
49

Component-Based Synthesis of Embedded Systems
Using Satisfiability Modulo Theories

STEFFEN PETER and TONY GIVARGIS, University of California, Irvine

Constraint programming solvers, such as Satisfiability Modulo Theory (SMT) solvers, are capable tools in
finding preferable configurations for embedded systems from large design spaces. However, constructing
SMT constraint programs is not trivial, in particular for complex systems that exhibit multiple viewpoints
and models. In this article we propose CoDeL: a component-based description language that allows system
designers to express components as reusable building blocks of the system with their parameterizable prop-
erties, models, and interconnectivity. Systems are synthesized by allocating, connecting, and parameterizing
the components to satisfy the requirements of an application. We present an algorithm that transforms
component-based design spaces, expressible in CoDeL, to an SMT program, which, solved by state-of-the-art
SMT solvers, determines the satisfiability of the synthesis problem, and delivers a correct-by-construction
system configuration. Evaluation results for use cases in the domain of scheduling and mapping of dis-
tributed real-time processes confirm, first, the performance gain of SMT compared to traditional design
space exploration approaches, second, the usability gains by expressing design problems in CoDeL, and
third, the capability of the CoDeL/SMT approach to support the design of embedded systems.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General; C.3 [Special-
Purpose and Application-based Systems]: Real-time and embedded systems; F.4.1 [Mathematical
Logic and Formal Languages]: Mathematical Logic; J.6 [Computer-Aided Engineering]: Computer-
Aided Design (CAD)

General Terms: Design

Additional Key Words and Phrases: Embedded systems, components, satisfiability modulo theory, design
space exploration, systems specification methodology, modeling

ACM Reference Format:
Steffen Peter and Tony Givargis. 2015. Component-based synthesis of embedded systems using satisfiability
modulo theories. ACM Trans. Des. Autom. Electron. Syst. 20, 4, Article 49 (September 2015), 27 pages.
DOI: http://dx.doi.org/10.1145/2746235

1. INTRODUCTION
The task of identifying suitable configurations from large design spaces has been a
challenging problem since the early days of embedded system design. The problem con-
tinues to grow in scope in today’s systems, as they grow in complexity and are embedded
into large-scale cyber and physical applications. The extended range of viewpoints and
models that have to be considered pose complex non-trivial trade-offs, dependencies
and constraints, which call for powerful tools and strategies to explore the design
spaces, searching for valid system designs.

A plethora of approaches have been proposed to explore the design spaces of em-
bedded and cyber-physical systems [Gries 2004; Neema et al. 2014]. While many

This work was supported in part by the National Science Foundation under NSF grant number 1136146.
Author’s address: Steffen Peter, email: st.peter@uci.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2015 ACM 1084-4309/2015/09-ART49 $15.00

DOI: http://dx.doi.org/10.1145/2746235

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:2 S. Peter and T. Givargis

Fig. 1. Overview of the CoDeL/SMT-based system synthesis. The repository of components and the ap-
plication requirements, expressed in the CoDeL language, are translated to an SMT program that can be
solved with existing SMT solvers. The result is a system configuration that can be further analyzed and
implemented.

exploration tools apply optimized problem-specific search algorithms, several tools
have also harnessed the benefits of well-researched information theoretic solvers, such
as Satisfiability solvers (SAT) [Haubelt and Feldmann 2003], Satisfiability Modulo
Theory (SMT) [De Moura and Bjørner 2011], or Integer Linear programming (ILP)
[Lukasiewycz et al. 2008]. In this article we focus on the application of SMT solvers.
SMT efficiently extends predicate-logic-based SAT solvers with powerful background
algebras, which include standard integer or floating point arithmetic, but also extended
mathematical models to describe, for instance, execution times [Henry et al. 2014], real-
time calculus [Kumar et al. 2013], or control quality [Aminifar et al. 2013]. SMT solvers
answer the stated problems with outstanding performance, without the need for the
design tool developer to implement a solver or a custom design space search algorithm.
However, constructing SMT programs is non-trivial and requires in-depth knowledge
of the mathematical abstraction as well as insight in the workings of the solvers. After
all, an SMT program is still a nonstructured set of mostly predicate logic, which lim-
its the understandability, reusability, and extensibility of the program. Therefore, the
challenge for the system designer shifts from the actual solving of the design problem
to the description (the construction) of the design space as an SMT program.

To cope with the challenge of constructing SMT programs that solve design challenges
in the embedded system domain, this article proposes an algorithm to translate design
spaces, expressed in a generic high-level component-based description language, into
SMT programs. We present:

(1) CoDeL, a component-based description language to express applications, require-
ments, and building blocks, with their properties, constraints, and connectivity;

(2) synthesis rules that describe how systems are composed from the CoDeL building
blocks, by supporting the concepts of component allocation, component connections
(binding), and component parameterization;

(3) a CoDeL to SMT transformation algorithm, which translates the space of systems
resulting from the CoDeL building blocks to an SMT program.

As a result, designers and tool developers may utilize the SMT performance for
component-based systems that were expressed without the SMT formulation in mind.
As illustrated in Figure 1, we first express the application requirements and the avail-
able set of components with their properties in CoDeL, then translate CoDeL into an

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:3

SMT program, which can be solved by SMT solvers to obtain a valid system config-
uration. The system configuration is used to instantiate implementation models, and
to validate, verify, and implement the system. If the detailed validation step discovers
failures, standard embedded system design techniques, such as backtracking the de-
sign process, refinement of models, or adding constraints, may be applied to find correct
design points [Gajski et al. 2009].

