
10

Graph-Based Approaches to Placement of Processing Element
Networks on FPGAs for Physical Model Simulation

BAILEY MILLER and FRANK VAHID, University of California, Riverside
TONY GIVARGIS, University of California, Irvine
PHILIP BRISK, University of California, Riverside

Physical models utilize mathematical equations to characterize physical systems like airway mechanics, neu-
ron networks, or chemical reactions. Previous work has shown that field programmable gate arrays (FPGAs)
execute physical models efficiently. To improve the implementation of physical models on FPGAs, this article
leverages graph theoretic techniques to synthesize physical models onto FPGAs. The first phase maps phys-
ical model equations onto a structured virtual processing element (PE) graph using graph theoretic folding
techniques. The second phase maps the structured virtual PE graph onto physical PE regions on an FPGA
using graph embedding theory. A simulated annealing algorithm is introduced that can map any physical
model onto an FPGA regardless of the model’s underlying topology. We further extend the simulated anneal-
ing approach by leveraging existing graph drawing algorithms to generate the initial placement. Compared
to previous work on physical model implementation on FPGAs, embedding increases clock frequency by 25%
on average (for applicable topologies), whereas simulated annealing increases frequency by 13% on average.
The embedding approach typically produces a circuit whose frequency is limited by the FPGA clock instead
of routing. Additionally, complex models that could not previously be routed due to complexity were made
routable when using placement constraints.

Categories and Subject Descriptors: B.5.2 [Design Aids]: Automatic Synthesis; C.3 [Special-Purpose and
Application-Based Systems]: Real-Time and Embedded Systems

General Terms: Design, Performance

Additional Key Words and Phrases: Field programmable gate array (FPGA), cyber-physical system, physical
model, differential equation, graph embedding, placement, simulated annealing

ACM Reference Format:
Bailey Miller, Frank Vahid, Tony Givargis, and Philip Brisk. 2014. Graph-based approaches to placement of
processing element networks on FPGAs for physical model simulation. ACM Trans. Reconfig. Technol. Syst.
7, 4, Article 10 (December 2014), 22 pages.
DOI: http://dx.doi.org/10.1145/2629521

1. INTRODUCTION
Fast physical model simulation is required in many domains, such as biomedical engi-
neering, physics, and chemistry. A physical model represents some observable physical
phenomena, usually as a set of normal, partial differential, or ordinary differential
equations, which can be solved using time-stepping equation solvers. For example,

This work was supported in part by the National Science Foundation (CNS1016792, CPS1136146) and the
Semiconductor Research Corporation (GRC 2143.001).
Authors’ addresses: B. Miller, F. Vahid, and P. Brisk, Department of Computer Science and Engineering,
University of California, Riverside, 900 University Avenue, Riverside CA 92501; T. Givargis, School of
Information and Computer Sciences, University of California, Irvine, 6210 Donald Bren Hall, Irvine CA
92697.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2014 ACM 1936-7406/2014/12-ART10 $15.00
DOI: http://dx.doi.org/10.1145/2629521

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

http://dx.doi.org/10.1145/2629521
http://dx.doi.org/10.1145/2629521

10:2 B. Miller et al.

Fig. 1. Two-phase approach of mapping physical model equations onto a structured graph of virtual PEs,
and mapping virtual PEs onto a FPGA utilizing graph embedding techniques.

physical models can be used to interact with and test cyber-physical devices like ven-
tilators and pacemakers [Miller et al. 2012]. The use of physical model simulations for
testing can be less expensive than testing in a physical environment that is difficult,
expensive, or dangerous to create or use. Physical models may also be more accurate
than physical analogues; for example, a balloon may capture some of the behavior of a
lung but may not be able to accurately model various lung diseases.

Compared to a multicore desktop processor, a field programmable gate array (FPGA)
can speed up physical model simulation by up to three orders of magnitude by partition-
ing the computation across hundreds of processing elements (PEs) [Huang et al. 2012],
each of which is optimized to execute time-stepping equation solvers [Huang et al.
2011]. Many physical models share the same natural structure as the corresponding
physical system. For example, a Weibel lung model [Weibel 1963] utilizes a binary
tree structure that mimics lung physiology in which the trachea is the root and gas
exchange occurs at the leaves. Similarly, atrial cell models utilize a three-dimensional
(3D) mesh structure to simulate the propagation of electrical signals across tissues of
cardiac cells [Zhang et al. 2001]. Physical system equations are naturally grouped; for
example, the volume and pressure of a lung branch have data dependencies and thus
should ideally be placed within the same PE to minimize communication costs. Apply-
ing this structure to a network of PEs synthesized on an FPGA naturally minimizes
communication costs.

Our work leverages graph theoretic techniques to embed the topology of a physical
model onto a two-dimensional (2D) mesh of PEs on an FPGA. This reduces commu-
nication cost and enables higher circuit frequencies, translating to faster execution of
physical models. A secondary contribution is a simulated annealing algorithm that gen-
erates placements for physical models with irregular topologies that are not compatible
with existing graph embedding algorithms.

Figure 1 details a two-phase approach for embedding a physical model onto an FPGA.
The first phase maps the physical model equations to a structured virtual PE graph,
which is structured in the form of the physical model: each virtual PE node contains
a group of equations, along with connections to adjacent PE nodes. The second phase
defines physical PE regions on the FPGA, onto which virtual PEs may be mapped,
and then finds the actual placement using a graph embedding algorithm or simulated

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

Placement of PE Networks on FPGAs 10:3

annealing. In Figure 1, a graph embedding algorithm maps a binary tree to a 2D
grid by placing the root in a physical PE region in middle of the grid and expanding
child subtrees outward. Connections between PEs in the phase 1 virtual graph remain
unchanged once mapped to physical regions; adjacency of physical regions does not
imply connection between PEs mapped to those regions.

This work also improves the simulated annealing approach for mapping virtual PEs
to physical PE regions [Miller et al. 2013], yielding two key benefits. First, many phys-
ical models have irregular topologies for which no embedding algorithms are known;
simulated annealing is shown to achieve good-quality results for such topologies. Sec-
ond, an embedding algorithm must be implemented for each known topology, which
can be difficult and time consuming. To address these concerns, simulated annealing is
shown to generate good-quality layouts that are applicable to any physical model. Ad-
ditionally, we show that using graph algorithms to generate a better initial placement
prior to simulated annealing results in better final placements. Furthermore, the sim-
ulated annealing algorithm has been extended with various optimizations, including
modeling the suboptimality of routing across FPGA architectural features, autonormal-
ization of timing and wiring costs, and automated initial temperature configuration.

1.1. Related Work
Our past research efforts on fast execution of physical models on FPGAs have achieved
orders of magnitude of acceleration over executing on desktop processors, and several
times speedups over graphical processing units (GPUs), with improvements consid-
ering time/dollar cost [Huang et al. 2011; Miller et al. 2013]. Speedup was achieved
by parallelization of differential equations across hundreds of PEs for complete ap-
plications. FPGAs are an ideal substrate for physical model execution because the
massively parallel local-neighbor communication inherent in these models is a good
match for the spatial parallelism provided by an FPGA. In contrast, the data trans-
fer overhead inherent in shared memory multiprocessors and GPUs is a significant
impediment to performance. We introduced an automated design flow that translates
a physical model specification into an equation dependency graph, partitions equa-
tions into PEs via simulated annealing, schedules computation and point-to-point data
transfers, and generates a synthesizable HDL implementation of the system. PEs may
be either generic computation units with an ALU and programmable instructions or
a custom datapath targeted at a specific equation. Recent work has shown additional
speedups by creating heterogeneous networks of general, programmable PEs, and PEs
with custom datapaths for solving specific equations [Huang et al. 2012]. The reader
is encouraged to refer to our earlier manuscripts for more information on the PE ar-
chitecture and compiler, which cannot be included here due to space constraints. In
this work, we seek to minimize the suboptimal circuit implementations yielded when
routing a PE network on an FPGA by guiding the process with placement constraints.

