the temporal relationships between the samples,

achieved by using the permute operation to encode n-grams.

III. HYPERDIMENSONAL COMPUTING

Hyperdimensional computing is a framework that utilizes

high-dimensional vectors as its fundamental data type. These

vectors are typically represented using 10,000 dimensions and

are holographic by construction. Each vector component is

independently and identically distributed, ensuring that every

dimension carries an equal amount of information.

These vectors are manipulated and combined using three

operations: bundling, binding, and permuting. Bundling com-

bines two input hypervectors to create a new one that is similar

to the two inputs, while binding associates two hypervectors

to create a new one that is dissimilar to the inputs. Finally,

permuting implements a circular shift and is used to give

a sense of order to hypervectors, being typically used for

creating sequences or encoding text by generating n-grams.

In the hyperspace H,∈ {0, 1}D, where D ≈ 10, 000, a sim-

ilarity metric is used to extract information from hypervectors.

This is commonly usde to asses if a hypervector is contained

in a another one or not. The most commonly used similarity

metrics in HDC are the dot similarity, cosine similarity, and

hamming distance.

Hyperdimensional computing is an efficient and effective

approach for performing classification tasks due to its ability

254

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 14,2023 at 18:26:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Permute representation. 1.Single element shift (Torchhd). 2.SIMD Shuffle shift (HDCC). 3 .SIMD Block shift (OURS).

to perform single-pass learning. To achieve this, the algorithm

used for learning begins by selecting an encoding scheme to

map input data to the high-dimensional space. During train-

ing, the algorithm applies the encoding to every sample and

bundles the resulting hypervector to the model’s associative

memory under the appropriate class. This process is repeated

for all samples. During inference, the model encodes the

input sample and compares its hypervector to the associative

memory using a similarity measure to retrieve the predicted

class.

IV. PERMUTE AND N-GRAM ACCELERATION

This section presents the proposed method for implementing

the permute operation and n-gram encoding. To empirically

demonstrate the effectiveness of our algorithm, we imple-

mented our approach within the HDCC [30]2 compiler, which

produces self-contained C code that can be easily integrated

into embedded systems without any compatibility issues or

additional dependencies.

TABLE III: Tradeoff SIMD size and number of permutes.

SIMD size HDCC 16 32 64 128 256

#Permutes 10240 1280 640 320 160 80

Time (ms) 0.584 0.393 0.297 0.224 0.188 0.131

A. Permutation

The primary operations in HDC are bundle, binding, and

permute. Our method introduces a novel approach to the

permute, which exploits SIMD operations to minimize the

number of load and store operations on the order of the SIMD

operation size. Typically the permute operation is implemented

by performing a circular shift. However this operation is not

very efficient to implement; thus, most programming lan-

guages, including C, do not provide a built-in implementation.

2HDCC: https://anonymous.4open.science/r/hdcc-5F7C/

Throughout the rest of the paper, we will assume without loss

of generality that all permutations will consist of right-shifts.

In the MAP (Multiply, Add, and Permute) vector symbolic

architecture, permute refers to a circular shift of a hypervector,

where the shift can be from one to d-1 positions, with d being

the hypervector’s dimensionality. This operation is primarily

used to establish order and represent sequences.

1) Naive permute implementation: The most naive method

for implementing the permute operation (i.e., circular shift)

involves reassigning every entry in the array to n positions to

the right. This approach requires looping through every posi-

tion in the array and storing the shifted value into additional

data structures to prevent data loss. Figure 1 illustrates this

implementation, where the first image shows the amount of

data replacements required. In C, memcpy can also be used

to copy regions of memory, but the performance achieved

by assigning the elements one by one or using memcpy is

virtually the same.

TABLE IV: N-gram sizes in the literature.

Dataset/Paper Size (N)

EMG [24] 3

EMG Hand [22] 3

DEAP [18] 3-4

AMIGOS [20] 4

Language recognition [17] 3-5

News Classification [31] 5

Arab [29] 4-7

ERP EEG [24] 16-29

2) Shuffle permute implementation (SIMD): When perform-

ing SIMD operations in C, the use of intrinsics is necessary.