Since CoDeL applies generic component-based concepts, such as components, inter-
faces, properties, and constraints, the proposed system synthesis and SMT transforma-
tion can represent the attributes of a wide range of existing implementation languages
for embedded systems, describing hardware (e.g. IP-XACT (IEEE P1685) [Berman
2006], SystemC [Vachoux et al. 2003] or VHDL), software (e.g. TinyOS [Levis et al.
2005], C, or ProCom [Sentilles et al. 2008]), as well as physical interfaces and dynamic
systems described in Simulink [2013] or OPENMODELICA.1 Those languages already
utilize the concept of modules or components and are regularly exposed to constraint-
driven allocation, binding, and parameterization problems. Expressed in CoDeL and
following our proposed translation algorithm, those design challenges can be answered
fully, benefiting from the outstanding performance of SMT solvers.

We implemented CoDeL into a prototypical tool that allows its users to express
the CoDeL components with their properties, and link the components to their imple-
mentation model. The tool further applies the CoDeL/SMT transformation algorithm
and invokes the SMT solver Z3 [De Moura and Bjørner 2008] to solve the program
and find one suitable system solution that satisfies the provided system constraints.
We demonstrate the effectiveness of CoDeL/SMT to express, encode, and find suitable
configurations for a range of examples including a distributed sensor and actuator con-
trol system. Our experiments confirmed the superior performance of the CoDeL/SMT
approach while the use of CoDeL provides improved usability, reusability, and exten-
sibility of applied components and models.

The rest of this article is structured as follows. After an overview of related work in
Section 2, we introduce CoDeL and its composition rules in Section 3. In Section 4 we
present the SMT encoding scheme in detail. Results for our prototype tool and a set of
design examples are presented in Section 5. The article concludes with a discussion of
the current results and an outlook for future work.

2. RELATED WORK
The exploration of complex design spaces has been a topic of great interest in the
design community for decades, resulting in a variety of overview papers on this matter
[Sangiovanni-Vincentelli and Martin 2001; Gries 2004], capable languages [Feljan et al.
2009], and tools. Tools such as the BIP (behavior, interaction, priority) framework
[Bourgos et al. 2011], the Octopus toolset [Trcka et al. 2011], or SystemCoDesigner
[Keinert et al. 2009] evaluate design choices for software and hardware early in the
development, apply analytic models, and facilitate the composition and verification of
systems of components. However, the applied methods and languages either provide
only limited support for automated synthesis, or are specifically tailored to address
a certain viewpoint. Our work is intended to be more general so that it can serve a
variety of existing component frameworks as an abstract component meta-model in
which common design space exploration problems can be addressed. In this regard, the
work in our article relates generally to the platform based design (PBD) of embedded
systems [Sangiovanni-Vincentelli and Martin 2001]. The goal of PBD is to select and
compose a subset of available components (the configuration), from the design space of

1http://www.openmodelica.org.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:4 S. Peter and T. Givargis

possible platform configurations. A good and implementable configuration satisfies the
system constraints as well as all component-imposed assumptions.

The correctness of a configuration can be validated in great detail by formal verifica-
tion approaches [De Alfaro and Henzinger 2001a], which capture temporal aspects of
compositions, or validated in complex (co-)simulations [Mühleis et al. 2011]. Such de-
tailed approaches are essential for good system design, but should be executed after a
configuration has been found. Due to exploration time requirements, such approaches
do not seem suitable for the exploration of large design spaces, as intended in this
article. Options to capture the correctness of a system on a higher level of abstraction
are interface algebras [De Alfaro and Henzinger 2001b] or design contracts [Damm
et al. 2005]. Interface algebras provide a clear semantics on how a system can be com-
posed, and facilitate a formal assessment of the composability and compatibility of the
structure of a system. Design contracts extend the idea of interface theories and pose
a powerful tool to evaluate the promise-assumption relation between components. The
use of design contracts has been demonstrated in the automotive industries [Damm
et al. 2005], for cyber-physical systems [Derler et al. 2013], and airplane power systems
[Nuzzo et al. 2014]. As we will discuss in the next section, CoDeL applies interface alge-
bras and a general version of design contracts to express the structure and viewpoints
of components and system.

The exploration of complex design spaces and searching for suitable system config-
urations is frequently fostered by satisfiability (SAT) solvers [Haubelt and Feldmann
2003], Integer Linear Programming (ILP) [Lukasiewycz et al. 2008] and SMTs
[De Moura and Bjørner 2011; Reimann et al. 2010, 2011; Liu et al. 2011; Aminifar
et al. 2013]. ILPs have been applied for a variety of design space explorations and
optimizations [Lukasiewycz et al. 2008] for energy-efficient processor mapping of dis-
tributed applications [Gunes and Givargis 2014] or to configure avionic power systems
[Nuzzo et al. 2014]. We considered ILP as an alternative for the SMT approach in
this article. However, the strict requirements for linearity as part of the ILP rules do
not allow the expression of even simple multiplications (e.g. for the computation of
energy=power × time). ILP modulo theory (IMT) [Manolios and Papavasileiou 2013]
extends ILP with a powerful background theory to solve complex problems, and has
already been proposed to optimize resource planning and synthesis of industrial de-
signs [Hang et al. 2011]. While IMT, with its optimization capabilities, is an interesting
development, as of today no ready-to-use IMT solvers are available.

Due to their great performance in solving propositional problems, SAT techniques
have been proposed for verification [Schmidt et al. 2013], synthesis [Haubelt and
Feldmann 2003] and analysis of software systems and electronical systems. For ex-
ample, Haubelt and Feldmann [2003] presented a mapping of the system synthesis
binding problem to Boolean equations that could be solved by SAT techniques. How-
ever, the need to describe SAT programs entirely as conjunctive normal form (CNF)
renders SAT less expressive than ILP and significantly complicates the encoding.