Other relevant work includes the use of an FPGA to accelerate a heart model [De
Pimental and Tirat-Gefen 2006], including interfacing of the simulation with a pace-
maker via analog-digital converters, and the creation of a custom FPGA for the simu-
lation of gene regulatory networks [Tagkopoulos et al. 2003].

The research efforts described earlier used heuristics to map equations to PEs and re-
lied on commercial tools to place PEs. In contrast, our approach maps equations to PEs
that maintain the natural structure of the physical model and embeds the structure
onto a 2D grid, which is a natural coarse-grained representation of the spatial paral-
lelism afforded by the FPGA. Our experiments demonstrate that this approach yields
faster circuits with higher clock frequencies, which in turns yields faster execution of
physical models.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

10:4 B. Miller et al.

Fig. 2. Various physical models and graphs of their representative structures.

The problem of mapping algorithms with communication structures that differ from
the interconnection scheme of the host architecture was first considered in the 1980s.
Bokhari [1981] introduced a heuristic for mapping algorithm tasks to adjacent proces-
sors in a “finite element machine” array processor. Later, Berman and Snyder [1987]
offered a general solution for embedding common structures such as cubes, meshes,
linear arrays, and trees. Much of that research has been used in distributed and high-
performance computing domains for mapping tasks to processors to minimize commu-
nication costs [Bhatelé and Kalé 2008]. Prior work on VLSI design has embedded a
binary tree of processors in a square to reduce communication costs [Ullman 1984].

Graph embedding has also been used for FPGA placement as an alternative to
iterative improvement heuristics and recursive partitioning methods. One approach is
to convert a netlist into a hypergraph, which is then embedded onto a 2D grid using
a recursive space-filling curve [Banerjee et al. 2009]; this approach yielded up to 2×
faster runtimes for placement but did not improve critical path delay, which is critical to
the speed of physical model simulation. CAPRI [Gopalakrishnan et al. 2006] creates an
initial placement of a circuit by embedding the netlist into the target FPGA platform.
CAPRI models the routing delays of the target FPGA in a metric space and uses
matrix projections to minimize distortions between the graph representation of the
netlist and the target. Both of these prior works mapped netlists onto low-level FPGA
resources (LUTs, CLBs, etc.), whereas our work places networks containing hundreds
of individual PEs into larger physical regions that are abstracted onto the FPGA.

2. PHYSICAL MODEL STRUCTURES
Physical models often have a natural structure associated with a corresponding layout
in the physical world. Consider a human lung, which begins at the trachea and splits
into nearly identical left and right lobes. Each lung contains more than 20 additional
splits as the airway passage diameters decrease and eventually are able to support
blood–gas exchange alveoli. The lung has thus often been modeled as a binary tree
of 20 or more generations such that gas flow at the trachea can be used to compute
the pressure and volume of internal branches [Weibel 1963]. Similarly, cell models
of electrical activity across atrium walls use a 3D mesh structure to allow neighbor-
ing cells to propagate signals. Figure 2 shows some examples of physical models and
corresponding structures, described as follows:

—Weibel lung: A binary tree–shaped lung model in which an inlet flow at the root of
the tree is used to compute volume and pressure at lower branches. Each node of the
tree computes the volume V and flow F of the corresponding branch.

—Atrial heart cells: A 3D mesh of cells where each cell propagates signals to its neigh-
bors [Zhang et al. 2001].

—Neuron synapses: A one-dimensional (1D) array of cells that simulates the firing of
neuron synapses [Terman et al. 2008].

—Wave: A wave model that has a 2D mesh network structure and is often used to
model the propagation of sound, acoustics, and so forth [Motuk et al. 2005].

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

Placement of PE Networks on FPGAs 10:5

Fig. 3. (a) General PE architecture. (b) Datapath pipeline.

Large physical models such as those described earlier can be partitioned into a net-
work of hundreds of PEs to achieve very fast simulation speeds. By maintaining the
structure associated with the physical model during physical placement of PEs on an
FPGA, the routing overhead between PEs can be minimized. The natural structure of
a physical model typically uses an optimally minimal number and length of wires, be-
cause only local communication between cells, lung branches, and so forth, is required.
Previous work in physical model simulation attempted to recover the physical model
structure via heuristic annealing algorithms after having converted the specification
of the physical model’s equations to an equation dependency graph [Huang et al. 2011];
however, finding the globally optimal solution for physical models containing thousands
of equations and hundreds of PEs is not feasible with this approach. Instead, we propose
to preserve the connections as they were modeled to minimize communication cost.

3. BACKGROUND: PROCESSING ELEMENT AND NETWORK ARCHITECTURE
Earlier work proposed an architecture for a PE optimized for solving general ODEs,
as described in Figure 3 [Huang et al. 2011]. A PE consists of an output port, an input
port connected directly to the output of other PEs in the network, an instruction RAM
containing microcoded control words, and a pipelined datapath. The number of inputs
and RAM size is adjustable according to the ODEs mapped to a PE.

A program counter driven by a global clock synchronizes execution of each PE. Exe-
cution of an iteration consists of an update phase, in which data dependencies across
PEs are resolved by forwarding and storing computed values, followed by a compute
phase that executes arithmetic operations to solve the model for the next iteration. All
computation and communication instructions are compiled statically.

Currently, we manually convert floating-point numbers into 32-bit fixed-point num-
bers that can be executed efficiently with the integer ALU and shift operator in the
PE. We estimate the value range for each variable in the model and scale the variable
accordingly. A comparison of double-precision floating point and fixed-point implemen-
tations of a Weibel 11-generation model found that the maximal relative error among
all variables is within 0.5%. Investigation shows that utilizing floating-point cores
would yield a 3× to 8× performance decrease and 3× to 5× increase in size; thus, we
use fixed point to minimize resource utilization.

A single three-input PE has a frequency of 312MHz when implemented on a Virtex-6
VSX475T-2ff1156 using Xilinx ISE 14.2, the critical path being the decoding of the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

10:6 B. Miller et al.

control word output from the instruction memory. However, when a network consists of
hundreds of PEs, the frequency can drop to 100MHz or lower, even becoming unroutable
if there are too many data dependencies. The bottleneck in many large networks come
from critical paths introduced either by the interconnections between PEs or by non-
local placement of a PE’s components. An approach to lessen the impact of inter-PE
channels is to add pipeline stages between PEs, at the expense of more cycles per com-
munication step. However, complex designs will still suffer performance degradation
due to nonlocal PE component placement.

4. PHASE 1: MAPPING EQUATIONS TO VIRTUAL PROCESSING ELEMENTS
Given the specification of a physical model as a set of ordinary or partial differential
equations, a map must be built that groups equations into a structured virtual PE
graph G that maintains the structure of the physical model. Initially, the virtual PE
graph has unconstrained size; it is then folded to fit into the available resources of the
target platform, which is an FPGA in our case.

4.1. Partitioning Equations
Let G = (v, e), where v = {v1, v2 . . . , vn} is a set of n vertices and e = {e1, e2, . . . , ek} is
a set of k edges between vertices in v. Let E = {E1, E2, . . . , Em} be the set of equations
defined in the specification of the physical model. The set of vertices v represents virtual
PEs, which may have equations from E allocated to them. The set of edges e represent
communication channels between virtual PEs. If an edge ei = (v j, vk) exists, then there
exists a dependency between the equations hosted in v j and vk.

The graph G and its nodes and edges are defined by the structure of the physical
model. For example, a three-level binary tree–shaped Weibel lung model would have the
following graph: v = {v1, . . . , v7}, e = {(v1, v2), (v1, v3), (v2, v4), (v2, v5), (v3, v6), (v3, v7)},
which is a binary tree rooted at vertex v1.

Each equation Ei can be allocated to a vertex vi in G according to a surjective mapping
function f : E → v. The function f depends on the structure of G and maps groups of
equations that represent the same physical element (e.g., a lung branch or atrial cell)
to a single vertex. The result of applying the map function f to each equation yields a
structured virtual PE graph G that maintains the basic structure of the physical model,
and where each vertex (virtual PE) contains equations that represent some physical
element of the physical model.