C includes a built-in operation that allows shuffling an array

by providing a shuffle mask, which can slightly enhance

255

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 14,2023 at 18:26:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Workflow of the Torchhd n-gram implementation. It is depicted how the vectors are permuted, bind and bundled to

form the resulting n-gram

performance. However, copying between SIMD blocks of data

is still required, and auxiliary data structures are necessary

to store the shifted values. Figure 3 illustrates the operation

of the built-in shuffle operation, while Figure 1 provides an

illustration of the intuition of its use. It is worth noting that

this operation is not universally implemented in all g++ or

gcc compiler versions, which can result in compatibility issues

depending on the compiler version and architecture.

3) Permute block operation (OURS): To enhance the ef-

ficiency of the permute operation and increase its general-

ity while avoiding compatibility issues, we propose a more

efficient approach that reduces the number of operations by

leveraging the C SIMD intrinsics.

Our proposed implementation involves shifting the entire

SIMD block instead of just a single element. Specifically, if

we refer to the type defined in Figure 3, we would shift a

hyperdimensional array of f4si* in which one f4si is shifted

instead of a single value. This approach significantly reduces

the number of operations required, on the order of the SIMD

operation size, improving its efficiency.

f4si __attribute__ ((vector_size (128)));
__builtin_shufflevector(v,v,5,6,7,0,1,2,3,4);

Fig. 3: Shuffle vector C builtin instruction

In hyperdimensional computing, permutations are used to

represent ordered patterns. Typically, a permutation is achieved

by shifting each element by a single position, with a permute

of 1 each element in the vector is shifted one position.

However, the inherent sequence information can be learned by

shifting n elements at the same time. We leverage this property

by using SIMD operations to reduce the number of load and

stores required by, instead of readdressing single elements,

readdressing entire SIMD blocks. Our approach is illustrated

in Figure 1, where we show that instead of readdressing 16

individual elements, we only need to readdress 4 blocks.

To evaluate the effectiveness of our method, we compare

the execution time of the permute operation on a hypervector

of 10,000 dimensions using the HDCC implementation and

our proposed method. We repeated this execution one million

times and report the average time improvements achieved by

our method in Table I.

B. N-gram

The n-gram encoding operation heavily relies on the per-

mute operation. N-grams are a popular approach for encoding

text and time series data. By utilizing our method, we can

accelerate the n-gram operation and decrease its peak memory

usage.

In hyperdimensional computing, the n-gram operation in-

volves binding n hypervectors together. The first hypervector

(hv[0]) is not permuted, the second hypervector (hv[1]) is

permuted one position, and so on, up to the (n − 1)-th
hypervector being permuted by n − 2 positions. Once each

hypervector has been permuted, the resulting hypervectors are

combined by bundling to form a single one. This process is

repeated m−n times, where m is the number of hypervectors

in the hypervector set and n is the size of the n-gram. The

proposed solution for the permute operation, along with the

reduction in memory usage, can significantly speed up the n-

gram encoding process.

Figure 2 depicts the n-gram implementation approach em-

ployed in Torchhd [25], a state-of-the-art PyTorch-based li-

brary for hyperdimensional computing. In this approach, the

hypervector set is permuted n − 1 times, and the resulting

permutations are then bound together to form a hypervector set

that generates the final n-gram representation upon bundling.

However, this approach suffers from two primary drawbacks.

Firstly, it demands a considerable amount of memory, which

scales with the size of the hypervector set (defined by the

number of dimensions times the size of the set) multiplied

by the size of the n-gram. Secondly, the approach involves

shifting single elements, which incurs more operations than

shifting a SIMD block, resulting in higher computational costs.

256

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 14,2023 at 18:26:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Workflow of our n-gram implementation, we show how the SIMD blocks are permuted and added to form the resulting

n-gram.