SMTs [De Moura and Bjørner 2011] address the shortcomings of SAT solvers with
the addition of powerful background theories to solve equations expressed as standard
algebra. Advanced background theories reason about the behavior of protocols to man-
age shared resources [Liu et al. 2011; Kumar et al. 2013] or execution times of real-time
systems [Henry et al. 2014; Kumar et al. 2013]. As of today many solvers such as Z3
[De Moura and Bjørner 2008] or OpenSMT [Bruttomesso et al. 2010], as well as a
standardized description language, SMT-LIB [Barrett et al. 2013] are available. SMT
has been discussed for a variety of synthesis and analysis applications in the embedded
systems domain. For instance, Reimann et al. [2011] described a platform-based syn-
thesis of real-time systems with a highly optimized timing analysis. Liu et al. [2011]
applied SMT to solve mapping and scheduling of tasks on multi-processor systems.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:5

Fig. 2. Core elements of the component model. Component C1 has one used interface (i1) and one provided
interface (i2). Properties of C1 are described by two relations and one assumption. Connecting component
(C2) using the i1-interfaces, sets the values of variables in scope of C1 (i1.V=V of C2) so that the assumption
(X<Y) can be satisfied.

Kumar et al. [2013] presented an SMT solver that applies a real-time calculus as
background theory. The real-time calculus computes arrival curves for constrained
resources, expressed in a very specific encoding scheme for this single use case. The
background theories presented in those works are important for future use of SMT and
can be applied in the property model of CoDeL. However in all those works, the actual
SMT program is still an unstructured set of assertions, which limits their applicability
and reusability.

To improve and simplify the programming of ILP and SMT solvers, several works
proposed alternative programming styles and languages. For ILPs, languages such
as AMPL (A Mathematical Programming Language) [Fourer et al. 1989] or the more
expressive GAMS (General Algebraic Modeling System) [Bussieck and Meeraus 2004]
help to express the program as a set of well-defined mathematical expressions. Other
approaches such as Sheard [2012] and Agarwal and Karkare [2013] advocate for the
expression of SMT problems as part of regular programming languages, which provide
a classic programming interface instead of assertion-based definitions of the SMT-LIB.
Such languages indeed help to improve the accessibility of ILP and SMT, while added
support to formulate the problems is still limited. For embedded systems design, we
need a translation from the component-based design space to the mathematical and
assertion-based expressions as provided by SMT, ILP, or GAMS. For this purpose we
describe the generic component description language CoDeL in the next section, and
show the translation of the component model into an SMT program in Section 4.

3. COMPONENT-BASED SYSTEM MODEL
In this section we introduce the CoDeL component and system model and its graph-
ical notation. We further discuss the resulting design space, which supports design
variabilities component selection, component binding, and parameterization.

3.1. Component Model
For the underlying data structure of CoDeL, we apply a lightweight component model.
Components are the building blocks of the system. Each component represents a char-
acteristic functional behavior, which may be the behavior of a software module, a
hardware module, or a model of the environment. A component c is represented by the
triplet c = (M, I, P), where M represents meta information, I the interfaces, and P the
property model of c. M contains descriptive data about c, including its name, possible
links to implementation, and simulation models for the component.

Figure 2 shows a graphical representation of two components, C1 and C2. Each
component is represented as a box with a name (C1 and C2), a property model (the
box in the component), and the interfaces (triangles). In the following we introduce the
interface model and the properties model, using components C1 and C2 from Figure 2.

3.1.1. Interfaces and Bindings. Components provide their functions, services and proper-
ties to other components via interfaces. Reciprocally, interfaces are used to connect to

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:6 S. Peter and T. Givargis

other interfaces in order to use their functionality. The set of interfaces of a component
is described with the tuple I = (IP, IU), where IP is the set of interfaces provided by
the component, and IU is the set of used (needed) interfaces. In Figure 2, C1 uses the
interface named i1 and provides the interface i2. In the graphical notation of CoDeL,
the used interfaces are illustrated as triangles that point toward the component, the
provided interfaces are triangles pointing away from its component.

A binding βi, j is a connection between two interfaces i ∈ IP and j ∈ IU , while
i ∼= j. The compatibility operator ∼= means that i and j are the same type and i
provides a compatible interface to the interface used by j. The compatibility operator
is in accordance with interface algebras [De Alfaro and Henzinger 2001b] and can
be computed offline based on extended functional and state-based reasoning. The set
of all possible bindings of a design space is noted as B throughout the article, while
BS notates the set of bindings active in the current system. A solid line between two
components shows an active connection between the two interfaces, while a dashed line
illustrates the possibility of a connection. Figure 2, shows a possible binding between
i1 and the output interface provided by C2.

3.1.2. Properties. The property model P is a declarative model of the properties of the
components. A property describes a characteristic or quality of the component. Prop-
erties comprise all aspects of a system that can be expressed by data types, including
all sorts of attributes, to describe the system, its components, its requirements, or its
environment. The declarations, as part of the property model, contain relations and
assumptions, so that we can express the property model as a triplet P = (P, R, A), with
properties P, relations R, and assumptions A. In the graphical notation, the property
model is shown as a separate text box within the component.

A Property p ∈ P is a typed variable. p can be of a basic type such as Boolean, string,
integer, or floating point number, but also an extended data type such as a set, vector, or
a scheduling arrival curve [Kumar et al. 2013]. The types are not freely programmable,
but defined by the available set of background algebras in the underlying solver.

Relations R assign the result of an operation over a set of input properties or
constants to a property. The operations can be standard arithmetic, logic, and condi-
tional operations, but also complex background-theory-specific operations, such as set-
theoretic operations, or the aggregation and comparison of scheduling arrival curves.
As a small example, component C1 in Figure 2 contains two relations on integer data
types: X := 4 and Y := 2 + i1.V . The first relation assigns the value 4 to the property
X. The second relation assigns the sum of 2 and the variable i1.V to the property Y .
The use of i1.V in C1 already indicates that properties can be defined in the context of
the composition. By binding C2 to the interface i1 of C1, the properties of C2 become
available in the scope of C1. Forwarding of variables via bindings facilitates reasoning
about component properties in the context of the system composition.

