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ABSTRACT 
In this paper we outline the Adaptive Resource Allocation 
Protocol (ARAP) as an improved resource synchronization 
algorithm for hierarchically scheduled real-time systems. ARAP 
exploits knowledge about task utilization, using a proportional-
integral-derivative (PID) controller, to estimate required resource 
bandwidth and improve scheduling decisions. Our analysis and 
experiments with RTSIM show that ARAP provides better 
temporal isolation and resource utilization during periods of 
transient overload compared to state-of-the-art resource 
synchronization algorithms.  Implemented as part of VxWorks, the 
results are confirmed using an avionic system, for which ARAP 
substantially reduced the number of hard real-time deadline 
misses.1 
Categories and Subject Descriptors 
C.3 [Special-Purpose and Application-Based Systems]: Real-
Time and embedded systems. 

General Terms 
Algorithms, Performance, Reliability.  

Keywords 
Real-time systems, hierarchical scheduling, resource sharing, 
operating systems. 

1. INTRODUCTION 
Modern embedded and Cyber Physical Systems such as smart 
cities, autonomous automotive systems or the smart electrical grid 
are composed of various subsystems which are often developed 
independently. A common requirement for such systems is 
temporal isolation, meaning that the temporal behavior of one 
subsystem should never adversely affect the temporal behavior of 
another subsystem. 
This requirement for temporal isolation is challenged by two 
major properties we address in this paper. First, the amount of 
data and resulting computation times may vary significantly. Such 
variations are not easy to predict neither in their magnitude nor 
their duration.  The second challenge is that the temporal behavior 
of the subsystems is often influenced by resources which are 
shared among tasks. For instance, if an interface to a sensor 
device is locked by a task in one subsystem the temporal isolation 
of other subsystems requiring access to the sensor could be 
violated. 
To address these challenges a variety of solutions have been 
proposed. The most common approach is “over-engineering.” 
Historically, systems were designed and considered “safe” with a 
utilization factor U of less than 70% [18], while systems with a 
higher utilization were deemed “unsafe”. Traditional resource 
access protocols, such as Priority Inheritance Protocol (PIP) [4], 
the Priority Ceiling Protocol (PCP) [4] or the Stack Resource 

                                                                 
1 EWiLi’14, November 2014, Lisbon, Portugal. Copyright 

retained by the authors. 

Policy (SRP) [5] are not a viable solution either because there is 
no system wide visibility across subsystems. To cope with these 
issues, the Hierarchical Scheduling Framework (HSF) has been 
introduced to simplify the development and integration of 
embedded systems and shown to be particularly useful in the area 
of open systems [1]. 
The primary goal of hierarchical scheduling is to bind the 
temporal behavior of those applications whose execution times 
deviate considerably, allowing for the predictable integration of 
the various subsystems. However, in order to provide this 
temporal isolation the basic HSF model assumes the absence of 
shared resources. The problem with this assumption is that most 
embedded systems share global resources and need to be 
synchronized. While traditional resource access protocols can be 
used to synchronize resources locally, within a subsystem, global 
resource access presents added challenges such as the 
unpredictable holding times between globally shared resources. 
In this paper we present the Adaptive Resource Allocation 
Protocol (ARAP) which is a new resource synchronization policy 
for globally shared resources in an HSF, focused in a single 
processor environment. ARAP utilizes knowledge about previous 
task utilization, by applying the concept of control theory using a 
proportional-integral-derivative (PID) controller, to adapt to 
changes in the system. The primary benefit of this new strategy is 
that the system can now adapt to computational changes 
dynamically. The result being that temporal isolation is 
maintained between subsystems even during periods of overload. 
We applied ARAP in an actual embedded system that was 
experiencing overload conditions resulting in missed deadlines 
due to soft and hard real-time tasks sharing the same resource. 
Our experiments demonstrated the benefit of ARAP specifically 
during overload conditions and as a result deadline misses for 
hard real-time tasks were eliminated. Other contributions of this 
paper include: the performance analysis of ARAP as compared to 
other synchronization protocols, the ARAP protocol implemented 
as part of the resource manager class in an open source real-time 
scheduling simulator, a simulation model of transient overload 
conditions for performance analysis and the first time 
implementation (to the best of our knowledge) of an HSF as part 
of the VxWorks real-time operating system.    
The remainder of the paper is structured as follows: In Section 2 
we provide an overview of hierarchical scheduling. Related work 
is reviewed in Section 3 while Section 4 presents the adaptive 
resource access mechanism used in our protocol. Performance 
analysis and results are provided in Section 5. Section 6 describes 
the simulation environment and Section 7 presents the 
implementation in an actual embedded system application. 

