
21

Synthesis of Networks of Custom Processing Elements for
Real-Time Physical System Emulation

CHEN HUANG, BAILEY MILLER, and FRANK VAHID, University of California, Riverside
TONY GIVARGIS, University of California, Irvine

Emulating a physical system in real-time or faster has numerous applications in cyber-physical system design
and deployment. For example, testing of a cyber-device’s software (e.g., a medical ventilator) can be done
via interaction with a real-time digital emulation of the target physical system (e.g., a human’s respiratory
system). Physical system emulation typically involves iteratively solving thousands of ordinary differential
equations (ODEs) that model the physical system. We describe an approach that creates custom processing
elements (PEs) specialized to the ODEs of a particular model while maintaining some programmability,
targeting implementation on field-programmable gate arrays (FPGAs). We detail the PE micro-architecture
and accompanying automated compilation and synthesis techniques. Furthermore, we describe our efforts
to use a high-level synthesis approach that incorporates regularity extraction techniques as an alternative
FPGA-based solution, and also describe an approach using graphics processing units (GPUs). We perform
experiments with five models: a Weibel lung model, a Lutchen lung model, an atrial heart model, a neuron
model, and a wave model; each model consists of several thousand ODEs and targets a Xilinx Virtex 6
FPGA. Results of the experiments show that the custom PE approach achieves 4X-9X speedups (average
6.7X) versus our previous general ODE-solver PE approach, and 7X-10X speedups (average 8.7X) versus high-
level synthesis, while using approximately the same or fewer FPGA resources. Furthermore, the approach
achieves speedups of 18X-32X (average 26X) versus an Nvidia GTX 460 GPU, and average speedups of more
than 100X compared to a six-core TI DSP processor or a four-core ARM processor, and 24X versus an Intel I7
quad core processor running at 3.06 GHz. While an FPGA implementation costs about 3X-5X more than the
non-FPGA approaches, a speedup/dollar analysis shows 10X improvement versus the next best approach,
with the trend of decreasing FPGA costs improving speedup/dollar in the future.

Categories and Subject Descriptors: B.5.2 [Register-Transfer-Level Implementation]: Design Aids—
Automatic synthesis; C.3 [Special-Purpose and Application-Based Systems]: Real-time and Embedded
Systems

General Terms: Design, Performance, Experimentation

Additional Key Words and Phrases: Custom processor, field-programmable gate array (FPGA), ordinary
differential equation (ODE) solving, high-level synthesis, physical models, real-time emulation

ACM Reference Format:
Huang, C., Miller, B., Vahid, F., and Givargis, T. 2013. Synthesis of networks of custom processing elements
for real-time physical system emulation. ACM Trans. Des. Autom. Electron. Syst. 18, 2, Article 21 (March
2013), 21 pages.
DOI: http://dx.doi.org/10.1145/2442087.2442092

This work was supported in part by the National Science Foundation (CNS1016792, CPS1136146), the Semi-
conductor Research Corporation (GRC 2143.001), and a U.S. Department of Education GAANN fellowship.
Author’s address: C. Huang; email: chuang@cs.ucr.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2013 ACM 1084-4309/2013/03-ART21 $15.00

DOI: http://dx.doi.org/10.1145/2442087.2442092

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

21:2 C. Huang et al.

1. INTRODUCTION

In cyber-physical systems [Lee 2008], computers or other computing devices interact
with physical systems. Fast accurate digital models that emulate physical systems
can assist in designing cyber-physical systems. For example, a digital model of human
lungs can be interfaced with a ventilator for testing during ventilator development (in
real-time or faster), or for training clinicians on ventilator use across a variety of lung
conditions. Furthermore, the model’s parameters can be modified to reflect varied lung
pathologies more easily than typical lung emulation approaches (e.g., using physical
balloons). Such use cases motivate our work.

Accurate physical system emulation requires complex physical models. A physical
model is often captured as a system of ordinary differential equations (ODEs) having
thousands of state variables (or dimensions). The ODEs are often solved by iterative
ODE solvers, which may compute each equation in the system 1000 times per second, or
even faster if greater accuracy is required. Modern desktop processors may not be able
to emulate complex physical models in real-time, because the mostly-serial program ex-
ecution on a processor does not match the massively-parallel nature of a physical model.

To accelerate physical model emulation, we previously introduced an approach using
a network of processing elements (PEs) optimized for ODE solving [Huang et al. 2012].
We first created a lightweight programmable ODE-solver PE for a field-programmable
gate array (FPGA), where the PE was optimized for solving tens of ODEs [Huang
et al. 2011]. We then developed a synthesis tool to automatically map thousands of
ODEs onto a statically-scheduled custom network of tens or hundreds of PEs, each
PE solving a subset of ODEs. Because physical systems are typically comprised of
numerous physical objects communicating locally with neighboring objects, physical
systems represent an excellent match for FPGAs, which excel at performing numerous
parallel computations with local communication (avoiding the well-known centralized-
data communication bottleneck in FPGAs). For example, Figure 1 shows how an atrial
cell model, which simulates cardiac action potentials by propagating signals across
neighboring cells, can be mapped to a network of custom PEs in which a cell or groups
of neighboring cells each occupy a PE. The atrial cell model executes about 100x faster
on a network of custom PEs on a mid-range FPGA than on a modern desktop processor.

In our earlier work, the PEs were optimized for solving general ODEs, and not
for any specific ODEs. In this article, we examine the benefits of synthesizing PEs
that are customized to the specific ODEs mapped onto each PE. The custom PEs are
still programmable, thus enabling for example insertion of instructions for profiling or
debugging. Many large physical systems are homogenous systems with only a few (<5)
types of ODEs replicated many times, (e.g., atrial cell model of Figure 1). Thus, this
article focuses on using one custom PE that is replicated in a network; future work will
examine using heterogeneous PEs.

This article is organized as follows. Section 2 reviews related work. Section 3 de-
scribes how to model a physical system with ODEs, and how to map the ODEs to a
network of PEs. Section 4 introduces custom ODE-solving PEs and their advantages
over the previous general ODE-solving PE. Section 5 describes a custom-PE compiler.
Section 6 discusses a related approach involving high-level synthesis with regularity
extraction. Section 7 describes our efforts to map the ODE solving problem to a graphics
processing unit (GPU). Section 8 provides experimental results comparing the custom-
PE approach with other compute platforms and approaches. Section 9 concludes.

2. RELATED WORK

Physical system modeling and simulation have been studied extensively in different
fields, such as physiology, chemistry, and biology. Languages have been introduced for

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

Synthesis of Networks of Custom Processing Elements for Real-Time Physical System 21:3

Atrial cell model’s ODE form (repeated
thousands of times):

i
j

ijtoti CVVGIVd /())()/(Σ −⋅+−=

- -

+

*

PE
(custom)

Data ram C
ontroller

-

Fig. 1. Synthesizing an atrial cell model into a network of custom PEs on an FPGA.

modeling physical systems, such as MML [NSR 2011], SBML [Hucha et al. 2004], and
CellML [CellML 2011]. Tools have been built for simulating physical models, such as
Matlab [Mathworks 2011], JSim [Jsim 2011], LabView [National Instruments 2011].
These tools usually aim to produce accurate results rather than real-time emulation.