4.2. Folding
A physical model may be very large—a Weibel model with 11 generations contains
more than 4,000 differential equations. To meet the physical constraints of a realistic
platform when mapping virtual PEs to physical PEs, the virtual PE graph G must first
be scaled down. We fold G by applying a homomorphic folding function ϕ that maps
the larger graph to a smaller, more compact version, G′, while preserving the structure
of G. In particular, ϕ maps G to G′, where the size n of the vertex set of G′ is less than
or equal to the number of supportable PEs in the target platform S; ϕ : G → G′ | G′

n <
S. ϕ must also maintain the topology of G in G′ by either maintaining an existing edge
of G in G′ or by merging the equations of vertex a ! G into vertex b ! G′ such that the
length of any edge connected to the merged vertices is constant.

It is generally possible to fold symmetric structures by cutting a graph into two
subgraphs and merging vertices that share the same position in each subgraph
[Aleliunas and Rosenberg 1982; Ellis 1991; Wagner 1990]. For example, Aleliunas
and Ellis used folding to reduce the aspect ratio of rectangular graphs into forms that
could be embedded onto a 2D grid. Wagner developed algorithms for folding strongly
balanced hypertrees to embed them into hypercubes.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

Placement of PE Networks on FPGAs 10:7

Fig. 4. Contraction of the PE dependency graph by folding: (a) binary tree and (b) 3-dimensional mesh.

The exact definition of ϕ depends on the physical model structure. Different physical
models can reuse the same folding functions as long as their structures match; thus, a
folding function for each structure type must be identified. A potential pitfall of folding
is that structured virtual PE graph sizes tend to be reduced by halves. In the worst
case, folding a graph that is incrementally larger than the target platform could create
a situation where almost half of the physical PE regions are empty. One solution is to
manually merge the last few virtual PEs in this particular case. The following section
provides examples that target binary tree physical models, describing the mapping
function f and folding function ϕ that result in the generation of a structured virtual
PE graph.

4.3. Lung Model Example
A small Weibel lung model with three generations of bifurcating airways is structured
as a binary tree with 23 – 1 = 7 branches, or 14 interdependent differential equations
for computing the pressure and volume of each branch. Let the set of equations E in the
specification of the physical model be ordered such that the first l equations compute
the volume and pressure of the root node, the next l equations compute the left child of
the root, followed by l equations for the right child of the root, and so on. Equations can
thus be initially partitioned to vertices in G via f (ei) = i/l. The left side of Figure 4(a)
shows a representative structured PE graph, where EqNx represents the equations
allocated to each node.

Consider if the target platform for the three-generation Weibel lung model is an
FPGA that contains only enough resources for three PEs. Since each vertex in the
graph represents a virtual PE that must eventually be physically placed, an excess of
four PEs will not fit into the device. The graph can be folded as shown in the right
side of Figure 4(a) by merging nodes in such a way as to maintain the graph structure.
Let TR be the root of the graph G, and T1 and T2 be the subtrees whose roots are the
left and right children of TR, respectively. We fold T2 into T1 by traversing down each
subtree simultaneously and moving any equations within the current node of T2 into
the equivalent node of T1. The root node TR is also merged into the root node of T1;
otherwise, TR would contain only a single child. This method maintains the adjacency
of vertices in T2 within T1, as long as each subtree is symmetrical. Nonsymmetrical
structures can still be folded imperfectly by merging the vertices in T2 that have no
corresponding vertex in T1 such that a minimum of additional edge length is required.

5. PHASE 2: MAPPING VIRTUAL PROCESSING ELEMENTS TO PHYSICAL PROCESSING
ELEMENTS

Once a structured graph of virtual PEs has been created, each virtual PE must be
mapped to a physical location on the target platform. This mapping must consider

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

10:8 B. Miller et al.

both the average and maximum distances between PEs to reduce congestion and crit-
ical paths introduced via inter-PE communication channels. The simple solution to
this problem is to let a commercial synthesis tool flatten the design hierarchy and
run heuristic algorithms to select an appropriate placement. However, a circuit that
contains hundreds of PEs is sufficiently complex such that modern tools cannot find
good solutions without having additional constraints specified. Our approach defines
a 2D grid of physical PE regions on a target FPGA platform using an XY Cartesian
coordinate system. Each physical PE region in the grid contains just enough resources
to implement a single PE. Virtual PEs can be mapped to physical PE regions on the
grid using topology-specific graph embedding techniques or simulated annealing in our
framework.

5.1. Creating the Host Architecture on an FPGA
When performing place and route operations on large PE networks using commer-
cial tools (Xilinx ISE 13.4) and a flattened netlist, we noticed that the critical path
most often occurs between memories or logic components that belong to the same PE.
Each PE in our design requires two memories (BRAMs), one multiplier (DSP block),
and approximately 250 lookup tables (LUTs). Intuitively, one would expect that com-
munication between different PEs would have a much larger impact on delay. When
examining the result, the commercial tools are unable to place components within the
same PE nearby one another, which is an unfortunate artifact of flattening the netlist
up front. Our approach effectively sidesteps this issue by creating a floor plan in which
individual PEs are placed contiguously.

Relationally placed macros (RPMs) are used to establish relative distances between
PE memories. RPMs have been shown to provide faster circuit designs, even with
modern tools [Singh 2011]. On Xilinx FPGAs, a Cartesian coordinate system is used to
specify the locations of components like DSPs and BRAMs. BRAM and DSP modules
are physically located in homogeneous columns that stretch the height of the FPGA.
We create an RPM for a PE using the Xilinx RLOC constraint by specifying that the
offset between its instruction and data memories should be X = 0, Y = 1, and that the
offset between the instruction memory and the DSP should be exactly X = –4, Y = 0.
The RPM thus ensures that PE memories are placed in neighboring BRAMs within
the same BRAM column, and that the related DSP module is in the closest available
location in a neighboring DSP column.

RPMs are useful for ensuring the close locality of BRAM and DSP modules that be-
long to the same PE, but we still must constrain each PE to specific physical PE regions
on the target platform. We utilize the Xilinx AREA_GROUP constraint during place
and route to place PEs into physical PE regions. A selection of physical components of
the FPGA (BRAM, DSPs, and slices) is first grouped into a pblock. We use the Xilinx
PlanAhead tool to manually create pblocks in a grid structure. Each pblock contains
enough resources for a PE: two BRAMs, multiple DSPs, and more than 300 LUTs. The
PEs in the design netlist can then be constrained via the AREA_GROUP constraint
to a specific pblock region. The use of pblocks not only designates an exact location to
place a PE but also helps the place and route tools by requiring that the components
in a PE hierarchy be placed within the pblock area. Since the area of the pblock is
roughly what is required of a PE, the resulting PE implementation is densely packed
and optimized. The use of placement constraints helps to shift the circuit critical path
from internal PE connections to PE network communication channels.

We target a Xilinx XC6VSX475T. The Virtex6 platform contains approximately 297K
LUTs, 2K DSP units, and 1K Block RAM (36KB each) memories. The largest grid size
that can be constructed is 14 × 39, yielding a maximum of 504 PEs. For most physical
models, 500 PEs is sufficient for much faster than real-time simulation speeds. We

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

Placement of PE Networks on FPGAs 10:9

note that the approach is not limited to one specific tool or vendor; all FPGAs consist
of a regular, reconfigurable fabric, and most vendors allow blocks of resources to be
grouped to create uniform structures. We consider only the specifically denoted FPGA
and vendor (Xilinx) discussed earlier to ease the discussion.