Assumptions are similar to relations, as they compute a function over a set of input
properties. However, the result of an assumption is a Boolean, which is not assigned to
a variable, but it is evaluated to determine the correctness of the system. The overall
goal of the system synthesis is that all assumptions of a system are satisfied, in other
words they evaluate to true. In Figure 2, C1 contains one assumption, which is X < Y.
Property X is defined as 4, while Y has to be evaluated in context of the binding. Due
to the binding, i1.V is defined by C2 as 3, so that Y is 5, which resolves the assumption
to be satisfied.

In addition to standard algebraic terms, which can be directly processed by a solver,
CoDeL supports macro operations and complex interpreted functions. Macro opera-
tions, such as each(interface):R, do not extend the expressiveness but reduce the
complexity of P by applying a relation (R) or assertion, to a set of properties or

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:7

interfaces (i). Macros are, for instance, utilized in the scheduling example shown later
in Figure 5.

3.2. Design Space and System Synthesis
The system synthesis relates to the composition of a system implementation (S) from a
predefined repository of available components (C). The system implementation contains
a set of selected components CS ⊆ C, the set of bindings BS between the interfaces of
the selected components, and the parameterization of the properties of CS. The design
knobs in this design space are selection, binding, and parameterization of components.

Component Selection addresses the selection of the subset CS from the set of avail-
able components C. Therefore, the selection step decides whether or not an available
component is used as part of the composed system.

Binding addresses the selection of active bindings BS ⊆ B from the set of possible
connections between components (B). The selection is influenced by a range of struc-
tural (each j ∈ IU must be connected not more than once; adjacent components Ci and
Cj must be ∈ CS), and overfunctional constraints, since each active binding propagates
properties to adjacent components. A common use case in the embedded system design
that involves binding is the mapping of processes to resources such as memory or pro-
cessing units (PUs). Such an example is discussed in detail in Section 5.3. We discuss
bindings in detail in Section 4.2.

Parametrization concerns the definition of variable properties (p ∈ P) of the property
model of CS. Such variable system properties are, for instance, the update frequency
of a protocol, which directly influences the energy consumption of the system, but also
the quality of service. Another example for the parameterization issue in embedded
system design is the planning of periodic real-time schedules. The example shown in
Section 5.2 assigns start times of a schedule in order to satisfy the timing constraints.

Parametrization made for one component may propagate through the system com-
ponents (CS) via the active bindings (BS). Therefore, to solve the resulting design
problems, capable solvers are needed that in addition to the propositional logic for
components and bindings, have the ability to process a set of equations that express
inequalities and equalities over a set of variables. SMT solvers contain such a solver as
part of their background theory, which makes them a promising tool for the exploration
of design spaces that contain parameterization problems.

3.3. Expressiveness and Application of CoDeL
In this section we discuss the abilities and limitations of CoDeL to express structural
and over-functional attributes of the embedded system. We further discuss the general
application of CoDeL. As introduced earlier in this article, CoDeL is a generic com-
ponent description language with a very condensed set of semantic features. CoDeL
represents hardware and software components as well as physical interfaces and sys-
tems, described in different implementation languages. The main purpose of CoDeL,
as presented in this article, is to define a suitable abstraction between implementa-
tion model languages and the capabilities of formal solvers. Therefore such a language
must:

(1) capture the structure of the design space and its components;
(2) allow the expression and evaluation of important over-functional properties;
(3) provide a good usability and reusable concept;
(4) be evaluated efficiently and be able to be encoded in solver languages.

While the last item will be addressed under SMT encoding in the next section, we
discuss CoDeL’s support for the first three items in the following paragraphs.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:8 S. Peter and T. Givargis

3.3.1. Expression of Structure. With the ability to model components (blocks, modules),
interfaces (ports), and bindings (connections), CoDeL represents the standard concepts
of today’s design tools that describe the structure of systems. In our experiments com-
ponents were modeled originating from design languages and tools like C, TinyOS,
SystemC, VHDL, and Simulink. Most of the languages already support a well-defined
component and interface model, or (as for C) are suitable to add meta-information to
express components (or modules). Therefore, CoDeL supports basic stateless interface
algebras as described in De Alfaro and Henzinger [2001b] to validate the structural
correctness of a composed system, including the validity of composition of two compo-
nents (C1∥C2), and connection of two interfaces (i1∥i2). To evaluate the compatibility
and composability of interfaces and components in greater detail, CoDeL implements
a functional variant of design contracts [Damm et al. 2005]. Design contracts assume
that two components, C1 and C2, with their contract data as part of the information
Mi = (Pi, Ai) can be composed (C1∥C2) if A1 ⊆ P2 and A2 ⊆ P1, meaning that all as-
sumptions of a component are delivered by properties promised by the peer. A system
S of components is free of conflicts if the aggregated set of assumptions is satisfied by
the aggregated set of proposed properties.

⋃

component c∈S

Ac ⊆
⋃

component c∈S

Pc.

Since each assumption can be expressed as function fa : P → true iff a ∈ P, a system,
expressed in CoDeL is free of conflicts if

∀a ∈ As : fa(p∗
ina) = true,

where p∗
ina ⊆ P is the subset of relevant system properties to evaluate fa. In theory,

this formalism allows us to analyze the compatibility of complex dynamic interface
descriptions like the interface automata proposed by De Alfaro and Henzinger [2001a].
However, modeling and analyzing system details on this low level of granularity is not
the primary concern of CoDeL, since such details would violate our requirement (4),
that is, efficient evaluation. Instead, we can evaluate the compatibility of interfaces
(i1 ∼= i2) offline and store the information as part of the component model.