Many efforts seek to speed up emulation using multicore processors and GPUs [ATI
2011; Nvidia 2011]. For instance, a 768-core SGI machine executed a 2 billion equation
heart model, simulating 0.4 ms in 2 hours [MedGadget 2008]. An Nvidia GTX 295
GPU was used to execute a Flaim heart model 30x faster than OpenMP running on an
Intel I7 quad core processor at 2.93 GHz. Executing one heartbeat (300 ms) required
7.7 minutes [Lionetti 2010]. The main bottleneck of multicore processors and GPUs
is the centralized memory architecture, which commonly does not match the local-
neighbor communication pattern of a physical model.

Many case studies using FPGAs to speed up physical model emulation have been
conducted. For example, Yoshimi et al. [2004] obtained 100x speedups of a fine-grained
biological emulation compared to a single-core processor, and showed why multicore
processors were not suitable. Pimentel et al. [2006] proposed an FPGA solution to emu-
late a heart-lung system model in real-time, while a PC required 1.5 hours to simulate
60 seconds of the same model. Their FPGA performance was estimated by a theoretical
optimal formula, rather than via an implementation. Osana et al. [2004] developed
the ReCSiP tool to generate chemical models on FPGAs using the SBML language.
The crossbar communication structure used in ReCSiP may not scale to larger models.
Those previous efforts mostly used manual design approaches to implement the models
on FPGAs.

A common automated design approach for implementing applications on FPGAs
uses high-level synthesis (HLS). Recently, tools have evolved to synthesize from C code
rather than hardware description language (HDL) code, such as Streams-C [Gokhale
et al. 2000], SPARK [SPARK 2005], ROCCC [Villarreal et al. 2010], Celoxica [Celoxica
2011], SynphonyC [SynphonyC 2011], Impulse C [Impulse C 2011], and AutoESL [Au-
toESL 2011]. We compare our approach to a commercial C HLS tool to generate ODE
datapaths, and due to the regularity of physical models, we incorporate the idea of
regularity extraction [Rao and Kurdahi 1993], as will be described in Section 6.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

21:4 C. Huang et al.

i
j

ijtoti CVVGIdtVd /())(/() Σ −.+−=

Vi VjVj

Vj

Vj

Vj

Vj

(1)

Fig. 2. A 3-dimensional atrial cell model for modeling a heart, each circle representing a cell.

We earlier proposed an approach for synthesizing a physical model onto a network of
general ODE-solving PEs on an FPGA [Huang et al. 2011]. The work in this article ag-
gressively customizes the PE component to specific ODEs, utilizing a newly-developed
PE compiler to support programming of a network of custom PEs, leading to perfor-
mance and size improvements while still including some PE programmability.

3. PHYSICAL SYSTEM MODELING AND A NETWORK OF PROCESSING ELEMENTS

This section briefly describes how to model a physical system with ODEs using an
atrial cell model as a driver example, and reviews our earlier network of general PEs
approach.

3.1. Modeling Physical Systems Using ODEs

Physical system models are often captured as ordinary differential equations (ODEs).
Figure 2 shows a 3-dimensional atrial cell model intended to model a heart for inter-
action with a pacemaker [Zhang et al. 2001]. V i is the membrane potential of cell i,
Itot is the total ionic current in a cell, G is the coupling conductance, and C is the cell
capacitance. V j stands for the neighboring cells (6 neighbors in the figure). The deriva-
tive of Vi with respect to time is determined by the sum of the membrane potential
differences between the cell and neighboring cells (Vj).

The ODEs of a physical system can be written in the form: d(X)/dt = Fun(X), where
X is a vector of state variables. In the atrial cell model, X is the membrane potentials
for all cells in the model (note Itot, G, and C are constant parameters of the system,
but not state variables). The scale of a physical system is determined by the number
of state variables (or dimensions). For this atrial cell model, the scale is determined by
the number of cells in the system (e.g., 3,375 cells in our experiments).

To calculate the membrane potential of a cell at a given time, the ODEs can be solved
using iterative solvers such as Euler [Atkinson 1993] or Runge-Kutta [Butcher 2003].
Starting from time 0, iterative solvers move forward in time by a given time step, such
as by 1 ms. At each time step, the Euler methods performs two major tasks.

(1) Evaluate. Calculate each variable’s derivative value using the equation, for
instance, equation (1) in Figure 2.

(2) Update. Estimate the variable values for the next time step using current values
and the derivatives calculated before, for instance, V i = V i + d(V i)/dt ∗ h, where h
is the time step.

3.2. Properties of Physical System ODEs and a Network of PEs

General-processor-based ODE solvers often store all the variables of a physical system
in a central memory, and calculate the ODEs sequentially. Thus the total simulation
time increases linearly with the dimensions of the ODEs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

Synthesis of Networks of Custom Processing Elements for Real-Time Physical System 21:5

PE3

PE2

PE4

PE1

(a) ODE dependency graph (b) 4-PE network

Fig. 3. Mapping a 4 × 4 2-dimensional atrial cell network to a 4-PE network.

Sync Sync

Data transfer

PE1

PE3

Next stepPE2

Fig. 4. ODE solving process in a network of 3 PEs

However, the ODEs of a physical system usually have spatial locality similar to their
system’s physical counterparts. For instance, the membrane potential of an atrial cell
is determined only by itself and the cell’s neighboring cells.

We thus define an ODE dependency graph to capture the data-dependencies among
the state variables in a physical system. Each node in the ODE dependency graph
represents one variable or a set of variables, while each edge represents the data de-
pendency between two nodes. For instance, Figure 3(a) shows the ODE dependency
graph of a 4 × 4 2-dimensional atrial cell model, where each node represents the mem-
brane potential of each cell. Note we use undirected edges in the figure for simplicity.
The actually implementation used directed edges.

To increase the speed of the physical system emulation, we parallelize the ODE
solving process by mapping the ODEs to a network of PEs. For example, Figure 3 maps
the 4 × 4 atrial cell model to a 4-PE network. The variables in each of the dashed
rectangles are mapped to one PE. The interconnection among the PEs is determined
by the variable-to-PE mapping and the ODE dependency graph. Instead of using a
centralized memory, the variables and their relevant parameters are stored in the
local memory of the PE. This distributed data model eliminates the bottleneck of a
central memory.

At each time step, each PE performs an “evaluate” task, and an “update” task for
the variables mapped to the PE, called the resident variables. To perform these two
tasks, the PE may need the variables residing in other PEs (referred to as dependent
variables). Instead of accessing the dependent variables directly from other PEs (which
may introduce delay and inconsistency), each PE keeps local copies of the dependent
variables. We introduce a “data transfer” task and synchronizations to ensure the
dependent variables have the same value as the original copies.

The synchronization process of a 3-PE network is illustrated in Figure 4. The “evalu-
ate” and “update” tasks can be done independently in each PE. The processing elements
are synchronized at the point when all PEs have finished updating their resident vari-
ables. Then the updated variables are propagated to the PEs that depend on those

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

21:6 C. Huang et al.