5.2. Graph Embedding–Based Placement
Physical models that exhibit common structures are able to take advantage of graph
embedding techniques during physical placement. Graph embedding is the process of
mapping a guest graph of architecture g onto a host graph of a different architecture h.
Graph embedding has been studied for at least 30 years by mathematical theorists, and
many optimal solutions have been found for the embedding of structures like trees and
meshes onto grids and hypercubes [Chen and Stallmann 1995; Ullman and Narahari
1990]. The typical metric by which graph embedding algorithms are evaluated is maxi-
mum dilation, or the maximum number of nodes that a wire may need to pass through
to be completed. Since in a physical model-solving PE network the communication
channels are point to point between PEs, the dilation is always exactly one. We alter
the metric’s definition slightly to be the max wire length between any two connected
physical regions. A second important metric is the average dilation, or average wire
length of all communication channels in the circuit.

By taking advantage of the research on graph embedding techniques to map vir-
tual PEs to physical PEs on the target platform, the resulting physical placement can
achieve smaller maximum and average dilation in the circuit. Smaller maximum dila-
tion implies a reduction in the critical path, as once a virtual PE has been constrained
to a physical region using RPMs and pblocks, the longest wires for any complex network
are typically connected between different PEs (as opposed to internal PE connections).
Lower average dilation means that fewer routing resources will be required, which
typically results in faster circuits [Xilinx 2010].

The graph embedding problem relates to the general mapping problem, where com-
putational tasks must be placed onto a host architecture such that communication
between PEs is minimized [Berman and Snyder 1987]. Let GT = (VT , ET) be the guest
graph, where GT is the structured virtual PE graph (see Section 4). Let GH = (VH, EH),
where GH is a graph that represents the physical PE layout. VH is a set of all physical
PE regions, and EH is initially empty because no connections exist until virtual PEs
are placed. An embedding of GT onto GH is a result of applying an injective mapping
function "V : VT → VH to every vertex in GT . Once the vertex mapping has been
completed and a placement is created, an additional mapping "E : ET → EH can be
inferred automatically by creating an edge e = (u, v) ∈ EH for every edge p = (l, k) ∈ ET
where "−1

V (l) = u and "−1
V (k) = v.

The quality of the graph embedding is denoted by the average and maximum dilation
of the result of applying "V and "E. Since dilation in the context of PE networks on
FPGAs with point-to-point communication is wire length, we use a Euclidean distance
measure. Although it is possible to measure dilation using specific FPGA routing ar-
chitecture characteristics [Gopalakrishnan et al. 2006], at a macro level the distance
between physical grid locations will suffice.

Embedding binary trees onto 2D grids is a solved problem [Chen and Stallmann 1995;
Lee and Choi 1996; Ullman and Narahari 1990]. Embedding a binary tree onto square
grids has an O(sqrt(n)) maximum dilation, where n is the number of generations of the
tree. We utilize the H-tree construction technique (popular in VLSI) for the layout of
tree architectures onto optimally sized square hosts [Ullman 1984]. H-tree construction
creates an H-fractal tree where each subsequent branch of the tree alternates between
horizontal and vertical tracks and wire length is halved. The graph is split recursively

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

10:10 B. Miller et al.

Fig. 5. Embedding 7-level binary tree into a 2D grid: (a) Initial split of 4 subtree; (b) Two additional recursive
splits. White rows host root and children of a split branch. For clarity not all branches shown.

into four subtrees until leaf nodes can be placed. Where each split occurs, a track is
used to host the root of the split and its two children, which are the roots of the actual
four subtrees. Additional horizontal tracks are added for the three relevant parent
nodes of each split subtree. Following the second split, leafs can be placed nearby their
parents.

For square grids, the H-fractal tree method produces optimal results (in terms of
dilation); however, for rectangular-shaped grids such as the 14 × 39 PE grid available
on our target FPGA, H-tree construction requires some modifications. For example, the
number of vertical tracks required for a seven-generation tree using the H-tree method
is 31, or more than twice the number of available columns in the FPGA PE grid. We
leverage the fact that our FPGA can route wires between PEs diagonally, as opposed to
the strict row-column ordering of previous H-tree considerations [Lee and Choi 1996].
In addition, since the width of the target is the limiting factor to the number of possible
recursive splits, it is not possible to maintain the ideal H-fractal shape in a rectangular
grid. We therefore define a base case for the bottom k-generations of a tree that can no
longer maintain H-fractal shape, such that an optimal placement of lower generations
and leaf nodes can be completed. To embed the tree, we first perform placement via
recursive splits down to the leaves of the tree, then perform compaction and reordering
of rows to further minimize maximum wire length.

Figure 5 illustrates the process. The binary tree is split into four subtrees and as-
signed to a quadrant of the grid. The blue lines mark connections between physical
PE regions that contain a mapped virtual PE, which are marked with blue dots. The
graph embedding follows the H-tree fractal shape design until the grid becomes too
narrow to maintain the shape when placing the final two generations of the tree. At
that point, a base case known placement is utilized to place the remaining virtual PEs
into physical PE regions with minimal wire lengths. Rows 4 and 10 contain no mapped
virtual PEs, which unnecessarily inflates the maximum wire length. A simple greedy
algorithm can be used to compact the graph embedding by moving the row with the
longest wire until no improvement can be made.

6. SIMULATED ANNEALING–BASED PLACEMENT
Simulated annealing is a general method that can map any structured virtual PE
graph onto physical PEs. This approach is useful when a physical model has no obvious
structure for which a graph embedding algorithm could be used, such as unbalanced
or asymmetrical trees [Gabryś et al. 2005]. Simulated annealing also yields useful
comparisons to embedding by providing reasonable PE placements.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

Placement of PE Networks on FPGAs 10:11

The simulated annealing approach utilizes methods previously described for timing-
driven placement in the VPR tool [Marquardt et al. 2000]. We define a cost function
that considers FPGA architectural features, wiring cost, and timing cost (critical path
length); it is shown experimentally that our cost function correlates linearly with
resulting circuit frequency. We also present a neighbor function that swaps virtual
PEs based on the relative placement of connected virtual PEs. Our neighbor function
provides faster convergence and results in lower cost placements than random swaps.

6.1. Cost Function
The cost function is calculated at each iteration of the simulated annealing algorithm
to determine the effect of a perturbation on the current solution state. The Wiring_Cost
term determines the cost associated with routing all of the inter-PE nets in the design.
This term is a summation of all wire lengths in the design that are routed between
physical PE regions:

Wiring Cost =
NNET S∑

n=0

D(nSNK, nSRC). (1)

D(nSNK, nSRC) is the distance of the net from source to sink, defined later. The VPlace
algorithm of VPR uses a similar equation to calculate routing cost, although it uses
a Manhattan distance measure and a factor to compensate for the extra resources
required by highly connected nets. Minimizing the wiring cost during simulated an-
nealing produces a placement with less congestion, resulting in faster circuit imple-
mentations [Xilinx 2010].

The Timing_Cost term considers the impact of the longest wires in the design, which
are most likely to form a critical path in the circuit. Similar to the T-VPlace algorithm,
wires are assigned a weight depending on their length [Marquardt et al. 2000]. Wires
closer to the maximum wire length of the design are weighted heavily, whereas shorter
wires have less impact. Note that our current implementation assumes a delay that
corresponds linearly to the distance between physical PE regions; future work could
achieve more accurate timing cost estimates by modeling the delay between physical PE
regions in the target FPGA. Each wire is assigned a weight according to the following
equation:

Weight(n) = 1 − Wmax − D(nSNK, nSRC)
Wmax

. (2)

Wmax is the maximum PE-to-PE wire length in the design. The Timing_Cost for each
net is calculated as follows:

T iming Cost(n) = D(nSNK, nSRC) · Weight(n)W exp
. (3)

W_exp is a user-defined exponent that causes higher-weighted wires to have more
impact on timing cost. In T-VPlace, this exponent is called the criticality exponent.