3.3.2. Expression of OverFunctional Attributes. The assumption-based evaluation of de-
signs is not only suitable to assert the constraints of the structure, but also to reason
about over-functional attributes of the system. In the examples in Section 5 we show
how CoDeL can model timing, schedulability, shared resources, and control quality.
In the context of design contracts, high-level system analysis has been successfully
applied for systems ranging from automotive [Damm et al. 2005], avionic [Nuzzo et al.
2014], to general cyber-physical system systems [Derler et al. 2013]. Other static high-
level analysis approaches, for example, spreadsheet analysis, have been successfully
applied to model industrial systems [Trcka et al. 2011], general worst-case execu-
tion times [Henry et al. 2014; Lednicki et al. 2013], power consumption [Gunes and
Givargis 2014], system security [Peter et al. 2008], and scheduling [Zhang and Burns
2009; Zhu et al. 2012]. This enumeration is not conclusive but indicates the suitability
of equation-based approaches to estimate and analyze over-functional properties of
systems in practice.

Within CoDeL the following approaches are supported to model and evaluate static
and dynamic properties of systems.

—Static resolution or approximation of dynamic behavior. This is one standard ap-
proach for high-level abstraction to assess system properties in related work, as
listed in the preceding. The idea is to express system properties of interest as equa-
tions, which can be efficiently evaluated in many tools. The disadvantage is a lack

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:9

of accuracy in the models that may result in an over- or under-approximation of
properties.

—Enumeration of all possible states, as proposed by [Nuzzo et al. 2014]. The system is
correct if no conflict can be found for any state. While theoretically very powerful,
state-explosion renders this approach infeasible for most cases.

—Design of a viewpoint-specific algebra (VSA). VSAs facilitate equation-based compu-
tation with complex data types, but require an algebra-specific background compu-
tation in the solver. As one example, Kumar et al. [2013] showed how a real-time cal-
culus can be integrated as a background theory in an SMT, where property variables
express scheduling arrival curves (a1, a2, . . .) that can be aggregated (aS =

∑
i ai).

Resource constraints are expressed as a service curve (sC), and constraint, with the
assumption aS ≤ sC in CoDeL. Other examples for VSA are composable security
[Martin et al. 2014] or execution times [Lednicki et al. 2013].

—Invoking complex executable models. Executable models (e.g. in Simulink) or imple-
mentation models, can be invoked to evaluate complex properties. For example, our
evaluation tool, discussed in Section 5.1, can invoke complex Simulink simulations
as black boxes, for instance to assess the quality of a parameterizable control system.
The result is accurate, but usually expensive in terms of computation time.

While all four approaches are supported by CoDeL and in current SMT solvers, the
static models are preferable, due to their performance advantages. However finding and
expressing good static models for over-functional properties of systems is not trivial,
and therefore needs the creativity of knowledgeable domain experts, as well as a tool
infrastructure that fosters reusability of models.

3.3.3. Application of CoDeL. The application of CoDeL is separated into two phases: a
setup phase of the component repository and the actual design synthesis phase.

The setup phase is ideally supported by component information that is already avail-
able as part of the implementation model. This is generally possible for structural
information, but also over-functional properties, such as WCET and memory consump-
tion. Most over-functional models, however, require domain experts to be designed
correctly. For example, we need control experts to express models for complex dynamic
behaviors, battery experts to model batteries used by the systems, software engineers
to model properties of their software modules, and hardware designers for hardware
components. Important in this context is reusability. Once described, even by third-
party domain-experts, the models should be reusable and extensible within the system
and for future systems. In Section 5.4.1 we discuss this issue for a model to assess the
control quality. From an organization perspective, reusability requires a management
structure to develop, store, and describe models and components, and an extended
component semantics that goes beyond the generic component model discussed in this
article. The organization challenge is not the focus of this article but requires additional
studies in future work.

In the actual design phase, CoDeL supports manual design by analyzing pre-
configured configurations, or automatic search of the design space for suitable con-
figurations. For a model instance with allocated components (CS), bindings (BS), and
parameterization (PS), the configuration can be evaluated with an evaluation function
eval(S(CS, BS, PS) → {true, f alse}, which is true if all interface requirements and all
assumptions are satisfied. The evaluation function, which can be solved by dedicated
solvers, is the core functionality for automatic search. The search is initialized with an
incomplete description of S, expressing the invariant components, bindings, and pa-
rameters of the system. Usually the initial system contains a main or top component,
system constraints, parts of the hardware platform, and the physical environment. The
search uses a repository of components for allocations, bindings, and parameterizations,

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:10 S. Peter and T. Givargis

Fig. 3. CoDeL diagram and SMT program for Example 1. Component C1, has a timing assumption and uses
the sensor interface. Sensors SA and SB provide the service but have different delay properties.

as introduced in the previous sections. Since the complexity of the design space pro-
hibits exhaustive search in most cases, advanced reasoning and conflict analysis are
standard approaches to reduce the size of the practical design space. As outlined in the
related work, many approaches exist to perform the final search. To solve the search
with SMT solvers, we propose an algorithm to encode a CoDeL to an SMT program in
the next section.

4. CODEL TO SMT TRANSFORMATION
In this section we show how to encode the CoDeL-defined design space, including its
components, their properties, and constraints, to an SMT program. We start with a
small straightforward component encoding. This first step also illustrates the basic
operations of an SMT solver. The second part of the section then explains the encod-
ing of the bindings between components and the propagation of variables between
components. This section concludes with the complete algorithm that translates the
component-based design space into the SMT program. The code examples for the rules
in this section are based on the SMT2 library standard [Barrett et al. 2013]. To improve
the readability, we changed the prefix notation of the algebraic terms to a standard
infix notation. The rules are annotated as R1 to R8 for reference throughout this article.