Custom ODE datapath

ADD

SUB

Const
ROM

Address

Input_sel

Address

Inputs

Output

MUL

C
ontroller

Data RAM

C
ontroller

PE

SUB SUB

Fig. 5. Custom PE micro-architecture.

variables during the data transfer phase (store the dependent variables into local data
ram). All PEs are synchronized again for the next step. Thus at the beginning of each
time step, each PE has the latest values of all variables for the “execute” and “up-
date” tasks. This synchronization process ensures the results of the network of PEs are
identical to a desktop processor version (with centralized data storage).

4. CUSTOM PES

4.1. Custom PE Architecture

We earlier proposed a general processing element (PE) for solving different types of
ODEs [Huang et al. 2011]. The general PE contains a general purpose ALU (arithmetic
logic unit). Each ODE is parsed into basic operations (such as addition, subtraction,
store, etc) for the ALU. Although the general PE has some optimizations intended
for ODE solving, such as eliminating instruction decoding logic, absence of a jump
operation, etc., the general purpose ALU doesn’t capture the unique structure of a
specific ODE. Further customization of the ALU can lead to better performance and
less FPGA resource requirements.

In this work, we note that many physical models have homogenous structures. For
instance, the atrial cell model has a 3-dimensional cubic structure, and a Weibel lung
[Weibel 1963] has a binary tree structure, with each node in the structure performing
the same behavior. The homogenous property of a physical model leads to the same
structure of all its ODEs. For instance, the ODE for each atrial cell is: d(Vi)/dt =
(−Itot +G ·∑ j (Vj − Vi))/Ci where V j means the membrane potential of its neighboring
cells. Since every cell uses this equation to calculate the derivative of its membrane
potential, we can build a custom datapath to calculate this equation. Figure 5 shows
the micro-architecture of a custom PE with the custom ODE datapath for the given
equation. The custom PE has a similar architecture compared to the general PE, except
the ALU component is replaced with a custom ODE datapath. To support the needs
of the custom ODE datapath, the data-ram of the custom PE usually contains more
output ports than a general PE. Since the data-ram often contains 32 or 64 words

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

Synthesis of Networks of Custom Processing Elements for Real-Time Physical System 21:7

(depending on how many variables are mapped to a PE), the data-ram is built with
FPGA LUTs (lookup tables).

The custom PE uses a fixed-point computation. Currently, we manually convert
floating-point numbers into fixed-point using the method described by Kum et al.
[2000]. The one time manual conversion to fixed-point for a model usually takes less
than one hour.

We use a 32-bit fixed-point implementation for all models in this work. We compared
the results of the 32-bit fixed-point implementation to a floating-point implementation
in Matlab. The fixed-point results are nearly identical to the floating-point results, with
less than 0.5% relative error. The number of bits of the fixed-point implementation is
configurable for different models, if higher accuracy is required.

4.2. Abstract PE Tasks

In each time step, a PE needs to perform three tasks: evaluate, update, and data
transfer, as discussed in Section 4.2. To map those tasks to the instructions of a custom
PE, we define three abstract PE instructions: compute, store, and output.

The compute instruction combines the “evaluate and update” task of a certain vari-
able. For the previous atrial cell example, the “compute Vi” task performs:

Vi(t + 1) = Vi(t) +
⎛
⎝−Itot + G ·

∑
j

(Vj(t) − Vi(t))

⎞
⎠ /Ci · dt.

where (t + 1) stands for the value for the next step. To achieve the “compute V i”
instruction, the control word should set the data-ram addresses for each neighbor cell
V j and for V i.

The store instruction stores the value of a certain variable. For instance, the “store
Vi” instruction stores the new value of V i from another PE or from the same-PE’s ODE
datapath (resident variable).

The output instruction outputs the value of a resident variable to other PEs. The
store and output instructions are realized by setting the signals for the input mux and
data-ram. The abstract PE instructions provide an interface between the PE compiler
and the implementation details.

4.3. Advantages of Custom PEs

The major advantage of custom PEs over general PEs is the reduction of cycles to
calculate one ODE. Since the custom ODE datapath is fully pipelined, the average
number of cycles to calculate an ODE is (n + ODE datapath delay)/n, where n is
the number of ODEs being calculated sequentially. The cycles per ODE will approach
1 if many ODEs are mapped to one custom PE. Since the general PE usually needs
5-20 cycles to calculate each ODE (for models in our experiment, such as ODE (1) in
Figure 2), we obtain about a 5-20x speedup if we map the same set of ODEs (usually
containing more than 10 ODEs) from the general PE to a custom PE. The custom
PE also has a smaller instruction-ram, because the number of required instructions
decreases.

In the custom PE, the “evaluate and update” tasks can be calculated in one pass
using the custom ODE datapath with careful scheduling. Thus, the derivative of each
variable no longer needs to be stored into the data-ram, thus reducing the data-ram
size. We will discuss the scheduling detail in the next section. The constant parameters
are stored into a less expensive constant ROM inside the ODE datapath, which further
reduces the size of the data-ram.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

21:8 C. Huang et al.

Instruction
scheduler

Automatic
partitioner

ODE-dependency graph

Model parser

Partition

Abstract PE
instructions

Custom PE
assembler

Custom PE instruction

#PEs Generic model specification

Fig. 6. Custom PE compiler overall structure.

The custom PE also eliminates the muxes and the forwarding logic in a general PE,
which reduces the size of the PE. The deeply pipelined custom PE allows for synthesis
tools to better optimize the circuit timing and yield higher clock frequencies than the
network of general PEs.

5. CUSTOM PE COMPILER

5.1. Custom PE Compiler Overview

We developed a custom PE compiler to automate the design process. The tool’s overall
structure is illustrated in Figure 6. The model parser reads a generic model spec-
ification file that captures a physical model’s homogenous ODEs, and generates an
ODE-dependency graph. The automatic partitioner reads the ODE-dependency graph
and outputs a partition file. The instruction scheduler then generates abstract PE in-
structions for each custom PE based on the partition and the ODE-dependency graph.
The custom PE assembler translates the PE instructions into native PE control words.
The following sub-sections discuss each task in more detail.

5.2. Generic Model Specification

Since a homogenous physical model contains ODEs with the same structure (or a
small number of structures), the ODEs can be captured concisely using an iterator-like
representation. For instance, a 15×15×15 atrial cell model has a generic specification
like:

i = 1:3375
V ′

i = (I + (Vi−1 + Vi+1 + Vi−15 + Vi+15 + Vi−215 + Vi+215 − 6 · Vi) · G) · C,

where V i is the membrane potential of cell i, V i − 1, V i + 1, V i − 15, V i + 15, V i −
215, V i+215 are the V of 6 neighboring cells. This generic specification file also implies
the data-dependency among all the variables. The model parser will generate an ODE-
dependency graph with 3,375 nodes based on this specification. The ODE-dependency
graph of a physical system is often very sparse, because each variable only depends on
the neighboring variables. Thus the total number of edges in the graph grows linearly
with the number of nodes.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

Synthesis of Networks of Custom Processing Elements for Real-Time Physical System 21:9

1: Compute v1;
2: Compute v2;
3: Compute v3;
4: Compute v4;
5: Compute v5; store v1;
6: Compute v6; store v2;
7: Compute v7; store v3;
8: store v4;
9: store v5;
10: store v6;
11: store v7;

v1

v2 v3

v4 v5 v6 v7

Delay:
4 cycles

PE

Fig. 7. Compute and store instruction scheduling.