Algorithm 1 SIMD Block permute n-gram encoding

1: procedure N-GRAM(X , n)

2: encoding ← {0, ..., 0}D
3: for x in X do
4: current = {0, ..., 0}Batches

5: for j in x do
6: for k in 0, . . . , n do
7: block idx ← (j + k) mod Batches
8: current ← current ∗ x(j + block idx)
9: end for

10: encodingj ← encodingj + current
11: end for
12: end for
13: return encoding
14: end procedure

Our proposed approach consists of permuting the whole

SIMD block, which reduces the number of load and store

operations. As shown in Listing 1, where X represents the

input data as hypervectors, n is the size of the n-gram,

Batches is the number of SIMD blocks, and D is the

dimensionality of the hyperspace, our algorithm processes the

hypervector as by SIMD blocks, binding all corresponding

blocks to the current one, and then bundling the result to

the corresponding final n-gram hypervector. In this case, the

amount of memory used is a constant n-gram hypervector with

the size of the dimensions and the original hypervector set.

Figure 4 illustrates its implementation.

Table II presents the time difference between using the

shuffle operation and the block shifting approach for the

permute operation in the n-gram encoding. We show the time

taken to permute a hypervector set of 10,000 dimensions and

size 1,024, with the operations repeated 1 million times.

C. Leveraging SIMD size

Using our approach has the drawback that the number of

possible shifts is reduced by the size of the SIMD operation.

We show in Table IV the n-gram and permute sizes used in

various previous works. Most of these works employ n-grams

with n < 10, with only one of the presented works using

values up to 30. Using 10,000-dimensional vectors and 128-bit

SIMD operations, the highest values for permute and n-gram

size are 160, which still exceeds the maximum value used in

all the examples shown in Table IV.

If an application requires a larger number for the permute

and n-gram operation, one can reduce the size of the SIMD

operation. Table III demonstrates how SIMD operation size

affects performance. The execution time increases as the SIMD

vector size decreases. However, even with smaller SIMD

vector sizes, the execution time still outperforms the HDCC

implementation, using single shift.

V. EXPERIMENTS

This section is focused on demonstrating the speedup

achieved by using our proposed SIMD permute and n-gram ap-

proach. We will compare our implementation to Torchhd [25],

the current state-of-the-art hyperdimensional computing li-

brary, and HDCC implementations. We will also explore

the speedups achieved by using SIMD and parallel against

sequential and scalar implementations.

Initially, we will present a general comparison of the time

and memory usage of the three implementations mentioned

above, Torchhd, HDCC, and ours on a RaspberryPi. Sub-

sequently, we will show an experiment that highlights the

contribution of using scalar, SIMD operations, and parallel

execution. Finally, we will present a study that examines how

the HDCC parallelization differs from ideal parallelization.

TABLE V: Machines specifications.

Machine RaspberryPi 4B ThunderX

SoC Cortex-A72 SoC ThunderX 88XX

Memory 8GB DDR3 134 GB DDR3

Architecture ARM v8 64bit aarch64

Frequency 1.5 GHz 2.5GHz

CPUs 4 96

Threads per core 1 1

A. Setup

This section describes the machines and datasets used for

our evaluation

257

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 14,2023 at 18:26:16 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: Execution comparison in a RaspberryPi of Torchhd, HDCC, and OUR implementations on all datasets using multiple

dimensions. We show time(s) and Peak Memory usage in bytes

TABLE VI: Execution comparison of Torchhd, HDCC and OUR implementation in a RaspberryPi using 10000 dimensions.

Datasets EMG VOICEHD LANGUAGES MNIST

Torchhd 144.22 504.88 9869.06 1963.98

HDCC 7.43 86.10 2054.31 730.11

OUR 5.37 (26.8×, 1.38×) 70.65 (7.2×, 1.21×) 438.13 (22.5×, 4.68×) 535.22 (3.6×, 1.36×)

1) Machines: Two machines were utilized in the experi-

ments. We employed RaspberryPi B to showcase the perfor-

mance of the three different implementations on embedded

devices. It is worth noting that this RaspberryPi B model

lacks support for hardware simultaneous multithreading. The

second board used in the experiments was ThunderX 88XX,

featuring 96 cores and was primarily used to demonstrate

code parallelization. Table V presents an overview of the

specifications for each board.

2) Datasets: This section provides an overview of the

datasets utilized for evaluating our method. We selected four

commonly used datasets in the HDC literature.