FPGAs commonly contain architectural features that prevent placement of logic
in specific areas. For example, Figure 9 (shown later) presents a Virtex6 FPGA that
has a large gap in the middle for monitoring/programming components. Wires routed
across such gaps incur an additional timing cost penalty through exponentiation of the
distance by a user-defined constant Arch_exp. The exponentiation adds high penalties
to wires that are both long and cross a gap. Whether or not a wire crosses a gap is
determined by projecting a vector v from source to sink and recording intersecting
physical PE regions in a set route. Physical PE regions that contain gaps or features
restricting logic are annotated and recorded in a set ignored. Distance is then calculated

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

10:12 B. Miller et al.

based on whether or not route and ignored are disjoint:

D(n) =
{

dist(n)
dist(n)Arch exp

route ∩ ignored = Ø
otherwise.

(4)

In Equation (4), dist(n) is the distance measure—that is, Euclidean or Manhattan
distance. The total timing cost for the PE network placement is equal to the summation
of the timing cost of every net.

Furthermore, the cost function incorporates previously described autonormalization
techniques to ensure that the cost of a single perturbation is related to relative changes
in both the wiring and timing costs:

#Cost = λ · #T iming Cost
Previous T iming Cost

+ (1 − λ)
#Wiring Cost

Previous Wiring Cost
. (5)

λ controls how much weight to give each cost term after each iteration. For all experi-
ments in this article, we use λ = 0.5 [Marquardt et al. 2000].

Later in the article, Figure 7(a) shows a linear regression representing how the cost
function relates to the resulting circuit frequency of a PE network once placed and
routed.

6.2. Neighbor Function
In simulated annealing, a neighbor function is a local perturbation of a solution that
may or may not improve its overall quality. An initial solution, which is likely to be far
from optimal, can be computed randomly or use an efficient polynomial-time heuristic.
A simple neighbor function in the context of our PE placement problem is to randomly
select two PEs within the network and swap their locations; we use this neighbor
function as a baseline.

The neighbor function presented here attempts to cluster connected PEs together,
with the goal of reducing wire lengths in the process. A random physical PE region P1
that contains a mapped virtual PEV is selected first. Each connection e = (P1, Pp) in
V is evaluated, where Pp is the physical PE region of the virtual PE connected to V.
A Euclidean vector is constructed from P1 to Pp. An average of all vectors originating
from P1 identifies a physical PE region that minimizes the average wire length of all
connections to the PE if the virtual PE were placed there.

If a virtual PE does not already occupy the target physical PE region, then P1 can
be placed immediately on the target. Otherwise, the algorithm examines each of the
target PE’s neighbors. If any neighbor is unoccupied, then P1 is moved there. If all
neighbors are occupied, the algorithm selects the physical PE region whose average
connection vector endpoint is closest to P1 for swapping.

Figure 6 provides an example. P1 is randomly selected. An average of the two con-
nections e1 and e2 yields an area of the platform where P1 should be placed to minimize
wire lengths. If there is an empty physical PE region, then P1 is moved there. Oth-
erwise, each physical PE region in the area is evaluated and the best candidate is
swapped with P1. The best candidate is determined by computing the potential cost
reduction

6.3. Simulated Annealing Algorithm Strategies
The cooling schedule used during simulated annealing can cause dramatic differences
in the obtained solution [Nourani and Andresen 1998]. We experimented with linear
[T (t) = T0 − −ηt], geometric [T (t) = T0/t], and exponential [T (t) = T0at] cooling
schedules. We found that both linear and geometric schedules produce a configura-
tion with a similar cost for a given physical model, whereas the exponential schedule

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

Placement of PE Networks on FPGAs 10:13

Fig. 6. The neighbor function moves PE1 to minimize wire length. (a) An area to move PE1 to is identified.
(b) PE1 is moved to an empty region if available, (c) otherwise, PE1 is swapped with a PE in the area that
benefits most from the swap, i.e., PE2 has neighbors near the original location of PE1.

(α = 0.99) yields a configuration that highly depends on the initial random placement
and does not generally produce a good result. This is due to the quickly decaying na-
ture of the exponential function, which makes it difficult to escape local minima in the
solution space. All experiments in this article utilize a geometric cooling schedule.

Figure 6(c) shows the effect that modifying the number of solution perturbations
performed per iteration has on the average final cost of five different models (Weibel10,
neuron1d, neuron2d, asymmetrical tree, and random). More perturbations/iteration
implies a longer runtime but with more swaps occurring at a higher temperature.
Using 16 perturbations/iteration gives a 19% decrease in the final cost, on average,
over 1 perturbation/iteration. The runtime of simulated annealing for a large 500-PE
network using 32 perturbations/iteration is less than 10 minutes, whereas the runtime
when using 1 perturbation/iteration is approximately 2 minutes.

The initial temperature is determined automatically for each run by performing trial
annealing runs and searching for a temperature that results in a given acceptance ratio
[Johnson et al. 1989]. In this work, we use an acceptance ratio of 0.9 for all simulated
annealing runs. Additionally, a restart functionality resets the current configuration
if no perturbation produces a higher-quality configuration after 250 consecutive it-
erations, hence the oscillations on the right-hand side of Figure 7(b) for the random
neighbor function. The reset functionality helps to ensure that the annealing process
does not get stuck in a local minima after having accepted a worse solution. When a
reset occurs, the best configuration seen thus far is reloaded, but the anneal schedule
continues without being reset. Instead of continuing along a worse path indefinitely,
the algorithm can reset to a better-known configuration and continue. The number of
iterations allowed before a reset is configurable—setting the number too low may ruin
the hill-climbing capabilities of the algorithm, but setting too high may result in longer
runtimes. The annealing process ends if 1,000 consecutive iterations do not improve
the configuration.

7. EXPERIMENTS
To evaluate placement based on graph embedding to accelerate physical model simu-
lation on FPGAs, we implemented a number of physical models of varying size on a
Xilinx XC6VSX475T-2ff1156 FPGA. The physical models include a Weibel lung that is
structured as a binary tree, a 1D neuron array, and a 2D grid of neurons. Each physical
model is implemented using both 256 and 500 PEs. We use Xilinx ISE 13.4 software to
synthesize and implement VHDL descriptions of the PE networks for all experiments.
Note that to implement the 10-generation Weibel model, we use 500 physical PEs.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

10:14 B. Miller et al.

Fig. 7. (a) Cost function correlates with resulting circuit frequency. (b) Comparison of random swaps to the
custom neighbor function (cost is equivalent at iteration 0). (c) Average effect of changing the number of
perturbations per iteration (runtime) on final cost. #Cx is the improvement over 1 perturbation/iteration.

Recall that the target platform is constrained to 504 physical PEs. We fold the Weibel
model to a structured virtual PE graph of 512 nodes and then manually merge a few of
the leaves until the size constraint is met. The alternative would have been to continue
folding the structured virtual PE graph until the size constraint is met, which would
result in 256 virtual PEs, leaving around 50% of the available resources unused.

For each physical model, we implemented three methods of placement for the PE net-
works. The first method utilizes the compiler from previous work to partition the phys-
ical model equations to PEs and generate a custom communication network [Huang
et al. 2012]; no constraints are used to map the PEs to specific physical PE regions, and
we rely on the Xilinx tools to place and route PEs onto the target platform. The second
method first creates a structured graph of virtual PEs, folds it to fit FPGA platform con-
straints, and then utilizes the simulated annealing approach of Section 6 to map virtual
PEs to physical regions; as discussed previously, we utilize a geometric cooling schedule
and run the annealing using λ = 0.5 and an initial temperature acceptance ratio of 0.9.
The third method creates a structured virtual PE graph of the physical model, folds
it to fit the FPGA target platform size constraint, and then places the physical model
using a topology-specific graph embedding algorithm. The Weibel model uses an H-tree
graph embedding as described earlier. The 1D neuron model is a linear array of 6,400
neurons, thus the graph embedding that is used places PEs into rows and connects the
rows at the edges to form a Hamiltonian path among all PEs. The 2D neuron model
consists of a 2D 64 × 64 mesh of neurons, where each neuron is connected to at most
four neighbors. The embedding for the 2D neuron model is a direct mapping onto the
2D grid of physical PE regions after the original physical model is folded.