5.3. Automatic Partitioner

The automatic partitioner partitions the ODE-dependency graph into n parts, where
n is the number of PEs onto which we intend to map this ODE-dependency graph.
Intuitively, we should take advantage of the graph’s spatial locality by grouping nearby
ODEs together to reduce communication costs between PEs.

We developed a partitioning heuristic based on simulated annealing. The main goal
of the partitioning heuristic is to find a partition such that the total number of cycles per
step is minimized and the total size of the network is minimized. Since the ODE solving
process is executed concurrently on all PEs, the total number of cycles is determined
by the PE that contains the most variables, and so the partitioner should balance the
number of variables on each PE. The size of the network is mainly determined by the
total number of interconnection wires among PEs. Thus, the goal of the partitioner is
to minimize the cost function: (# cycles per iteration) ∗ (# wires)

To speed up the partitioning heuristic, we developed custom functions to generate
neighbor solutions that have a higher chance of reducing a wire or balancing the load
among PEs. We also implemented an incremental cost function so that the cost is
computed based on the difference of two solutions. With the incremental cost function,
the partitioning algorithm usually finishes in less than 1 minute for graphs with 5,000
nodes. The quality of the resulting partition (in terms of design size and cycles per
step) is usually within 20% of our manually-obtained partitions. Some further details
of the automatic partitioner are discussed in Huang et al. [2012].

5.4. Instruction scheduler

Given the ODE-dependency graph and a partition, the next step is to schedule the
abstract PE instructions defined in Section 4.2 for each cycle. Compute and store
(resident variables) instructions are first scheduled, which correspond to the “evaluate
and update” tasks in the ODE solving process. There may be data-dependencies within
the resident variables. For instance, 7 variables with a dependency graph resembling
a tree structure are mapped to a PE in Figure 7 Since v2 and v3 depend on the original
value of v1, v1 cannot be updated before v2 and v3 read the original value of v1. In
other words, the “store v1” instruction can not execute before “compute v2” or “compute
v3”. The scheduler must take care of this “write after read” dependency.

The schedule in Figure 7 is a valid schedule, since each compute instruction can read
the original value of the dependent variables. (Note that although v3 is updated in the
same cycle as “compute v7”, we assume the write happens after read in the same cycle,
as is the case in properly-clocked synchronous register-transfer-level circuits). The store
instruction executes 4 cycles after the corresponding compute instruction. We call this
delay compute-to-store delay. Since the custom ODE datapath has a pipeline delay, the
actual delay can be calculated as

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

21:10 C. Huang et al.

Global clock

 PE1
PE2
1: Output V1 Output V2

2: Store V2 Store V1

]1[nid]1[nid

Inst
RAM

Data
RAM

Inst
RAM

Data
RAM

Fig. 8. Synchronized data transfer between PEs with a global clock and point-to-point connections.

Max (compute to store delay, ODE datapath delay).

To find the calculation order of all the resident variables and the compute-to-store
delay, we can perform a breadth first search on the dependency graph of the resident
variables. The compute-to-store delay can be found during the traversal.

The next step of the scheduler is to handle the data-transfer of dependent variables
between PEs. Since we use a point-to-point connection between any two PEs, commu-
nications are performed by scheduling appropriate output and store instructions in
the communicating PEs. A simple bidirectional data transfer between PE1 and PE2
is illustrated in Figure 8. PE1 and PE2 each has its output connected to the other’s
input port (din[1]). To exchange the value of V1 and V2, PE1 and PE2 each outputs its
resident variable V1 or V2 in the first cycle. In the next cycle, each PE can perform a
store task to store the variable now located at the PE’s input port.

Based on the partition and the ODE-dependency graph, the scheduler can determine
a set of variables that need to be output by each PE. Multiple output instructions can
be executed in parallel in the network, as long as the instructions do not conflict with
each other.

Currently, all the data transfer instructions are scheduled after all PEs have updated
all of their resident variables, so that the outputs are guaranteed to be the updated
value.

5.5. Custom PE Generator and Custom PE Assembler

Since the architecture of a custom PE depends on the target ODE’s structure, we
cannot pregenerate all possible custom PEs. We thus built an automatic ODE data-
path generator to facilitate custom PE generation. The ODE data-path generator reads
an ODE string, and parses the ODE string into an expression tree. The generator
then uses an ASAP (as-soon-as-possible) scheduling algorithm [Paulin et al. 1986] to
schedule the operations, adds pipeline registers, and outputs a VHDL component for
this ODE. We also developed a script to general a custom data ram for a custom PE,
because the number of ports and depth is unique to each custom PE. With the ODE
data-path generator, and the custom data ram generator, a custom PE can be generated
on the fly.

We then built a custom PE assembler to translate each abstract PE instruction into
the corresponding control word, and store the control words into the PE’s instruction

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

Synthesis of Networks of Custom Processing Elements for Real-Time Physical System 21:11

…

…

… ODE
kernel

ODE
kernel

Input
muxes

Distributed
registers

Input mux
sharing

Fig. 9. Overall architecture of the ODE solver using regularity extraction.

ram. Note the control word is unique for each custom PE, thus the custom PE assembler
also needs to read the specification of the custom PE component.

Once the custom PEs have been generated, a custom network can be generated auto-
matically based on the partition obtained by the PE compiler. The final output consists
of a synthesizable HDL description that loads memories and connects dependent PEs.

6. HLS WITH REGULARITY EXTRACTION

For comparison purposes, we implemented ODE solvers for physical systems using
a commercial HLS tool.1 We optimized the communication architecture by utilizing
the spatial locality of each model. Since physical models exhibit much regularity, we
incorporated the idea of regularity extraction into HLS as proposed by several past
researchers [Rao and Kurdahi 1993], wherein an algorithm first seeks redundant sub-
patterns in a dataflow graph, synthesizes an optimized component for the sub-pattern,
and then strives to cover the graph using those components. For ODEs of a large
homogenous physical system, the ODEs are the sub-patterns that are replicated many
times to calculate different variables of the physical system. Thus, the dataflow graph of
a physical system is composed of a large number of ODEs, and the ODEs are connected
similar to the system’s physical structure.

The ODE datapath is generated by a C representation of the equation. We tuned
different parameters in the HLS tool (such as arithmetic balancing and copy reduction)
intended to optimize performance, and generated fully pipelined ODE datapaths.

We tried to generate the entire ODE solver system with the HLS tool, but the tool
used a unified memory with block RAMs to store all the variables. Since the block
RAM only has 2 ports, the unified memory becomes a bottleneck. We instead optimized
the communication architecture as illustrated in Figure 9. Instead of using a unified
memory, we store each variable in its own distributed register. The input of each register
comes from the ODE datapath that is responsible for calculating that variable.