4.1. Component Encoding
As the first step, we show how to encode the components and their properties. For this
purpose we use a small example (Example (1)), shown in Figure 3. Example (1) shows
the three components C1, SA, and SB. We can assume C1 is a control component that
needs input from a sensor. The design space in Example 1 offers two sensors (SA and
SB), while SA has a delay of 5 and the delay of SB is 9. In this article, and without loss
of generality, we use milliseconds as the unit for the delay.

The basic strategy of the component encoding is to express the instantiation of a
component as a Boolean variable. In Example (1), the variable C1 is true if component
C1 is instantiated in the target design, and C1 is false if C1 is not part of the target
design. Therefore, in Example (1) three conditional variables C1, SA, and SB define
the component design space. Using SMT-LIB syntax, the three variables are defined
as follows.

declare-const C1 Bool (R1)
declare-const SA Bool
declare-const SB Bool

Relations and Assumptions. In SMT, relations and assumptions of the components,
which are in turn equations, do not need special encoding, because the underlying SMT

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:11

theory can solve the algebraic terms as is. For instance, for the statement delay=9, the
solver assigns the value 9 to the variable delay. If the program contains another uncon-
ditional definition of delay, such as delay<8, the solver returns UNSAT. Conversely, if
the second statement is delay>8, the solver returns SAT, since delay>8 and delay=9 do
not impose a conflict. Such algebraic statements can be conditional or part of a larger
statement. For this operation we use the SMT operation Imply. Imply(x,y), means that
y must be true if x is true. Both, x and y, may be complex terms on their own.

In our component model we use SMT’s Imply facility to activate relations and as-
sumptions whenever the component is enabled as part of the target design.

Imply(component, relation AND assumptions)

means that the relations and assumptions have to be true (i.e., satisfied) if the compo-
nent is enabled. In Example (1) we can write the following.

Imply(C1, delay<8) (R2)
Imply(SA, delay=5)
Imply(SB, delay=9)

It should be noted that before those statements, the variable delay, like all variables,
has to be declared.

declare-const delay Int

Applying the rules discussed thus far, we can proceed to solve the program as follows.
First, we set the initial requirement (C1=true), and then we check the satisfiability. The
commands are

C1=true
check-sat,

which are also part of the SMT program.
The SMT program we defined so far is executable and satisfiable, but does not

necessarily return the expected result. The solver may assign the value of 0 to the
delay and disable both sensors, which still satisfies all assumptions. This is caused
by the missing expression of possible bindings between the components. Therefore, we
describe the interfaces and possible connections next.

Interfaces. Interfaces in the SMT program are expressed as binary variables, because
an interface is either part of the system or is not part of the system. Since interfaces
are fixed to their components, we can express the equivalence relation between the
interface and its component, which means that the interfaces of the component are
part of the design, if and only if the component is active as well. The corresponding
SMT statements for Example 1 are the following.

C1=C1.sensor (R3)
SA=SA.sensor
SB=SB.sensor

Utilizing the interfaces, we rephrase the dependency between C1 and the sensors:

Imply(C1.sensor, SA.sensor or SB.sensor) (R4)

which means that the sensor interface from C1 requires at least one sensor interface
provided by SA or SB. This completes the rules needed to encode Example 1. The
resulting SMT program for Example 1 is shown as Algorithm 1. The program delivers
the expected result, that is, the solver returns SAT, and outputs the following result:
C1 and SA are enabled, and the delay is 5.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:12 S. Peter and T. Givargis

Fig. 4. Example 2. Component C1 uses two sensor interfaces, s1 and s2. For both types of sensor two
alternative sensors are available, which results in four possible bindings (β11 − β22). The assumptions in
C1 allow the combination SB and SX (via β12 and β21) as the only conflict-free design.

4.2. Bindings
With the encoding rules discussed so far, we can encode very simple systems, such as
Example (1). More complex designs, however, require additional rules, in particular to
address the binding between components. Example (2), shown in Figure 4, illustrates
the binding issue. In Example (2), C1 represents a control algorithm that uses the
input of two sensors. C1 has been specified for a combined input delay of 10 to 15. The
second sensor must be faster than 8.

Key in the encoding of the bindings is the computation of all possible bindings
between the components of the design space. For all possible bindings between two
interfaces i, j, i ∼= j, we create one propositional variable βi, j . This variable βi, j is
true if the binding is active, which means that the interfaces are connected. Figure 4
illustrates the binding variables as β11, β12, β21, and β22.

Naturally, bindings require adjacent interfaces to be present. We can express this
dependency in SMT as follows.

Imply(β11, C1.s1 and SA.s1) (R5)
Imply(β12, C1.s1 and SB.s1)
Imply(β21, C1.s2 and SX.s2)
Imply(β22, C1.s2 and SY.s2)

Notably, the implication of the presence of the interfaces as a function of the binding
redefines the feasible design space. So far we considered the design space to be defined
over the combinations of components. Instead, due to the equivalence relation between
the presence of the component and its interfaces (e.g. C1=C1.s1), an active binding
enables not only the adjacent interfaces, but also the components and their properties.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:13

To the set of rules, discussed so far, we further add two rules to ensure that, first,
each required interface IU has a connected peer, and second, that each interface IU is
connected to not more than one peer interface.

In Example (2), the first rule is needed to ensure that the interfaces s1 and s2 of
component C1 do not connect to more than one sensor each. In the SMT program this
can be described by

Imply(C1.s1, β11 or β12) (R6)
Imply(C1.s2, β21 or β22),

which extends and replaces the interface-based dependency rule, R4.
Using a second rule, we ensure that the interface is not connected to more than one

other interface, that is, if β11 is enabled, β12 must be disabled, which is expressed as
follows.