• ISOLET dataset [17] is utilized for speech recognition

tasks, specifically for classifying audio recordings of the

26 English alphabet letters. For this work, we encoded

the dataset using the method proposed in VoiceHD [32],

which is a hyperdimensional encoding technique for

speech signals.

• EMG hand gesture recognition dataset contains record-

ings of the hand position of five subjects, with the

goal of classifying the data into five recorded positions.

The encoding used for this dataset was obtained from a

previous study by Rahimi et al. in 2016, which utilized

hyperdimensional computing for the classification task.

• Language recognition dataset is composed of sentences

from 21 different European languages, as described in

[17]. The sentences were sourced from the Wortschatz

Corpora, which is a large collection of sentences in the

respective languages.

• MNIST dataset [33] is a collection of images containing

handwritten digits, with each image representing a num-

ber from 0 to 9. The objective of this task is to classify

each image into one of the ten possible classes.

B. Experiments

This section describes the experiments carried out.

1) RaspberryPi Execution: In this experiment, we evalu-

ated the performance of Torchhd, HDCC and our proposed

implementation across all datasets using a RaspberryPi B

embedded board. The results presented in Table VI and Figure

5 demonstrate that HDCC and our optimized implementation

exhibit a significant speedup compared to Torchhd, while

lowering the memory usage. Moreover, our optimized imple-

mentation achieves a higher speedup than HDCC across all

datasets, with a maximum speedup of 4.7× over HDCC and

22.5× over Torchhd on the Languages dataset.

2) SIMD and parallel accelerations: This experiment aims

to investigate the factors contributing the improvement of Hy-

perdimensional Learning performance. These factors include

the parallelization of HDC [1] and the 10,000-dimensional

vector operations. While we cannot achieve constant opera-

tions for vectors with 10,000 dimensions, we can leverage

SIMD operations to narrow the gap. Table VII presents our

findings on the contributions of parallelization and SIMD

258

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 14,2023 at 18:26:16 UTC from IEEE Xplore. Restrictions apply.

operations on Hyperdimensional Learning algorithms. The

results were obtained by executing the Languages dataset on

a Raspberry Pi using our optimized implementation.

TABLE VII: Time execution comparison of Languages appli-

cation using SIMD, scalar, sequential and parallel executions.

Scalar SIMD

Sequential 26710.4s 5770.23s (4.62×)

Parallel 8909.18s (2.99×) 425.17s (62.8×)

3) Parallelization study: This study aimed to evaluate the

impact of parallelization on both embedded devices (Rasp-

berryPi) and high-performance boards with large number of

CPUs (ThunderX 88XX). The results presented in Figure 6

demonstrate that on the Raspberry Pi, parallelization deviated

from perfect parallelization when using more than two threads,

due to oversubscription and OS management issues. However,

on the ThunderX board, the parallelization times for different

numbers of threads followed the theoretical parallelization,

indicating that with the right implementation, almost ideal

parallelization can be achieved in Hyperdimensional Learning.

We tested this parallelized execution using the Languages

dataset with our implementation.

Fig. 6: Parallelization evaluation of our implementation, on a

RaspberryPi B and ThunderX board.

VI. CONCLUSION

In this study, we have shown that circular shift operations,

also known as permute operations, can be accelerated using

SIMD instructions by shifting entire SIMD blocks instead of

single elements. Our implementation reduces the number of

permute operations required and achieves speedups of 10x.

Furthermore, we have implemented the n-gram operations

using this approach, resulting in a 14.7× speedup. The per-

formance of our implementation on real datasets achieves up

to 22.5× speedup compared to Torchhd, the current state-

of-the-art library for hyperdimensional computing, and the

outperforms HDCC implementation by 4.68×. These findings

highlight the potential of SIMD operations and paralleliza-

tion for accelerating hyperdimensional learning algorithms,

especially on high-performance boards with many CPUs.

Additionally, we have demonstrated that the utilization of

SIMD operations and parallelization can result in significant

speedups, up to 62.8× faster than scalar and sequential code.

It is evident that future work in this area could lead to

even more significant improvements in the performance of

hyperdimensional computing.

259

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 14,2023 at 18:26:16 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] P. Kanerva, “Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors,”
Cognitive Computation, vol. 1, no. 2, pp. 139–159, 2009.