Since each ODE datapath is shared by a set of variables, input muxes are needed
for each ODE datapath. To reduce the size of the muxes, we used a graph partitioning
algorithm (similar to the algorithm used for mapping ODEs onto a network of PEs). The
partitioning algorithm utilizes the spatial locality of the ODE-dependency graph, such
that the total number of inputs of an ODE datapath is reduced. Thus, the size of the
input muxes is reduced. However, we still cannot guarantee that each input port of the

1The tool name is not included due to the licensing agreement. The tool is commercially available and used by
dozens of companies and universities, including the U.S. Dept. of Defense. Reproduction of our experiments
using other high-level synthesis tools is highly encouraged.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

21:12 C. Huang et al.

Cores

SM SM SM

Block

……

Global memory

Fig. 10. Overall architecture of an Nvidia GTX460 GPU. (SM: shared memory).

ODE datapath has a dedicated input mux, due to the large FPGA LUTs consumption
of the input mux. Thus an input mux may be shared by multiple input ports of an ODE
datapath using time multiplex (illustrated in Figure 9). We fully automated the custom
communication architecture generation for the HLS approach.

In comparison with the HLS regularity extraction approach, the network of custom
PEs produces a more optimized and cleaner encapsulation of an ODE datapath. In
a network of custom PEs, the variables of a physical system are stored in the local
data-ram of each custom PE, instead of among distributed registers which incur added
wire routing cost. The number of inputs of a custom PE is usually less than 10, while
the ODE datapath in the regularity extraction approach usually has more than 50
inputs. The reduction of the number of inputs is due to the data encapsulation of the
custom PEs. The data transfers occur between PEs in our approach. Thus the network
of custom PEs uses the communication wires more efficiently.

7. GRAPHICS PROCESSING UNIT (GPU)

Prior to developing our custom PE approach, we originally sought to map the ODEs of
physical systems to a GPU, believing such a mapping would yield competitive speedups
while using relatively-inexpensive commodity parts. We investigated mapping onto an
Nvidia GTX460 GPU. The overall architecture of the GPU is shown in Figure 10.

The GPU contains multiple blocks, where each block has multiple cores. The GTX460
GPU has 336 cores in total. The GPU has a global memory that can be accessed by any
core. The global memory is usually composed of high-latency off-chip memory. Each
GPU block contains a shared memory that can be accessed only by the cores within
the block. The shared memory is an on-chip memory that has low latency and high
throughput.

The basic idea is to map the variables of a physical system to different cores. The
homogeneous equations are captured with the same ODE functions. Each GPU thread
executes the same ODE function against different variables. To get the best perfor-
mance, we tuned parameters specific to GPU implementations, such as the number of
blocks and the number of threads in each block.

We also considered the spatial locality of each physical model, and mapped the
variables nearby to the same block. Thus, we can load the data to the shared memory
of each block at the beginning of each step, to reduce the expensive global memory
accesses. Unfortunately, data exchanges are needed between blocks, because the ODEs
in one block still have some communication with ODEs in other blocks. The variables
must be written back to the global memory at the end of each step, because the only

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

Synthesis of Networks of Custom Processing Elements for Real-Time Physical System 21:13

way to do inter-block communication is via the global memory for the target GPU. Thus,
the global memory becomes a bottleneck.

Compared to a GPU,2 the main advantage of our approach is the custom communi-
cation structure. The data transfer tasks can be executed in parallel through the point-
to-point communication wires that have a higher throughput than a global memory.

When interacting with the physical world, a GPU installed inside a PC would need to
read the latest external inputs from the PC, and send out the emulated values via the
PC. If real-time monitoring is necessary, the GPU-PC communication frequency would
be high, thus incurring high communication overhead. In contrast, the PC and the
network of PEs on an FPGA can interact with the external world by themselves, thus
eliminating the extra communication step. An additional approach is to use a GPU
integrated on an external data acquisition card, to reduce some of the cost/convenience
benefits of the GPU versus an FPGA.

8. EXPERIMENTAL RESULTS

This section summarizes experimental results of the network of custom PEs using five
physical system models. We compare the network of custom PEs with HLS including
regularity extraction, networks of general PEs on an FPGA, a GPU, and other general
purpose processors. Throughout this section, we execute the physical models using an
Euler solver having a 10E-5 second step.

Performance numbers are in milliseconds (ms) unless otherwise stated and represent
the time for an implementation to execute 1000 ms of simulated time. For example,
“300” means an implementation executed 1000 ms of simulated time in just 300 mil-
liseconds (thus executing faster than real time).

The FPGA-based approach targeted a Xilinx XC6VLX240T-2 FPGA, having 150,720
LUTs (lookup tables), 768 DSP units (built-in hardcore multipliers), and 416 BRAMs
(built-in 32Kb hardcore block RAMs). We used the Xilinx ISE 12.3 tool [Xilinx ISE 2011]
for synthesis. We note that the work is not limited to a particular FPGA or synthesis
tool.

8.1. Homogenous Physical System Models

We used five homogenous physical systems in the experiment, four of which are phys-
iology models. The five models are briefly introduced in the following section, with the
ODEs shown in their generic format. For simplicity, we use Ci to represent constant
model parameters for each physical system. The detailed meaning of each constant
parameter and the equation is omitted.

8.1.1. Weibel Lung. A Weibel lung has a binary tree structure that represents a human
lung’s anatomical structure. The branches at the i’th level are called generation i.
The trachea in the first generation is connected to the mouth, and the last 20 to 23
generations of the Weibel lung contain millions of alveoli that handle gas exchange
between the lung and capillaries. The Weibel lung’s ODEs in the generic format are:

V ′
i = Fparent · C1 + (Vsib − Vi) · C2 + Fi

F ′
i = Vi · C3 − Fi · C4 − (VR child − VL child) · C5 − VR child · C6 − Fi · C7

2The quality of a manually-obtained implementation, as for the GPU, is obviously related to the amount of
effort applied and to the implementer’s skill. In that light, we note that our original intent was to actually
use the GPU, and not to compare with the FPGA approach, but we could not attain the desired speed on the
GPU, and hence we resorted to creating the FPGA approach. Nevertheless, our results are merely one data
point, and we strongly encourage other researchers to strive to create faster implementations of our physical
models on GPUs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

21:14 C. Huang et al.

(parent, sib, and child means the parent, sibling, right/left child branch of branch i,
respectively), where V iandFi are the volume and flow of branch i; Ci are constant
parameters of each branch. Thus each branch contains two variables. We use an 11-
generation Weibel lung model that contains 2,046 branches or 4,094 variables.

8.1.2. Lutchen Airway. A Lutchen airway model [Lutchen et al. 1982] contains thou-
sands of gas cells to model the gas exchange within the nondispersive airway of human
lung. The gas cells are connected in a linear structure. The ODEs of a Lutchen airway
in the generic format are:

V ′
i = C1 · (C2 · Vi−1 − C3 · Vi+1 + (C3 − C2) · Vi)

where V i is the volume of gas cell i, and V i−1, and V i+1 are two neighboring gas cells.
We use a 4000-cell Lutchen model that has a system of ODEs with 4,000 dimensions.