2. PRELIMINARIES 
This section presents the overall architecture of a hierarchical 
scheduled system as well as the definition of a system overload 
condition. 
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2.1 Hierarchical Scheduling 
The basic framework of a hierarchically scheduled system [2] [3] 
is composed of multiple applications (subsystems) where each 
application could be composed of multiple tasks (see Figure 1). A 
global scheduler controls which application can use the processor 
while the local scheduler determines which application’s task 
should actually execute. Every application is allocated a separate 
service manager, known as the server. Each server is allocated a 
CPU capacity reserve, which is assigned as a pair         where 
   is defined as the time quantum and    is defined as the period. 

 
Figure 1: Hierarchical Scheduling Framework 
Each task gets to execute for its assigned time quantum   , when 
the task’s time quantum    is exhausted the task is blocked until 
its next period. In effect, the server functions as an independent 
processor virtually limiting the bandwidth of each application. 

2.2 Resource Sharing 
Resource sharing in an HSF can be classified as either local or 
global. Tasks that share resources within the same subsystem are 
considered local resource sharing. Tasks that share resource 
across applications are classified as global resource sharing which 
requires the resource be protected at the local as well as global 
level. Therefore a task that locks a global resource will also cause 
its server to lock the resource. This creates an added complication 
of increased resource holding times due to the server budget 
exhaustion.  
Researchers have proposed several solutions [8][6] to the problem 
of this added delay in critical sections due to server budget 
exhaustion. One such approach called budget check checks to see 
if there is sufficient server budget before allowing a task to enter a 
critical section. If the budget is insufficient the task is not granted 
access to the resource until the next budget replenishment. In 
another approach the task is allowed to enter a critical section 
without checking for a sufficient budget. As a result, if the budget 
is exhausted while still inside the critical section the task is just 
allowed to continue and consume extra budget until the end of the 
critical section.  

2.3 Overload Conditions 
The problem of server budget exhaustion while a task is inside a 
critical section can be amplified during periods of overload 
because it could unnecessarily increase the time a critical task 
would have to wait for the resource. As a consequence, task 
overruns can result because tasks execute longer than expected 
which can have an increasingly negative impact on resource 
holding times. Thus, before we proceed any further, we will take 
the time to provide a brief definition of an overload condition. 

Overall system load is defined in [18] as the equivalent to the 
processor utilization factor U: 

         
  

 
     (1) 

where    is the computational time and    is the task period. A 
load value of      means the system is overloaded (requested 
computation time exceeds the available processor time). 
Consequently, there are two broad classifications of overload 
conditions also defined by the authors in [18]: 
1. Transient overload is defined for a limited time where the 

average load is        but the maximum load is       . 
2. Permanent overload is defined for an unpredictable duration 

where the average load is       . 
It is important to note that in this paper our approach was to only 
consider transient overload conditions. As a result, the primary 
benchmark of our work is to practically eliminate hard real-time 
task deadline misses and manage  soft real-time task misses so 
that the system can recover gracefully from an occasional 
transient overload condition. 