Imply(β11, not β12) (R7)
Imply(β21, not β22)

Variable forwarding. As introduced in Section 2, the bindings in CoDeL are the mech-
anism to connect components, but also forward property variables from one component
to a connected component. By forwarding property variables, components learn about
the properties of the connected components. The accessed properties then can be vali-
dated or processed to update the own properties. The principle of variable forwarding
was introduced in Figure 2, where the variable v was forwarded to the i1 interface of
component C1. To encode the variable forwarding for the entire design space the fol-
lowing two questions must be addressed: first, how to identify and manage compatible
variables, and second, how to realize conditional forwarding.

For variable encoding we introduce scopes to express the host component of each
property variable. Therefore, the five delay variables of Example (2), are expressed as
five distinct variables (C1.delay, SA.delay, SB.delay, SX.delay, and SY.delay). Addition-
ally, each component can access variables of connected components via the interface
that is used for the binding. The interface can be considered as another internal scope
of the components. In Example 2, component C1 can access all properties of the com-
ponent connected via interface s1 in the scope C1.s1. Accordingly the property names
in the relations and assumptions from the property model are renamed, which has to
be reflected within a refined Rule (R2). For example, the first relation in C1 is

C1.delay:=C1.s1.delay+C1.s2.delay,

and the updated SMT instruction following rule (R2) is

Imply(C1, C1.delay:=C1.s1.delay+C1.s2.delay).

Applying the concept of scopes, a binding simply forwards the local variables to the
interface of the connected component. If component CX is connected to CY via interface
iy, the set of relations that describe the forwarded variables (F) is expressed as

F =
⋃

v∈CY.P
relation(C X.iy.v := CY.v),

resulting in a set of relations that forward all variables of CY to the scope CX.iy of
CX. With the knowledge of the actually used variables within CX, the set of relations
can be reduced to only relevant variables. However, one strength of SMT solvers is the
efficient handling of unused variables, so that in our experiments, we would not have
to measure a performance penalty for forwarding all variables.

Conditional variable forwarding is realized with an implication rule that asserts the
correctness of the generated relations (F) only if the corresponding binding is active.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:14 S. Peter and T. Givargis

For Example (2), the resulting variable forwarding instructions in SMT are expressed
as follows.

Imply(β11, C1.s1.delay=SA.delay) (R8)
Imply(β12, C1.s1.delay=SB.delay)
Imply(β21, C1.s2.delay=SX.delay)
Imply(β22, C1.s2.delay=SY.delay)

Applying the binding rules and variable forwarding rules, discussed in this section,
we can conclude the SMT program and solve Example (2). The resulting SMT program
without variable definitions is shown in Algorithm 2. The solver confirms the satisfia-
bility (SAT) of the problem with the following assignments: bindings β12 and β21 are
enabled, components C1, SB, and SX are enabled, and the delay in component C1 is 14.

4.3. CoDeL to SMT Encoding Algorithm
In the previous sections we discussed the rules to encode the component-based design
space for two small examples. In the following, we present the general algorithm that
applies the SMT encoding rules to all design spaces that can be expressed with the
component model. The algorithm has the following inputs and outputs.

Input. Repository of components C; each component Ci with its set of used and
provided interfaces (Ip, Iu), and its property model P. Additionally given is a start set of
components CS ⊆ C containing abstract functions and invariable platform components.

Output. An SMT program expressing the design space and the requirements.
The resulting algorithm generate SMT, is shown as Algorithm 3. The rules for the

algorithm were discussed in the previous sections. The steps in the algorithm are anno-
tated with the rule numbers R1-R8 (R4 was overruled by R5). Beside the basic rules, the
algorithm uses the following steps and external methods. In lines 1 to 6 of Algorithm 3,
the set of possible bindings is created. The method SMT add implication, which is used
in lines 9, 11, 15, 23, and 33, adds an implication (Imply) instruction, SMT add assertion
(line 28) adds an unconditional assertion, and SMT define variable adds the definition
for a variable into the SMT program. Method forward shared variables (line 10) gen-
erates the set of relations (F) that forward component variables to the corresponding
interface scope of the connected component, as described for rule (R8) in the previous
section. The resulting set F of forwarding relations is added as implied assertions in
line 11. Method or conjunct(x) (Line 33) conjuncts the members of the set o with an
OR operation, which is needed for the computation of the allowed bindings for a used
interface (Rule R6).

The complexity of Algorithm 3 is determined by the number of possible bindings.
For n interfaces, in the worst case, the set B contains n2 bindings. Since this set is
checked for incompatible bindings (Lines 13–16), in the worst case the complexity of
the algorithm is O(n4). In practice, even for large examples, as discussed in the next
section, the SMT programs could be generated in a few seconds, as we will discuss in
detail in the next section.

5. EXAMPLES AND EVALUATION
The goal of the evaluation presented in this section, is to demonstrate the suitability of
CoDeL and the SMT transformation algorithm to address important challenges in the
design of embedded systems. Specifically we consider the following desirable criteria.

—Usability of SMT for system designers. The motivation is to show that our approach
is easier to apply than traditional SMT description techniques for systems.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:15

ALGORITHM 3: Generation of the SMT program from a component repository
Input: system repository C

1 //Generate Bindings
2 foreach used interface i ∈ IU in C do
3 foreach provided interface j ∈ IP in C do
4 if i ∼= j then B ← B∪ βi, j
5 end
6 end
7 //add binding rules
8 foreach possible binding β ∈ B do
9 SMT add implication(β, β.IU AND β.IP) //(R5)

10 F=forward shared variables(β)
11 foreach relation f ∈ F do SMT add implication(β, f) //(R8)
12 //prevent double assign of used interfaces //(R7)
13 for each possible binding β2 ∈ B do
14 if β.IU = β2.IU then
15 SMT add implication(β, not β2)
16 end
17 end
18 end
19 for each component c ∈ C do
20 //add component properties,relations,assumption
21 for each property p in c.P do
22 SMT define variable(p) //(R1)
23 foreach relation r ∈ c.R ∪ c.A do SMT add implication(c, r) //(R2)
24 end
25 end
26 //add interface rules
27 foreach interface i ∈ c.I do
28 SMT add assertion(c = i) //(R3)
29 //require binding for used interfaces //(R6)
30 if i ∈ IU then
31 o = ∅
32 foreach β ∈ B do if β.IU = i then o ← o ∪ β
33 SMT add implication(i, OR conjunct(o))
34 end
35 end

—Expressiveness demonstrates the suitability of CoDeL to state and process nontrivial
structural and overfunctional system properties.