[2] R. W. Gayler, “Vector symbolic architectures answer jackendoff’s chal-
lenges for cognitive neuroscience,” in Joint International Conference on
Cognitive Science (ICCS/ASCS), 2003, pp. 133–138.

[3] M. Imani, Y. Kim, S. Riazi, J. Messerly, P. Liu, F. Koushanfar, and
T. Rosing, “A framework for collaborative learning in secure high-
dimensional space,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD), 2019, pp. 435–446.

[4] M. Imani, J. Morris, J. Messerly, H. Shu, Y. Deng, and T. Rosing,
“Bric: Locality-based encoding for energy-efficient brain-inspired hyper-
dimensional computing,” in 2019 56th ACM/IEEE Design Automation
Conference (DAC), 2019, pp. 1–6.

[5] M. Schmuck, L. Benini, and A. Rahimi, “Hardware optimizations of
dense binary hyperdimensional computing: Rematerialization of hyper-
vectors, binarized bundling, and combinational associative memory,”
2019.

[6] Z. Yan, S. Wang, K. Tang, and W.-F. Wong, “Efficient hyperdimensional
computing,” 2023. [Online]. Available: https://openreview.net/forum?
id=9RQh6MOOaD

[7] S. Zhang, R. Wang, J. J. Zhang, A. Rahimi, and X. Jiao, “Assessing
robustness of hyperdimensional computing against errors in associative
memory : (invited paper),” in 2021 IEEE 32nd International Conference
on Application-specific Systems, Architectures and Processors (ASAP),
2021, pp. 211–217.

[8] M. Heddes, I. Nunes et al., “Hyperdimensional hashing: A robust and
efficient dynamic hash table,” in Design Automation Conference (DAC),
2022.

[9] P. Poduval, Z. Zou, H. Najafi, H. Homayoun, and M. Imani, “Stochd:
Stochastic hyperdimensional system for efficient and robust learning
from raw data,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC), 2021, pp. 1195–1200.

[10] Y. Kim, M. Imani, N. Moshiri, and T. Rosing, “Geniehd: Efficient
dna pattern matching accelerator using hyperdimensional computing,”
in 2020 Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2020, pp. 115–120.

[11] M. Imani, S. Pampana, S. Gupta, M. Zhou, Y. Kim, and T. Rosing,
“Dual: Acceleration of clustering algorithms using digital-based pro-
cessing in-memory,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2020, pp. 356–371.

[12] A. Hernández-Cano, N. Matsumoto, E. Ping, and M. Imani, “Onlinehd:
Robust, efficient, and single-pass online learning using hyperdimensional
system,” in 2021 Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2021, pp. 56–61.

[13] M. Imani, A. Rahimi, D. Kong, T. Rosing, and J. M. Rabaey, “Exploring
hyperdimensional associative memory,” in 2017 IEEE International
Symposium on High Performance Computer Architecture (HPCA), 2017,
pp. 445–456.

[14] P. Poduval, Z. Zou, X. Yin, E. Sadredini, and M. Imani, “Cognitive
correlative encoding for genome sequence matching in hyperdimen-
sional system,” in 2021 58th ACM/IEEE Design Automation Conference
(DAC), 2021, pp. 781–786.

[15] G. Mitra, B. Johnston, A. P. Rendell, E. McCreath, and J. Zhou, “Use
of simd vector operations to accelerate application code performance
on low-powered arm and intel platforms,” in 2013 IEEE International
Symposium on Parallel & Distributed Processing, Workshops and Phd
Forum, 2013, pp. 1107–1116.

[16] Z. Zou, Y. Kim et al., “Scalable edge-based hyperdimensional learning
system with brain-like neural adaptation,” in International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), 2021, pp. 1–15.

[17] R. Cole, Y. Muthusamy, and M. Fanty, The ISOLET spoken letter
database. Oregon Graduate Institute of Science and Technology, 1990.

[18] A. Menon, A. Natarajan, R. Agashe, D. Sun, M. Aristio, H. Liew,
Y. S. Shao, and J. M. Rabaey, “Efficient emotion recognition using
hyperdimensional computing with combinatorial channel encoding and
cellular automata,” Brain Informatics, vol. 9, 2021.