3. RELATED WORK 
Initially an HSF was proposed by authors in [3][9] as a means to 
perform composability analysis for open systems development. 
The motivation being that it can quickly become intractable to 
accurately verify the timing behavior of the embedded system as 
the complexity increases. The approach was to verify the timing 
behavior of each individual subsystem independently then 
compose each subsystem into the overall system. However, 
typical embedded systems are not entirely independent because 
subsystems may need to share resources which are why previous 
research on HSFs was extended to include schedulability analysis 
of semi-independent real-time components [8] [5].   
The SIRAP [8] protocol was developed for fixed-priority 
preemptive scheduling while the BROE [10] protocol was 
developed for dynamic-priority scheduling. Both protocols use a 
form of budget check to determine if there was enough budget left 
to enter the critical section. If the remaining budget was deficient 
to complete the critical section the task was blocked from locking 
the resource until the next budget replenishment. The limitation 
with the budget check approach is that the critical section 
execution time is based upon worst-case analysis. This could lead 
to resource under utilization due to conservative WCET 
estimations. Additionally, a priori knowledge of the WCET for a 
critical section is required which is often difficult to evaluate in 
applications with variable execution times. 
Hierarchical scheduling with resource sharing HSRP [2] and later 
extended to OPEN-HSRP [10] utilized a budget overrun approach 
to reduce the resource holding times during budget expiration. 
While this approach does provide better flexibility for applications 
with variable execution times there are some disadvantages. One 
such drawback is that even though a task is allowed to overrun its 
budget there still has to be a limit placed upon the maximum 
overrun time. In order to prevent unbounded blocking a task is 
forcefully preempted if it is still holding the resource during the 
next budget replenishment. This leads to limitations being placed 
upon the types of shared resources used to those that can safely be 
aborted to relatively short critical section execution times. 
Another consideration is because a task can overrun its budget the 
strict temporal isolation between subsystems could be violated. It 
is for these reasons that HSRP based systems are typically only 
used for soft real-time systems. 
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Other recently published work, known as RRP [11], took a 
different approach to resource locking before budget exhaustion. 
Instead of performing a budget check the task is allowed to enter 
the critical section and unlike HSRP if the budget has expired the 
task is simply preempted and rolled back. The RRP protocol 
improved the average case response times and task schedulability 
compared to SIRAP and the OPEN-HSRP protocols. However, 
the limitation with RRP is that it can only be used with shared 
resources that can be safely rolled back (e.g. databases).  
Our approach does not rely on WCET analysis of critical section 
executions times but instead uses feedback which is more flexible 
since it represents the actual operating environment. Previous 
research has proposed using feedback to manage CPU scheduling 
reservations [12] [13] then extended it to include application 
defined Quality of Service (QoS) parameters. However, ARAP is 
the first to apply a feedback mechanism to resources that are 
shared across subsystems in a hierarchically scheduled system. 
Past research has demonstrated [14][15] that previous task 
behavior is a valid indicator for future task behavior and because 
our method incorporates feedback ARAP is better positioned to 
respond to transient overload conditions. Consequently, SIRAP is 
too conservative by using static WCET analysis while OPEN-
HSRP overrun mechanisms could affect the deadlines of higher 
priority tasks specifically during periods of transient overload. 

4. ADAPTIVE RESOURCE ACCESS 
PROTOCOL (ARAP) 
This section provides an overview of ARAP which is a resource 
access protocol that synchronizes access to shared resources in a 
hierarchically scheduled system. In this paper we only consider 
shared memory as the mutually exclusive resource. However, 
ARAP could also be extended to include other shared resources 
(e.g. memory-mapped areas, device registers, and peripheral 
devices) as well. The access to these resources are performed as 
part of a critical section and protected by a semaphore. 

4.1 Protocol Description 
Similar to the SIRAP and OPEN-HSRP protocols ARAP utilizes a 
two-level hierarchy for resource management. Resources that are 
shared within a subsystem are managed with SRP and resources 
that are shared across subsystems are managed with an extended 
version of HSRP. The overall sequence of actions for ARAP is 
provided by the flowchart depicted in Figure 2. 

 
Figure 2: ARAP architecture flowchart 

4.1.1 Budget Exhaustion 
The primary difference between the various resource access 
protocols in an HSF is how the budget exhaustion of a 
subsystem’s server is handled. As mentioned in Section 3 the 
SIRAP protocol performs a budget check while OPEN-HSRP 
permits budget overflow. Similar to the SIRAP protocol our 
method also performs a form of budget check. However, instead 
of using a static a-priori calculation of the Critical Section 
Execution Time (CSET) ARAP incorporates feedback to estimate 
the next resource holding time      for that critical section 
execution instance.  
The primary benefit of incorporating feedback is that the system 
can dynamically adapt to changes in CSET specifically during 
periods of transient overload. In this situation the SIRAP protocol 
tends to be too conservative because with SIRAP the overload 
condition would have to be factored into the CSET calculation 
resulting in task under utilization. While the OPEN-HSRP 
protocol can better adapt to overload conditions the overrun 
mechanism could adversely affect the response times of higher 
priority tasks. Therefore, our approach leads to a more robust and 
better utilized system with a higher degree of determinism. 