7.1. Results
Figure 8 shows the resulting circuit frequencies of implementing PE networks on an
FPGA with the four different techniques. The first and second columns use the equation
partitioning performed by the PE network compiler. The third and fourth columns use

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

Placement of PE Networks on FPGAs 10:15

Fig. 8. Frequencies of PE networks. Missing results could not be implemented by Xilinx ISE.

a partitioning based on the structure of the model, and the corresponding graphs were
folded to meet target platform constraints.

The first columns do not use physical placement constraints. These data points rep-
resent the ability of Xilinx ISE to place and route the PE network compiler-generated
circuit without any guidance. The second columns use the same RTL as the first but
with placement constraints generated via simulated annealing that map virtual PEs
to physical PE regions. The difference between the two columns in each case show that
applying placement constraints through an automated simulated annealing process
can provide some marginal improvement and is even able to route a network that
Xilinx was unable to do without constraints.

The third and fourth columns use a partitioning of equations based on the model’s
structure. The third column uses simulated annealing and the fourth column uses a
topology-specific graph embedding algorithm to generate the placement. The graph
embedding approach is almost always able to produce a circuit that tops 300MHz. The
ceiling for the circuit frequency in a PE network is approximately 310MHz for the
selected platform. We determined the ceiling by placing and routing a circuit with a
single PE and evaluating the critical path of the internal datapath. It is not possible for
a network of PEs to operate faster than the ceiling, and any decrease in performance
can be attributed to critical paths introduced by inter-PE connections. The graph em-
bedding approach is typically able to minimize the critical path length and provide
placements that allow the circuit to approach the ceiling. The only embedding example
that could not reach the ceiling of 310MHz is the 10-generation Weibel lung model
using 500 PEs. Because the 2D grid of the physical PE regions is narrow, an optimal
embedding of the tree cannot occur. Wire lengths between successive generations are
longer, resulting in longer critical path delays.

Missing columns indicate that the Xilinx tools were not able to place and route
the design due to high congestion. The compiler that partitioned the equations and
created the communication network could not sufficiently reduce the data dependencies
between PEs for these large physical models, resulting in an overwhelming number of
wires in the network. Note that these designs are routable if we use either a topology-
specific simulated annealing or graph embedding approach.

7.2. A Look Inside the FPGA
Figure 9 depicts the placement of the first few generations of a nine-generation Weibel
model on 256 PEs, as captured by the Xilinx PlanAhead tool. An overlay of nodes and

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

10:16 B. Miller et al.

Fig. 9. Different placements of a 256 PE Weibel lung model. (a) Unconstrained placement of PEs performed
by Xilinx ISE; (b) Simulated annealing; (c) Graph embedding.

connections shows where virtual PEs have been mapped onto the FPGA. Figure 9(a)
shows how Xilinx ISE implements the PE network in the absence of additional con-
straints that map to specific physical regions. Due to the complexity of the circuit, the
resources of a single PE can be spread over a wide area; thus, we have marked only
the approximate central location of the first four generations of the left subtree of the
graph. Note that if we do not specify placement constraints, the tool places PEs at sub-
optimal locations, yielding potentially long wire distances between PEs. For example,
the wires between node two and its children five and six span more than halfway across
the entire design.

Figure 9(b) depicts the placement produced by the simulated annealing algorithm.
Each black block indicates a virtual PE that has been mapped to a physical PE location.
An empty space is a physical PE region onto which no virtual PE was mapped. As a
consequence of simulated annealing, nodes that share connections tend to be grouped
together, whereas the overall tree tends to expand outward from the center of the grid
toward leaf nodes grouped on the perimeter.

Figure 9(c) shows the tree embedded in the host grid using a topology-specific al-
gorithm. The center of many common (Xilinx) FPGAs contains immutable logic, and
minimization of the routing across the center is desired. This embedding requires a
single wire across the gap, at the second generation of the tree.

We also measured the static and dynamic power of each case using the Xilinx XPower
Analyzer. The unconstrained placement uses approximately 20% less absolute dynamic
power on average than both the simulated annealing and embedding constrained
placement approaches. The Xilinx ISE options for power reduction during circuit
implementation were disabled for every reported experiment, thus timing is the driving
optimization goal.

8. PLACEMENT OF NONSTRUCTURED PHYSICAL MODELS
Thus far, the experimental evaluation has been limited to structured physical models
with topologies for which embedding algorithms are known. For example, the H-tree
embedding for binary trees is not immediately translatable to assymmetric trees, which
are representative of lung blood circulatory models [Horsfield et al. 1982; Gabryś et al.
2005]. Furthermore, some physical models are fully irregular. For example, a spiking
neural network model, which simulates a human brain cortical network, consists of in-
terconnected groups of neurons with statistically generated connectivity [Nageswaran
et al. 2009]. Such models result in random, commonly nonplanar graph structures that
make embedding difficult, if not impossible. Furthermore, if the structure is not clear,
then a structured virtual PE graph cannot be created. We refer to models that are not
easily embedded into the 2D FPGA host grid as nonstructured models.

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

Placement of PE Networks on FPGAs 10:17

Simulated annealing can generate placement constraints for nonstructured models,
thereby improving circuitry frequency compared to placement using commercial tools
with unconstrained placement. In this section, we describe improvements to the simu-
lated annealing algorithm that provide better solutions with increased clock frequency
for unstructured models.

8.1. Using Graph Drawing Algorithms to Generate Initial Placement
As described previously, our simulated annealing placer uses a randomly generated
initial placement as an initial solution. To improve the overall quality of results, we
introduce a heuristic to generate a lower cost initial solution compared to a random
placement. One of the benefits of simulated annealing algorithms is that good solu-
tions can be found even from random, high entropy initial configurations. However, by
starting with a good placement that is assumed to be close to an approximately global
optimal solution, the annealing process can focus on performing target-specific opti-
mizations and find a good solution in less time. Decades of research into graph drawing
techniques has produced algorithms that attempt to minimize edge distances, edge in-
tersections, and the area of drawing size [Fruchterman et al. 1991]. Such techiques can
be leveraged to generate an initial layout of network PEs on the FPGA’s 2D grid, which
has substantially less cost compared to a random initial layout. Previous research has
shown that, on average, a better-than-random starting solution can yield better final
solutions [Johnson et al. 1989].

We extended our previously introduced PE network compiler to use graph drawing
algorithms to generate an initial placement. The approach uses the graph drawing
and visualization tools Graphviz and/or Tulip to generate a layout of an existing,
possibly folded, virtual PE network. Graphviz and Tulip are freely available open
source projects. Given a DOT-formatted input file that describes the nodes (PEs) and
edges (wires) of the graph, the output of a graph drawing tool is the virtual PE network
with X, Y coordinates assigned to each node. The placed graph is then transposed
onto the FPGA 2D grid by normalizing the aspect ratio of the graph with that of the
grid. Graph nodes are placed onto physical PE regions based on their normalized X,
Y coordinates from the placed graph output of Graphviz. Figure 10(a) illustrates the
process of mapping Graphviz output to the FPGA.

The result of the initial mapping may be an invalid configuration, which may occur if
more than one virtual PE is mapped to the same physical PE region. The normalization
process shrinks a graph layout down to fit the FPGA; sometimes, several virtual PEs
may overlap. In such scenarios, a process, shown in Figure 10(b), can legalize the
configuration. Our solution evaluates each physical PE region in turn to determine
if it contains multiple virtual PEs. If so, then all but one must be relocated to empty
physical PE regions. Ideally, they will be relocated to nearby empty regions to maintain
the placement generated by the drawing algorithm as much as possible. Our approach
is to search an expanding radius of neighbor regions until an empty region is found.
Neighbors with a distance of 1 are searched first (shaded lightly in Figure 10(b)), then
a distance of 2 (dark shading), and so forth. Thus, overlapping virtual PEs are moved
a minimum distance from their original location, and an empty region is guaranteed
to be found, provided that num_PEs < = num_regions. Other approaches besides the
presented greedy algorithm are possible.