[19] A. Moin, A. Zhou, A. Rahimi, A. Menon, S. Benatti, G. Alexandrov,
S. Tamakloe, J. Ting, N. Yamamoto, Y. Khan, F. L. Burghardt, L. Benini,
A. C. Arias, and J. M. Rabaey, “A wearable biosensing system with in-

sensor adaptive machine learning for hand gesture recognition,” Nature
Electronics, vol. 4, pp. 54–63, 2020.

[20] E.-J. Chang, A. Rahimi, L. Benini, and A.-Y. A. Wu, “Hyperdimensional
computing-based multimodality emotion recognition with physiological
signals,” in 2019 IEEE International Conference on Artificial Intelli-
gence Circuits and Systems (AICAS), 2019, pp. 137–141.

[21] A. Moin, A. Zhou, S. Benatti, A. Rahimi, L. Benini, and J. M. Rabaey,
“Analysis of contraction effort level in emg-based gesture recognition
using hyperdimensional computing,” in 2019 IEEE Biomedical Circuits
and Systems Conference (BioCAS), 2019, pp. 1–4.

[22] A. Rahimi, S. Benatti, P. Kanerva, L. Benini, and J. M. Rabaey,
“Hyperdimensional biosignal processing: A case study for emg-based
hand gesture recognition,” in 2016 IEEE International Conference on
Rebooting Computing (ICRC), 2016, pp. 1–8.

[23] A. Rahimi, P. Kanerva, and J. M. Rabaey, “A robust and energy-
efficient classifier using brain-inspired hyperdimensional computing,”
in Proceedings of the 2016 International Symposium on Low Power
Electronics and Design, ser. ISLPED ’16. New York, NY, USA:
Association for Computing Machinery, 2016, p. 64–69. [Online].
Available: https://doi.org/10.1145/2934583.2934624

[24] A. Rahimi, P. Kanerva, L. Benini, and J. M. Rabaey, “Efficient biosignal
processing using hyperdimensional computing: Network templates for
combined learning and classification of exg signals,” Proceedings of the
IEEE, vol. 107, no. 1, pp. 123–143, 2019.

[25] M. Heddes, I. Nunes, P. Vergés, D. Desai, T. Givargis, and A. Nicolau,
“Torchhd: An open-source python library to support hyperdimensional
computing research,” 2022.

[26] M. Imani, J. Messerly, F. Wu, W. Pi, and T. Rosing, “A binary
learning framework for hyperdimensional computing,” in 2019 Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2019,
pp. 126–131.

[27] S. Gupta, M. Imani, and T. Rosing, “Felix: Fast and energy-efficient
logic in memory,” in 2018 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), 2018, pp. 1–7.

[28] S. Salamat, M. Imani, and T. Rosing, “Accelerating hyperdimensional
computing on fpgas by exploiting computational reuse,” IEEE Transac-
tions on Computers, vol. 69, no. 8, pp. 1159–1171, 2020.

[29] G. S. Rady, S. S. Mohamed, M. F. Mohamed, and K. F. Hussain, “High
dimensional autonomous computing on arabic language classification,”
in Computers and Electrical Engineering, 2022, p. 108020.

[30] P. Vergés, M. Heddes, I. Nunes, T. Givargis, and A. Nicolau, “Hdcc: A
hyperdimensional computing compiler for classification on embedded
systems and high-performance computing,” 2023.

[31] G. Karunaratne, M. L. Gallo, G. Cherubini, L. Benini, A. Rahimi,
and A. Sebastian, “In-memory hyperdimensional computing,” Nature
Electronics, vol. 3, pp. 327–337, 2019.

[32] M. Imani, D. Kong et al., “Voicehd: Hyperdimensional computing for
efficient speech recognition,” in International Conference on Rebooting
Computing (ICRC). IEEE, 2017, pp. 1–8.

[33] L. Deng, “The mnist database of handwritten digit images for machine
learning research,” IEEE Signal Processing Magazine, vol. 29, no. 6,
pp. 141–142, 2012.

260

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on December 14,2023 at 18:26:16 UTC from IEEE Xplore. Restrictions apply.