4.1.2 Feedback Mechanism 
Our feedback architecture is implemented as part of the kernel 
(see Figure 3) and consists of a PID which is used to estimate the 
execution time for a task executing inside a critical section. The 
output or observed value of the PID is the estimated error ratio 
(ER) which is defined as the ratio between the actual measured 
critical section execution time and the previous window of past 
error ratios. The semaphore request mechanism is used as the 
actuator of the system determining whether a task is granted 
access to the critical section. The control action is performed by 
either allowing the task to acquire the semaphore or to block the 
task waiting on the semaphore. If a task    requests a semaphore 
(e.g. srp_wait ()) it has to pass the budget check test to acquire the 
semaphore. The budget check test uses information from the PID 
controller as well as information from the scheduler to determine 
if there is enough remaining budget to complete the critical 
section. To apply the feedback control ARAP uses the PID 
controller to compute       which is used to project the next 
critical section execution time based upon the ER. Using the basic 
form a general PID controller [19] defined as: 
         
                            

              
      (2) 

where   ,    and    are the PID control parameters, IW is the 
integration window and DW is the size of the differentiation 
interval. 

 
Figure 3: Structure of feedback architecture 

4.1.3 Implementation Considerations 
The implementation of ARAP is similar to SIRAP but the locking 
operations (srp_wait, and srp_signal) are modified to utilize the 
feedback mechanism. The locking operation is performed by the 
srp_wait function so when a task tries to acquire a resource the 
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local scheduler performs a check to determine if there is enough 
budget to complete the critical section. At the semaphore request 
time t let the function calcRHT(), which utilizes the PID 
controller, calculate the projected resource holding time so that  
               . At the same time let the function 
getCurBudget() get the subsystem server’s remaining budget such 
that    

                    . If the task’s projected resource 
holding time         

     then the task is allowed to lock the 
resource and execution continues according to the rules of HSRP. 
On the other hand, if          

  then the task is not permitted to 
lock the resource until the next subsystem budget replenishment, 
this is known as self-blocking. The release operation is performed 
by the srp_signal function which signifies the completion of the 
critical section. The time that is spent in the critical section is used 
as the feedback to the PID controller. At the semaphore release 
time t’ the function recordRHT(          records the actual time 
spent in the critical section. 

5. PERFORMANCE ANALYSIS  
This section provides the background for the performance analysis 
of ARAP as part of a hierarchically scheduled system (equations 
are applied in subsection 5.3). Given that both ARAP and SIRAP 
perform a budget check the analysis performed for SIRAP [8] can 
be applied to ARAP as well. The difference is that ARAP uses a 
projected CSET based upon feedback whereas SIRAP uses static 
a-priori CSET. 

5.1 Local Performance Analysis 
According to the authors in [7] each subsystem      is 
schedulable if  

                                      (3) 

where         is the supply bound function used by authors [8] to 
calculate the minimum CPU allocations required during an 
interval of time. Authors in [7] presented a periodic processor 
model to characterize the allocations defined by what they called 
the virtual processor model represented as       . The supply 
bound function (see Figure 4) of the virtual processor model is 
defined as: 

                                   

                                       
    (4) 

where                      and      is defined as the 
interval                     .  

 
Figure 4: Supply bound function virtual processor model 
T(3,2), k=3 
The request bound function          of a task    is defined as: 
                                     (5) 
where    is the WCET of task   ,       is the maximum self-
blocking for task   ,         is the interference from tasks with a 
higher priority than    and       is the maximum interference by 

tasks with lower priority than    which share a global resource, 
such that: 
            

 
     (6) 

            
  

          
 
       

     (7) 

                                     (8) 

The resource holding time      for    is defined as the maximum 
critical section execution      plus the interference from the tasks 
with a higher preemption level than the ceiling of the resource 
during the CSET of     . Such that      is computed using         
as follows: 
                 

  
   

 
                (9) 

where            is the ceiling of the resource accessed within the 
critical section      and       are the worst-case  execution time 
and period of the task that has a higher preemption level than 
          . The value u represents the maximum resource     
within a subsystem. 

5.2 Global Performance Analysis 
For global scheduling analysis the virtual processor model can be 
extended to a global model           where multiple subsystems 
   can be verified according to equation (3). Therefore, the 
schedulability test for a fixed priority global scheduler is defined 
as: 

                

  
    

         (10) 

where    of subsystem    is the maximum resource holding time 
with a preemption level less than   . 