8.2. Graph Drawing Algorithms
Many graph drawing algorithms exist, and each may produce a different layout of the
same graph. Various categories of graph drawing algorithms exist, including force-
directed, orthogonal or planar, layered, and tree layout strategies.

As shown in Figure 11, different graph drawing algorithms give different layouts.
Force-based algorithms, like neato and Frutcherman-Reingold, give reasonable layouts

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

10:18 B. Miller et al.

Fig. 10. (a) Using Graphviz to generate an initial layout of a non-structured graph, and (b) creating a valid
configuration by moving overlapping virtual PEs to empty physical PE regions by checking increasingly
distant neighboring regions.

Fig. 11. Result of applying two different graph drawing algorithms to the same graph.

for almost any model. Such algorithms utilize their own heuristics to converge on a
good solution that may not be optimal but will at least be within some local minima
with reduced edge lengths and better layout than a random approach.

In contrast to force-based drawing algorithms, other algorithms are specific to certain
structures or graph types. Heirarchical and tree-based algorithms perform best if the
model has a specific structure that matches the algorithm. Often, such algorithms work
only on graphs of a specific structure; for example, a tree drawing algorithm may fail
when trying to draw a graph with cycles.

8.3. Placement Using Graph Drawing Evaluation
Table I shows initial and final costs of five different graph drawing algorithms ap-
plied to structured and nonstructured models. The cost is calculated by the equation
presented in Section 6, which considers the wire length total, critical path, and archi-
tectural features of the target platform (Xilinx Virtex 6). We implement and compare
the force-based algorithms neato, fdp, and Frutcherman-Reingold (FR); the heirarchi-
cal algorithm Sugiyama (Sg); and the radial layout algorithm circo. Each reported

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

Placement of PE Networks on FPGAs 10:19

Table I. Initial and Final Cost of Various Graph Drawing Algorithms for Both Structured and Unstructured Models
Initial cost is based on the drawing algorithm output. Final cost is calculated after mapping PEs to physical regions
using simulated annealing, with the drawing algorithm output as the initial configuration. “N/A” means that the
graph drawing algorithm could not produce a layout.

Structure
(No. of PEs) Initial Cost Final Cost after Simulated Annealing
Drawing rand neato fdp FR Sg circo rand neato fdp FR Sg circo
algorithm Structured graphs
bitree(255) 11500 1433 1128 1389 20256 4847 1028 944 920 1052 9028 990
bitree(500) 19496 9005 8073 10282 11782 9006 1917 1702 1606 2848 2455 1746
linear(256) 10335 899 1045 1280 1785 2529 861 704 759 1019 905 837
linear(500) 19366 6047 8278 8415 4784 8157 1600 1355 1366 2651 1582 1319
mesh(256) 29832 8386 8466 9082 19496 18204 8778 7728 7715 8329 9996 8629
mesh(500) 96K 73K 69K 67K N/A 65K 63K 61K 58K 60K N/A 63K

Unstructured graphs
a_tree(500) 19806 6836 9242 7833 13079 5931 2697 1981 2423 2353 2664 1875
noStrc(300) 9440 2329 2379 2490 3854 5249 2290 1950 1905 2060 2153 2117
noStrc(500) 13135 6454 6124 7574 8007 5355 3346 2713 2865 2923 3500 2894
Avg. impr. over
random (X)

– 4.31 4.22 3.70 2.40 2.41 – 1.17 1.14 0.95 0.85 1.12

result is the average of five simulated annealing runs for each configuration. We estab-
lish initial temperatures using an acceptance ratio of 0.9, although a lower acceptance
ratio might better preserve the initial placement seed yielded by the graph drawing
algorithm.

Runtimes of the simulated annealing algorithm vary with network size and connec-
tivity. The minimum runtime was 36 seconds for the 256 PE binary tree model; the
maximum was about 6 minutes for the 2D neuron model. The runtime of the Xilinx
tools is not affected by the placement constraints, requiring 1 to 3 hours depending on
the model. In contrast, implementing an embedding algorithm can take hours to days
depending on the complexity of the structure. The simulated annealing approach thus
provides a faster and more generalized method for creating faster circuits automati-
cally without requiring structure-specific implementations.

Every drawing algorithm, except for the heirarchical algorithm Sugiyama (Sg), pro-
duces a layout with lower cost than a random mapping. Sugiyama creates very wide
layouts with large aspect ratios with most nodes at the bottom, which makes for poor
starting points to the annealing process.

The force-based algorithms neato and fdp generate the best initial layouts, reducing
the initial cost compared to random by an average of 4.31× and 4.22×. In two cases,
circo produces the best initial layout. Circo produces layouts similar to H-tree embed-
ding for tree-like acyclic graphs. The PE network compiler may generate networks
that recapture some of the tree structure of the original model, thus the initial layout
resembles an H-tree.

The higher-quality initial layouts that are generated by drawing algorithms result
in a lower final costs on average for the neato, fdp, and circo algorithms. The fdp and
neato algorithms produce final costs that, on average, are 17% and 14% lower.

The placement constraints generated by the best-performing drawing algorithm for
each model were used during an implementation of the circuit; the results are reported
in Figure 12. The first three columns do not use a graph folding technique to cap-
ture the model structure. Instead, a PE network compiler produced the architecture.
In contrast, the topology-specific columns had equations partitioned according to the
model structure, which typically reduces the number of wires in the circuit and re-
sults in less congestion during place and route. The embedding approach achieves
close to optimal implementations because the embedding placement migrates the

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

10:20 B. Miller et al.

Fig. 12. Frequency of FPGA circuits for various models and techniques. Missing results could either not be
routed by Xilinx ISE or are not applicable (e.g., topology-specific results for unstructured models).

critical path from intranetwork PE-to-PE communication channels to intra-PE logic.
The three right-most models, which are nonstructured models (asymetrical tree counts
as nonstructured because there is no simple embedding), lack folded or embedded
results because such models cannot use those approaches. The largest model, neu-
ron2d(500), could not not be implemented by any unfolded approach due to the high
number of wires in the design. The neuron2d(256) results could only be routed if place-
ment constraints were used. In some cases where the connectivity of the network is
low, Xilinx is able to perform place and route effectively without placement constraints.
The described approaches have the most benefit for larger, more connected structures.

The third column in Figure 12 shows the frequency of the circuit when using the
graph drawing algorithm approach on an unfolded graph. The second column shows a
random initial layout approach. Comparing these two results for each model yields the
improvement in circuit frequency due to better initial placement using graph draw-
ing algorithms, which is an average of 9% higher frequency. The left-most columns
show no placement constraints. Comparing “No physical placements constraints” with
“Unfolded SA w/graph initial placement” yields a 13% average improvement in circuit
frequency due to placement constraints and initial graph drawing layouts, even when
not considering model-specific structure.

9. CONCLUSION
We have presented an approach for fast physical model simulation on FPGAs that
makes use of the physical model’s structure to improve performance. The first phase
of the approach maps physical model equations to a structured virtual PE graph and
groups related equations. The second phase of the approach maps the structured virtual
PE graph to a 2D grid of FPGA physical regions by using either a graph embedding
or a simulated annealing technique. For models with an embeddable structure, the
graph embedding and simulated annealing techniques provide 25% and 13% average
improvements in circuit frequencies compared to placements that do not map to spe-
cific physical regions. Additionally, some complex circuits that could not previously be
implemented without placement constraints are made routable. Nonstructured models
can also utilize the simulated annealing approach to generate placement constraints
and achieve better timing. We also introduced a technique that utilizes graph draw-
ing algorithms to generate the initial annealing placement. Utilizing only the graph

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

Placement of PE Networks on FPGAs 10:21

drawing and simulated annealing approach without considering model structure yields
an average of 13% improvement in circuit frequency. Future work includes examining
other embedded processing platforms to examine trade-offs among performance, cost,
power, and design time.