8.1.3. Wave. A wave model [Motuk et al. 2005] has a 2-dimensional mesh network
structure for modeling wave propagation, which is widely used in the areas of oil
exploration seismology, laboratory ultrasonics, ocean acoustics, etc. The equation of
the wave model in generic format is:

U t+1
i, j = C1 ·

(
U t

i+1, j + U t
i−1, j + U t

i, j−1 + U t
i+1, j+1

)
+ C2 · U t

i, j − U t−1
i, j ,

where U t
i, j means the amplitude of node(i, j) at time step i. To calculate the amplitude

of a node for the next time step, we need the amplitude of four neighboring nodes. We
use an 80 × 80 wave model that contains 6,400 variables.

8.1.4. Atrial Cell. The atrial cell model is discussed in Section 3.1. Each cell is connected
to 6 neighboring cells in a 3-dimentional cubic structure. We use a 15 × 15 × 15 atrial
cell model that contains 3,375 variables.

8.1.5. Neuron Network. A neuron network model [Terman et al. 2008] contains a number
of neuron cells to model the neuron system for the brain. The neuron cells are connected
with synaptic connections. The ODEs of a neuron network in the generic format are

V ′
i = C1 · Vi + Wi − C2 · (Vi − C3) ·

∑
j

Sj,

W ′
i = C4 · Wi − Vi,

S′
i = C5 · (1 − Si) · (Vi − C6) − C7Si,

where V i is the membrane potential of neuron cell i, W represents a channel gating
variable, and S is a synaptic variable. Sj items are the synaptic values of the neigh-
boring neuron cells. We use a 40 × 40 mesh network structure for the neuron network.
Since each node contains three variables, the neuron network model has a system of
ODEs with 4,800 dimensions.

These five physical system models represent four different homogenous connection
schemes: linear (Lutchen), tree (Weibel), 2D mesh (wave, neuron), and 3D cubic (atrial).

8.2. Comparison with HLS with Regularity Extraction and a Network of General PEs

For comparison purposes, we implemented the ODE solver of each physical system
using the HLS with regularity extraction approach discussed in Section 6, and the
network of general PEs on the target FPGA.

8.2.1. Size and Performance of Each Approach. The detailed synthesis results are
shown in Table I We recorded the FPGA resource utilization of each approach. For
size-comparison purposes, we also define an ‘equivalent LUTs’ term that describes
BRAM and DSP units in terms of a number of LUTs, as is commonly done [Meyer and

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

Synthesis of Networks of Custom Processing Elements for Real-Time Physical System 21:15

Table I. Synthesis results and performance comparisons between a network of general/custom PEs and
high-level synthesis on a Virtex 6 FPGA. While the custom PE approach shows moderate improvement in size
(subject to how one defines “size”, with various size measures italicized below), the approach yields clear and

substantial improvements in performance, showing 5x-10x speedups (normalized to HLS results). The approach
also yields moderate improvement in implementation time due to compilation/synthesis, although such

improvement is not the intent of this work.

PE/ODE Freq. Perf Imp.
weibel LUTs DSP BRAM Equiv. kernel Cycles (MHz) (ms) Speedup Time(min)
HLS 85,693 700 50 278,693 50 184 130 142 1.0 330
General PE 89,761 396 396 331,284 396 158 179 88 1.6 277
custom PE 61,232 511 73 215,262 73 51 253 20 7.0 201

lutchen
HLS 47,693 480 80 196,493 80 110 150 73 1.0 581
General PE 89,761 397 397 331,931 397 108 179 60 1.2 225
custom PE 33,933 450 150 200,433 150 35 305 11 6.4 170

wave
HLS 94,046 320 80 202,846 80 405 140 289 1.0 340
General PE 93,958 380 380 325,758 380 269 175 154 1.9 260
custom PE 61,705 288 144 185,545 144 84 286 29 9.8 233

atrial
HLS 123,742 365 80 243,792 80 368 113 326 1.0 458
General PE 79,518 219 219 213,108 219 418 140 299 1.1 391
custom PE 71,049 375 125 209,799 125 77 238 32 10.1 196

nueron
HLS 91,459 672 50 277,459 50 230 110 209 1.0 281
General PE 74,632 294 294 253,972 294 290 150 193 1.1 227
custom PE 52,726 384 64 171,766 64 57 263 22 9.6 148

Kocan 2007]. By implementing equivalent DSP multiplier and BRAM components
using LUTs, we give a DSP unit a value of 250 LUTs and a BRAM 360 LUTs.

Across all five models, the custom PEs use on average 30% fewer FPGA resources
compared to the general PEs. The custom PEs are more efficient in ODE solving, thus
fewer PE instances are required. The network of custom PEs uses on average 16% fewer
FPGA resources than HLS with regularity extraction mainly due to the local data-RAM
storage in the custom PE approach containing fewer input muxes and registers.

The performance number is mainly determined by the clock frequency and the cycles
per step. Both general/custom PEs store the data in the local data-ram, thus the net-
work of general/custom PEs contains fewer wires and input muxes than the regularity
extraction approach. The network of general/custom PEs has better clock frequencies
than HLS with regularity extraction due to less routing delays. The deeply pipelined
network of custom PEs achieves the best clock frequency; on average 60% faster than
the network of general PEs, and 100% faster than regularity extraction.

The cycles per step is an important factor that affects performance. The network of
custom PEs uses on average 4X fewer cycles to calculate one ODE step compared to
the network of general PEs, though the network of custom PEs contains fewer PEs.
The gain in efficiency comes from the custom ODE datapath’s fully pipelined design
with single-cycle ODE calculation capability. Although HLS with regularity extraction
also uses custom ODE datapaths, the large input muxes limit the number of ODE
datapaths in the design. Furthermore, the “write after read” dependency discussed in
Section 5.4 also exists in the regularity extraction solution, which further slows down
the performance.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

21:16 C. Huang et al.

0

50

100

150

200

250

150,000 200,000 250,000 300,000
Size (equiv. LUTs)

P
er

f (
m

s)

Custom PE

HLS.

General PE

Fig. 11. Average performance and size comparison of three FPGA-based approaches; points toward the
lower-left are preferred.

Comparing the performance of different physical models, we found that the Lutchen
model with its linear structure has the best performance. The atrial, wave, and neuron
models take longer to emulate one second, because they have a more complex physical
structure, thus requiring more inter-connection wires and communications that impact
overall circuit frequency.

Figure 11 shows the average size and performance comparison for the three ap-
proaches for the 5 physical models. Note the performance of the general PEs is 30%
faster than regularity extraction, but it consumes 20% more equivalent LUTs. The
custom PEs are on average 7X faster than the general PEs, and use 30% less LUTs.
Compared to regularity extraction, custom PEs are 9X faster and 20% smaller.

We also recorded the total implementation time of these three approaches in Table I,
which includes the design and synthesis time. The three approaches have comparable
design times (30 ∼ 90 min). The differences mainly come from the synthesis time. The
HLS with regularity extraction approach consumes the most time due to more wires
between the distributed registers and the input muxes. The network of custom PEs
approach have the least synthesis time due to smaller sizes.

8.3. Comparing with a GPU and General Purpose Processors

8.3.1. Configuration of Each Approach. We also compared the network of custom PEs with
general purpose processors and a GPU. The configuration of each processor and the
GPU is listed as follows.