5.3 Performance Results 
Schedulability analysis for HSRP was performed by authors in [2] 
which is very similar to the SIRAP analysis which excludes self-
blocking but has to consider the overrun mechanisms. Similar to 
SIRAP as well the analysis for OPEN-HSRP is extended from 
equation (3) as follows: 
                                     (11) 

where    is the maximum blocking time when    is blocked by a 
lower priority task. The supply bound function        is defined 
by equation (4) and the request bound function            is 
defined as follows: 

                  
  

             (12) 

where       is the set of tasks with priorities higher than   . The 
global schedulability is defined as: 
                          (13) 
where the load bound function         is defined as follows: 
               (14) 
where 
               

  
             (15) 

where        is the set of subsystems with a higher priority than 
subsystem    and    is the maximum time that    is blocked by 
lower priority subsystems. The performance of ARAP is 
evaluated as the minimum value of the request bound function 
         that would guarantee schedulability. For the synthetic 
workload we generated random variances of a hierarchical system 
consisting of 3 separate subsystems such that         . Each 
subsystem    consisted of 3 tasks with a global resource being 
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shared between each subsystem. Each subsystem has a total 
utilization of 15%. Task periods ranged between 100 and 1000. 
Figure 5 represents the overall task acceptance rate for the 
simulated task sets required for task schedulability as defined by 
equation (3).  Notice that ARAP has an improved acceptance rate 
over SIRAP. The reason for this improvement is that the WCET 
calculation for ARAP adapts to the current workload which 
provides greater flexibility than SIRAP’s static approach. 
Additionally, because ARAP is adaptable it is comparable to 
OPEN-HSRP but without the added complexity of managing the 
overruns of the OPEN-HSRP protocol. 

 
Figure 5: Task acceptance rate for simulated task sets 

6. SIMULATION ENVIRONMENT 
This section describes the simulation environment we used to 
further analyze ARAP which was implemented as a simulation 
component within RTSIM [16]. RTSIM (Real-Time System 
Simulator) is a task scheduler simulation and is used primarily for 
simulating real-time control systems. In order to implement 
ARAP in RTSIM we extended the existing resource manager 
class to include the feedback mechanisms.  

6.1 Modeling and PID Tuning 
A Heaviside step function was used to model the transient 
overload condition. Heaviside functions are used extensively in 
control theory to represent different loads. The discontinuous 
nature of this function maps nicely to an overload situation where 
we can model periods of nominal, ramp-up and ramp-down 
behaviors. The Ziegler-Nichols [17] tuning method was used to 
tune the feedback mechanism.  

6.2 Example Task Set 
The example task set consisted of a total of five periodic tasks, 
two hard real-time and three soft real-time tasks but only two 
tasks T3 and T5 shared a critical region and therefore were 
synchronized by a semaphore. For the two tasks (T3 and T5), that 
shared a semaphore, execution times were modeled to exceed 
their nominal rates. The Tasks T4 and T5 which represent hard 
real-time tasks were allowed to execute up to their predefined 
WCET while Task T3 was modeled to exceed its bandwidth, 
thereby generating a transient overload condition. 
In order to provide a comparison of ARAP we simulated both the 
traditional first-come-first-serve (FCFS) and OPEN-HSRP 
resource allocation protocols in RTSIM. One note; is that due to 
the simulated transient overload conditions of our scenario SIRAP 
was not included in the results because it was repeatedly denied 
access to the shared resource due to conservative nature of the 
protocol.   
We ran simulations using the task set defined above with the 
Heaviside function to simulate task execution times for analysis as 
to how well the ARAP protocol performed against EDF 
scheduling with FCFS resource allocation (no PIP) as well as EDF 

using resource sharing with budget overrun (OPEN-HSRP). We 
executed sample runs modeling transient overload conditions at 
0%, 5%, 10%, 15%, 20% and 25% respectively. The Figures 6 
and 7 separate out the miss rates between the hard and soft real 
time tasks. 