REFERENCES
Romas Aleliunas and Arnold Rosenberg. 1982. On embedding rectangular grids in square grids. IEEE

Transactions on Computers 31, 9, 907–913. DOI:http://dx.doi.org/10.1109/TC.1982.1676109
Pritha Banerjee, Susmita Sur-Kolay, Arijit Bishnu, Sandip Das, Subhas C. Nandy, and Subhasis Bhat-

tacharjee. 2009. FPGA placement using space-filling curves: Theory meets practice. ACM Transactions
on Embedded Computing Systems 9, 2, Article No. 12. DOI:http://doi.acm.org/10.1145/1596543.1596546

Francine Berman and Lawrence Snyder. 1987. On mapping parallel algorithms into parallel architec-
tures. Journal of Parallel and Distributed Computing 4, 5, 439–458. DOI:http://dx.doi.org/10.1016/0743–
7315(87)90018–9

Abhinav Bhatelé and Laxmikant V. Kalé. 2008. Benefits of topology aware mapping for mesh interconnects.
Parallel Processing Letters 18, 4, 549–566.

Shahid H. Bokhari. 1981. On the mapping problem. IEEE Transactions on Computers 30, 3, 207–214.
Woei-Kae Chen and Matthias F. M. Stallmann. 1995. On embedding binary trees into hypercubes. Journal

of Parallel and Distributed Computing 24, 2, 132–138. DOI:http://dx.doi.org/10.1006/jpdc.1995.1013
John A. Ellis. 1991. Embedding rectangular grids into square grids. IEEE Transactions on Computers 40, 1,

46–52.
Thomas MJ Fruchterman and Edward M. Reingold. 1991. Graph drawing by force-directed placement.

Software: Practice and Experience 21, 11, 1129–1164.
Elżbieta Gabryś, Marek Rybaczuk, and Alicja Kędzia. 2005. Fractal models of circulatory system. Symmet-

rical and asymmetrical approach comparison. Chaos, Solitons & Fractals 24, 3, 707–715.
Padmini Gopalakrishnan, Xin Li, and Lawrence Pileggi. 2006. Architecture-aware FPGA placement using

metric embedding. In Proceedings of the 43rd Annual Design Automation Conference (DAC’06). ACM,
New York, NY, 460–465. DOI:http://doi.acm.org/10.1145/1146909.1147033

Keith Horsfield, Wendy Kemp, and Sally Phillips. 1982. An asymmetrical model of the airways of the dog
lung. Journal of Applied Physiology 52, 1, 21–26.

Chen Huang, Bailey Miller, Frank Vahid, and Tony Givargis. 2012. Synthesis of custom networks of het-
erogeneous processing elements for complex physical system emulation. In Proceedings of the 8th
IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis
(CODES+ISSS’12). ACM, New York, NY, 215–224. DOI:http://doi.acm.org/10.1145/2380445.2380483

Chen Huang, Frank Vahid, and Tony Givargis. 2011. A custom FPGA processor for physical model ordinary
differential equation solving. IEEE Embedded Systems Letters 3, 4, 113–116.

David S. Johnson, Cecilia R. Aragon, Lyle A. McGeoch, and Catherine Schevon. 1989. Optimization by
simulated annealing: An experimental evaluation. Part I: Graph partitioning. Operations Research 37,
6, 865–892.

Alexander Marquardt, Vaughn Betz, and Jonathan Rose. 2000. Timing-driven placement for FPGAs. In
Proceedings of the ACM/SIGDA 8th International Symposium on Field Programmable Gate Arrays
(FPGA’00). ACM, New York, NY, 203–213. DOI:http://doi.acm.org/10.1145/329166.329208

Sang-Kyu Lee and Hyeong-Ah Choi. 1996. Embedding of complete binary trees into meshes with
row-column routing. IEEE Transactions on Parallel and Distributed Systems 7, 5, 493–497.
DOI:http://dx.doi.org/10.1109/71.503774

Bailey Miller, Frank Vahid, and Tony Givargis. 2012. Digital mockups for the testing of a medical ventilator.
In Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium (IHI’12). ACM,
New York, NY, 859–862. DOI:http://doi.acm.org/10.1145/2110363.2110473

Bailey Miller, Frank Vahid, and Tony Givargis. 2013. Embedding-based placement of processing element
networks on FPGAs for physical model simulation. In Proceedings of the ACM/SIGDA International
Symposium on Field Programmable Gate Arrays (FPGA’13). ACM, New York, NY, 181–190.

Erdem Motuk, Roger Woods, and Stefan Bilbao. 2005. Implementation of finite difference schemes for
the wave equation on FPGA. In Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP’05). IEEE, Los Alamitos, CA, 237–240. DOI:http://dx.doi.org/
10.1109/ICASSP.2005.1415690

Jayram Moorkanikara Nageswaran, Nikil Dutt, Jeffrey L. Krichmar, Alex Nicolau, and Alexander V.
Veidenbaum. 2009. A configurable simulation environment for the efficient simulation of large-scale

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

10:22 B. Miller et al.

spiking neural networks on graphics processors. Neural Networks 22, 5, 791–800. DOI:http://dx.doi.org/
10.1016/j.neunet.2009.06.028

Yaghout Nourani and Bjarne Andresen. 1998. A comparison of simulated annealing cooling strategies.
Journal of Physics A: Mathematical and General 31, 41, 8373–8385.

Julio C. G. De Pimentel, and Y. G. Tirat-Gefen. 2006. Hardware acceleration for real time simulation of
physiological systems. In Proceedings of the 28th Annual International Conference of the IEEE Engi-
neering in Medicine and Biology Society (EMBS’06). IEEE, Los Alamitos, CA, 218–223. DOI:10.1109/
IEMBS.2006.260298

Satnam Singh. 2011. The RLOC is dead—long live the RLOC. In Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays (FPGA’11). ACM, New York, NY, 185–
188.

Kozo Sugiyama, Shojiro Tagawa, and Mitsuhiko Toda. 1981. Methods for visual understanding of hi-
erarchical system structures. IEEE Systems, Man, and Cybernetics 11, 2, 109–125. DOI:10.1109/
TSMC.1981.4308636

Ilias Tagkopoulos, Charles Zukowski, German Cavelier, and Dimitris Anastassiou. 2003. A custom FPGA for
the simulation of gene regulatory networks. In Proceedings of the 13th ACM Great Lakes Symposium on
VLSI (GLSVLSI’03). ACM, New York, NY, 132–135. DOI:http://doi.acm.org/10.1145/764808.764843

David Terman, Sungwoo Ahn, Xueying Wang, and Winfried Just. 2008. Reducing neuronal networks to
discrete dynamics. Physica D: Nonlinear Phenomena 237, 3, 324–338.

Jeffrey D. Ullman. 1984. Computational Aspects of VLSI. W. H. Freeman & Co., New York, NY.
Stuart Ullman and Bhagirath Narahari. 1990. Mapping binary precedence trees to hypercubes and

meshes. In Proceedings of the 2nd IEEE Symposium on Parallel and Distributed Processing. 838–841.
DOI:10.1109/SPDP.1990.143655

Alan S. Wagner. 1990. Embedding All Binary Trees in the Hypercube. Technical Report. University of British
Columbia, Vancouver, BC, Canada.

Ewald Weibel. 1963. Morphometry of the Human Lung. Springer-Verlag, Berlin, Germany.
Xilinx Inc. 2010. Virtex-6 FPGA Routing Optimization Design Techniques. Retrieved Sept 1, 2013, from

http://www.xilinx.com/support/documentation/white_papers/wp381_V6_Routing_Optimization.pdf.
Henggui Zhang, Arun V. Holden, and Mark R. Boyett. 2001. Gradient model versus mosaic model of the

sinoatrial node. Circulation 103, 4, 584–588.

Received September 2013; revised January 2014; accepted February 2014

ACM Transactions on Reconfigurable Technology and Systems, Vol. 7, No. 4, Article 10, Publication date: December 2014.