(1) PC: C code on a 3.06GHz Intel I7-950 4-core processor, compiled using gcc with –O2
flag

(2) ARM: C code on a 1GHz TI Cortex A9 4-core embedded processor, compiled using
TMS470 compiler with –O2 flag

(3) DSP: C code on a 700MHz TI C6472 6-core digital signal processor, compiled using
TI C6000 compiler with –O2 flag

(4) GPU: CUDA C code on a 763MHz NVIDIA GTX460 Fermi GPU with 336 CUDA
cores, compiled using nvcc with –O2 flag

A fixed-point C implementation was used for all test cases for a fair comparison
across all the general processor platforms. The C code is manually optimized and with
the –O2 flags intended to optimize performance. For multicore processors, we first
measure a single-threaded performance, and then calculate an optimistic performance
bound for multicores by dividing the single-threaded result by the number of cores.
In reality, communication overhead will degrade multicore performance, and thus the
custom PE speedups would be even better.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

Synthesis of Networks of Custom Processing Elements for Real-Time Physical System 21:17

1

10

100

1,000

10,000

100,000

PC(1) PC(4) ARM(1) ARM(4) DSP(1) DSP(6) GPU(336) Reg. ex. General PE Custom PE

P
er

fo
rm

an
ce

 (
m

s)

weibel
lutchen
wave
atrial
neuron

Model PC(1) PC(4) ARM(1) ARM(4) DSP(1) DSP(6) GPU(336)
HLS w/

reg. extr.
General

PE
Custom

PE
Weibel 2,393 619 17,843 4,460 16,435 2,739 616 139 89 20

Lutchen 1,182 296 12,327 3,026 7,309 1,217 378 70 61 12
wave 3,814 953 18,377 4,594 22,428 3,738 729 337 139 29
atrial 1,981 495 16,721 4,180 11,236 1,873 587 326 299 32

neuron 1,472 368 12,104 3,026 18,080 3,013 475 209 193 22

Real time constraint

Fig. 12. Performance comparisons between general purpose processors, a GPU, HLS with regularity ex-
traction, and networks of general and custom PEs. The numbers in the parentheses indicate the number of
processor cores. Note that the plot’s y-axis scale is logarithmic.

We wrote CUDA C code for each physical model on the GPU using the method
discussed in Section 7. The CUDA C code is also compiled with –O2 flag.

8.3.2. Performance Comparison. Figure 12 shows the results of different approaches.
Note that the plot’s y-axis scale is logarithmic because of the large differences in per-
formance on different platforms. For general purpose processors (PC, ARM, DSP), only
the quad-core PC meets the real-time constraint for the physical models. The multicore
DSP and ARM processors are around 5X-10X slower than the I7-950 processor. The
network of custom PEs performs on average 100X faster than the single threaded PC.
Compared to the optimistic multicore results of the PC, ARM, and DSP, the custom
PEs still gained 24X, 183X, and 113X speedups, respectively (nonoptimistic speedups
would be higher). Although the clock frequencies on the general purpose processors
are higher than the network of custom PEs, the dedicated ODE datapath and custom
connections among the custom PEs are more efficient in solving specific ODE systems.

Compared to the GPU results, the network of custom PEs runs on average 26X faster.
The main bottleneck of the GPU implementation is the global memory. Currently,
the GPU executes all five models faster than real-time. However, the communication
overhead with a host PC could become limiting if the system must interact with external
items. The custom PEs runs on average 50X faster than real-time, which gives much
room for future monitoring and testing tasks.

We also recorded the total implementation time of each approach. Assuming a trans-
lator (from the model specification) with negligible translation time would be built, the
single threaded C code took around 1 minute to compile on GCC with the –O2 flag. The
GPU implementation time is around 2-3 hour, in which manual parameter tuning and
optimization took most of the time. The network of custom PEs took 1-5 minutes to run
through the custom PE compiler, and took another 1-2 hours to synthesize.

8.3.3. Cost Comparison. We included some approximate cost comparisons—in particu-
lar to acknowledge a limitation of our work, namely that our FPGA-based approach
is currently costlier. We consider the minimal required components for each platform;
as such components would contain a complete system used for emulating the physical

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

21:18 C. Huang et al.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

PC
(1)

PC
(4)

AR
M

(1
)

AR
M

(4
)

DSP(
1)

DSP(
6)

G
PU

(3
36

)

R
eg

. e
x.

G
en

er
al
 P

E

Cus
to
m

 P
E

S
p
e
e
d
u
p
 /
 d

o
lla

r
weibel
lutchen
wave
atrial
neuron

Fig. 13. Normalized speedup per dollar of different approaches.

models. The approximate cost (as of Dec 2011, obtained via Web-based distributor
pricing) of each platform is as follows.

(1) CPU (I7-950 + Intel X58 board): $480
(2) ARM (Cortex 9A 4-core board): $300
(3) DSP (TI C6472 board): $350
(4) GPU(GTX460 + I3-540 + H55 board): $380
(5) FPGA (Xilinx Virtex6 240T-2 board): $1800

Note that these costs are rough values, as cost is strongly dependent on cus-
tomer/vendor relationships and purchase quantities.

We also consider a term that combines both cost and speedup, namely: (speedup over
real-time)/cost. Figure 13 shows the results for each approach. Although the FPGA
board costs the most, the speedup obtained by the FPGA based approach is greater,
leading to a net benefit in terms of speedup/dollar. Among general purpose proces-
sor and GPU approaches, the multicore PC and the GPU are the best in terms of
speedup/dollar, but still about 10X worse than the network of custom PEs.

8.4. Case Study

This section describes a case study of synthesizing the 11-generation Weibel lung model
to a network of custom PEs. The corresponding ODE-dependency graph is a binary tree
with 11 levels. To obtain the best performance, we manually partitioned the graph into
73 parts. After partitioning, the 11-level binary tree becomes a 3-level 8-ary tree as
illustrated in Figure 14. One might think a leaf PE contains more variables and thus
could become a bottleneck during the emulation. Actually, the leaf PE has fewer data-
transfer instructions compared to the nonleaf PEs, due to not having children. Thus
the total number of instructions of each PE is almost balanced.

The final placement and routing results are illustrated in Figure 15, with the blue
regions used for implementation. Note the circuits of the network are almost evenly
distributed in the FPGA fabric, representing the local connectivity of the physical
model. We also highlighted 5 PEs by coloring the nets related to each PE. Note the nets
of a PE are clustered within a small area of the FPGA. Key FPGA resource utilization
information include: 61,232 LUTs (40%), 511 DSPs (67%), and 73 block-rams (18%).
The minimal clock period is 3.94ns (or 253MHz maximal clock frequency). The total
number of cycles per step is 51. The execution speed is 50x faster than real-time.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

Synthesis of Networks of Custom Processing Elements for Real-Time Physical System 21:19

11 level

5-level tree

3-level tree

……
11-generation Weibel lung

Custom PE
network

Fig. 14. The network of custom PEs of an 11 generation Weibel lung after partition. (Omitted some leaf
PEs).