 
Figure 6: Hard Real-Time task miss rate (RTSIM) 

 
Figure 7: Soft Real-Time task miss rate (RTSIM) 
In the figures above EDF-FCFS represents EDF scheduling with 
standard first-come-first-serve resource management (no PIP), 
EDF-HSRP represents EDF scheduling with OPEN-HSRP 
resource management and EDF-ARAP represents EDF scheduling 
with PID feedback control. Depicted in Figure 6 the ARAP 
protocol outperforms the other methods while it sacrifices some 
deadline misses in soft real-time tasks. Notice that in Figure 6 
both scheduling mechanisms EDF-FCFS and EDF-HSRP exhibit 
hard real-time task misses. Even though EDF-HSRP manages the 
soft real-time tasks with a periodic server hard real-time task 
misses are realized because the overrun mechanism allows the 
task to continue, even though its server budget has been 
exhausted. In Figure 7 EDF-HSRP outperforms EDF-ARAP 
because the overrun mechanism allows the task to continue at the 
expense of hard real-time deadline misses. 

7. PRACTICAL EVALUATION 
To demonstrate the practicality of our approach we also 
implemented ARAP as part of a ground-based command and 
control test set used for satellite telemetry processing. A 
hardware-in-the-loop (HWIL) simulator was used to provide the 
workload for our system. This particular use case was chosen 
because telemetry processing times can vary considerably 
depending upon the data rate and how densely the telemetry frame 
is populated. In this way, we can use the HWIL simulator to 
generate transient overload conditions. 
The main software components of the system includes a hard real-
time periodic task that performs the frame processing of a 
telemetry stream. The other primary software component is a soft 
real-time task that provides the health and status monitoring for 
the vehicle. The telemetry processing task and the monitoring task 
both share a global resource which is the decommutated telemetry 
buffer. Similar to the simulation environment we used the HWIL 
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simulator to model transient overloads between 0%-25%. Two 
traditional resource synchronization protocols (PIP and FCFS) 
were used in the evaluation for comparison. 
The results for the overall deadline miss rates were separated out 
based upon soft and real-time tasks. Soft real-time tasks were 
scheduled by the local subsystem scheduler which is scheduled by 
the global fixed priority scheduler of VxWorks. Hard real-time 
tasks were scheduled directly by the global VxWorks scheduler. 
Soft real-time tasks were modeled to allow their execution time to 
exceed their budget while the hard real-time tasks were designed 
to not exceed their pre-defined utilization budget. 
Figures 8 and 9 show the miss rates of the hard real-time tasks and 
soft real-time tasks respectively. The feedback mechanism 
represented as FPPS-ARAP in the graph was compared against 
the priority inheritance protocol (FPPS-PIP) and the first-come-
first-server (FPPS-FCFS) protocol. Notice how even when using 
priority inheritance a lower priority task can still cause a higher 
priority task to miss their deadline. The reason is that while PIP 
does solve the priority inversion problem it does not solve the 
problem of unbounded blocking.   
As illustrated in Figure 8 ARAP does provide the mechanism for 
eliminating the extended blocking by a lower priority task 
however, the soft real-time task could be affected causing 
increased missed deadlines for the soft real-time task. Notice that 
in Figure 9 ARAP reports the highest number of deadline misses 
for soft real-time tasks. The reason for this behavior is that during 
a transient overload the task may be denied access to the resource 
and have to wait until the next budget replenishment period. As 
shown in the results using a feedback mechanism can directly 
benefit the determinism of a hard real-time at the possible expense 
of other soft real-time tasks that share the global resource.  

 
Figure 8: Hard Real-Time task miss rate (vxWorks) 

 
Figure 9: Soft Real-Time task miss rate (vxWorks) 

8. CONCLUSION 
In this paper we considered the problem of sharing global 
resources in a hierarchical scheduled system. Traditionally, HSF 
was designed for soft real-time applications, in part due to 
problem of unbounded resource holding times between global 
resources. Our approach which utilized feedback from the actual 
system to estimate future usage provided greater flexibility and 
allowed for the system to adapt to changes better than other state-

of-the-art synchronization protocols. By implementing ARAP as 
part of an actual embedded system application we were able to 
effectively eliminate deadline misses for a critical high priority 
task. Our motivation for this work stems for the aerospace 
industry where systems are routinely over engineered in the 
interest of real-time determinism. It is a common perception that 
an embedded system is considered “unsafe” above 70% total 
utilization. As a result of this work we demonstrated that we can 
build more efficient embedded systems by more effectively 
managing the tasks within that system and in doing so reducing 
the total number of processing elements required. 
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