Fig. 15. Placement and routing results of the 11 generation Weibel lung on the target FPGA.

9. CONCLUSION

We described an approach for fast execution of physical models consisting of thousands
of ordinary differential equations. The approach consists of synthesizing a network
of processing elements customized to the model’s particular ODEs, and is fully au-
tomatable. The experiments on five models, each model consisting of several thousand
ODEs, and targeting a Xilinx Virtex 6 FPGA, show the custom PE approach achieves
4X-10X speedups versus previous general PEs and high-level synthesis, while using
approximately the same or fewer FPGA resources. Furthermore, the approach achieves
speedups of 20-30X compared to a quad-core I7-950 CPU and an Nvidia GTX460 GPU.
Thus, the approach presently appears to yield the fastest execution of physical mod-
els on moderately-priced programmable platforms (excluding high-cost supercomputer
platforms), and the approach appears to be robust across different types of models.
Future work includes automatically synthesizing and mapping to heterogeneous PEs
(especially for more comprehensive models with heterogeneous ODEs), and further
comparisons with high-level synthesis, GPUs, and other evolving compute platforms.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

21:20 C. Huang et al.

REFERENCES

ATI GRAPHICS CARDS. 2011. http://ati.amd.com/support/driver.html.
ATKINSON, K. 1993. Elementary Numerical Analysis 2nd Ed. John Wiley & Sons, Inc. New York, New York.
AUTOESL. http://www.xilinx.com/tools/autoesl.htm.
BUTCHER, J. C. 2003. Numerical Methods for Ordinary Differential Equations. Wiley.
CELLML. 2011. http://www.cellml.org.
CELOXICA. 2011. http://www.celoxica.com/
GOKHALE, M. B., STONE, J. M., ARNOLD, J., AND LALINOWSKI, M. 2000. Stream-oriented FPGA computing in the

Streams-C high level language. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines.

HUANG, C., VAHID, F., AND GIVARGIS, T. 2011. A custom FPGA processor for physical model ordinary differential
equation solving. IEEE Embed. Sys. Lett. 3, 4, 113–116,

HUANG, C., VAHID, F., AND GIVARGIS, T. 2012. Automatic synthesis of physical system differential equation
models to a processing element network on FPGAs. Trans. Embed. Comput. Syst. To appear.

HUCKA, M., FINNEY, A., ET AL. 2004. Evolving a lingua franca and associated software infrastructure for
computational systems biology: The Systems Biology Markup Language (SBML) project. IEEE Syst.
Biology, 41–53.

IMPULSE C. 2011. http://www.impulseaccelerated.com/.
JSIM. 2011. http://nsr.bioeng.washington.edu/jsim/.
KUM, K., KANG, J., AND SUNG, W. 2000. AUTOSCALER for C: an optimizing floating-point to integer C program

converter for fixed-point digital signal processors. IEEE Trans. Analog Digital Signal Process. 47, 9, 840–
848.

LEE, E. A. 2008. Cyber physical systems: Design challenges. Tech. rep. UCB/EECS-2008-8, EECS Department
University of California.

LIONETTI, F. 2010. http://cseweb.ucsd.edu/groups/-hpcl/scg/papers/2010/Europ10-src-src-GPU.pdf.
LUTCHEN, F. P. PRIMIANO, J. R., AND SAIDEL, G. M. 1982. A nonlinear model combining pulmonary mechanics

and gas concentration dynamics. IEEE Trans. Bio-med. Electron. 29, 629–641.
MATHWORKS. 2011. Matlab and Simulink. http://www.mathworks.com/.
MEDGADGET. 2008. Supercomputer creates most advanced heart model. Internet J. Emerg. Med. Tech.
MEYER, J. AND KOCAN, F. 2007. Sharing of SRAM Tables Among NPN-Equivalent LUTs in SRAM-Based

FPGAs. IEEE Trans. VLSI Syst. 15, 2, 182–195.
MOTUK, E., WOODS, R., AND BILBAO, S. 2005. Implementation of finite difference schemes for the wave equation

on FPGA. In Proceedings of the International Conference on Acoustics, Speech, and Signal Processing.
NATIONAL INSTRUMENTS. 2011. LabView FPGA Module. http://www.ni.com/fpga/.
NSR PHYSIOME PROJECT. 2011. Mathematical Markup Language. http://nsr.bioeng.washington.edu/jsim/docs/

MML Intro.html.
NVIDIA CORPORATION. 2011. http://www.nvidia.com/object/gpu.html.
OSANA, Y., FUKUSHIMA, T., AND AMANO, H. 2004. ReCSiP: a reconfigurable cell simulation platform: accelerating

biological applications with FPGA. In Proceedings of the Asia and South Pacific Design Automation
Conference.

PAULIN, P. G., KNIGHT, J. P., AND GIRCZYC, E. F. 1986. HAL: a multi-paradigm approach to automatic data
path synthesis. In Proceedings of the 23rd ACM/IEEE Design Automation Conference (DAC ’86). IEEE,
263–270.

PIMENTEL, J. AND TIRAT-GEFEN, Y. 2006. Hardware acceleration for real time simulation of physiological sys-
tems. In Proceedings of the 28th Annual International Conference of the Engineering in Medicine and
Biology Society (EMBS ’06). IEEE.

RAO, D. S. AND KURDAHI, F. J. 1993. On clustering for maximal regularity extraction. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 12, 8, 1198–1208.

RESHADI, M., B. GORJIARA, B., AND GAJSKI, D. 2005. Utilizing horizontal and vertical parallelism using a no-
instruction-set compiler and custom datapaths, In Proceedings of the IEEE International Conference on
Computer Design.

SPARK PROJECT. 2005. http://mesl.ucsd.edu/spark/.
SYNPHONYC. 2011. http://www.synopsys.com/Systems/BlockDesign/HLS/Pages/SynphonyC-Compiler.aspx.
TERMAN, D., AHN, S., WANG, X., AND JUST, W. 2008. Reducing neuronal networks to discrete dynamics. Physica

D 237, 3, 324–338.

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

Synthesis of Networks of Custom Processing Elements for Real-Time Physical System 21:21

VILLARREAL, J., PARK, A., NAJJAR, W., AND HALSTEAD, R. Designing modular hardware accelerators in C with
ROCCC 2.0. In Proceedings of the IEEE International Symposium on Field-Programmable Custom
Computing Machines. 127–134.

WEIBEL, E. R. 1963. Morphometry of the Human Lung. Springer.
XILINX ISE. 2011. http://www.xilinx.com/support/documentation/dt ise12-4.htm.
YOSHIMI, M., OSANA, Y., FUKUSHIMA, T., AND AMANO, H. 2004. Stochastic Simulation for Biochemical Reactions

on FPGA. In Field Programmable Logic and Application, Lecture Notes in Computer Science, vol. 3203,
105–114.

ZHANG, H., HOLDEN, A. V., AND BOYETT, M. R. 2001. Gradient model versus mosaic model of the sinoatrial node.
Circulation 103, 4, 584–588

Received January 2012; revised May 2012; accepted September 2012

ACM Transactions on Design Automation of Electronic Systems, Vol. 18, No. 2, Article 21, Pub. date: March 2013.