—Reusability and Extensibilty is the possibility of applying independently developed
models and components to compose complex systems in an iterative design effort.

—Scalability applies to the SMT transformation algorithm and the performance of the
search for suitable system configurations.

To discuss the criteria, we present four use cases, which each highlight a specific
aspect of our approach.

(1) Job Scheduling (Section 5.2) discusses a very simple scheduling encoding and com-
pares manual SMT encoding to the generated results. The example addresses the
criteria usability and extensibility and facilitates a direct comparison of the gener-
ated SMT program to a manual encoding.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:16 S. Peter and T. Givargis

(2) XGRID (Section 5.3) demonstrates process mapping for a many-core architecture.
The use case shows in detail how software mapping and hardware configuration
can be solved in SCT, and addresses the concerns reusabilty of components and
scalability. Further, XGRID facilitates a comparison against a state-of-the-art ILP
encoding.

(3) Inverted pendulum (Section 5.4.1) is a small example that focuses on the expressive-
ness. The example shows in detail the modeling options for one real-time control
subsystem. Pendulum is one part of the larger fourth example.

(4) Distributed control systems (Section 5.4.2) is a mapping use case of several concur-
rently executed real-time control applications on a distributed platform. Besides
reusability, the example mainly addresses scalability. We apply the example to
compare the SMT performance to alternative search methods.

Before the detailed description of the examples, we briefly introduce our design tool,
which we applied for the evaluation. A discussion of the gathered results concludes
this section.

5.1. Evaluation Tool
For evaluation purposes, we implemented a tool, System Configuration Toolkit (SCT)2.
SCT allows the designer to express the components, as described in Section 3 of this
article, and presents the resulting design space graphically. We can create, load, and
connect the components, and manage a component repository, in the graphical notation
used throughout this article, or in the underlying XML format. For the experiments,
structural and property models of the components examples have been manually added.
For extended analysis of over-functional properties we can directly invoke external
models in Matlab.

For the modeled components, SCT performs SMT encoding as described in Algo-
rithm 3, and instantiates the SMT solver Z3. In addition to the instantiation of the
SMT solver, SCT also employs classic design space exploration techniques, such as
tree search and conflict-analyzing tree pruning techniques [Zhang et al. 2001]. We will
briefly compare the three applied techniques in Section 5.4.2.

Applying SCT, in the following sections, we discuss the stated design experiments.
All measurements were obtained without parallelization on a 3GHz i7-processor-
equipped PC.

5.2. Use Case: Job Scheduling
The job scheduling use case concerns offline planning of task schedules for real-time
systems. For comparison we use a small example system presented by De Moura and
Bjørner [2011]. The example considers three jobs J1, J2, J3. Each job consists of two
sequential tasks running on two processing units respectively. It is assumed that the
jobs share the PUs. dj,m annotates the time needed for the job j for its task m running
on the PU. In this example d1,1 = 2, d1,2 = 1, d2,1 = 3, d2,2 = 1, d3,1 = 2, d3,2 = 3. The
question is, can the three jobs be scheduled so that they finish within 8 time units? De
Moura presented a small SMT program that solves the problem.

t1,1 ≥ 0 ∧ t2,1 ≥ 0 ∧ t3,1 ≥ 0 ∧ 8 ≥ t1,2 + 1 ∧ 8 ≥ t2,2 + 1 ∧ 8 ≥ t3,2 + 3∧
t1,2 ≥ t1,1 + 2 ∧ t2,2 ≥ t2,1 + 3 ∧ t3,2 ≥ t3,1 + 2∧

(t1,1 ≥ t2,1 + 3 ∨ t2,1 ≥ t1,1 + 2) ∧ (t1,1 ≥ t3,1 + 2 ∨ t3,1 ≥ t1,1 + 2)∧
(t2,1 ≥ t3,1 + 2 ∨ t3,1 ≥ t2,1 + 3) ∧ (t1,2 ≥ t2,2 + 1 ∨ t2,2 ≥ t1,2 + 1)∧
(t1,2 ≥ t3,2 + 3 ∨ t3,2 ≥ t1,2 + 1) ∧ (t2,2 ≥ t3,2 + 3 ∨ t3,2 ≥ t2,2 + 1)

(1)

2SCT and the examples are available for download from http://tiny.cc/sctool.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:17

Fig. 5. CoDeL description of De Moura’s scheduling use case. The top component initializes three jobs
(J1..3), which use two tasks each (T11..T32), which are mapped to two processing units.

In Equation (1), tj,t represents the start time for the task t for job j. This ex-
ample shows the strength of SMT in combining propositional logic and standard
arithmetic. Modern solvers solve the program instantaneously, returning the solution
t1,1 = 5, t1,2 = 7, t2,1 = 2, t2,2 = 6, t3,1 = 0, t3,2 = 3. While Equation (1) delivers the
correct result the equation is not intuitive to derive or maintain. For comparison we
express the same example in CoDeL. Based on the component-oriented understanding
of the system (tasks, jobs, process units), a representation of the system in CoDeL is
shown in Figure 5, which shows the jobs (J1..J3), the tasks (T11..T32), and the two
PUs. Each component only expresses relations and assumptions important in the scope
of the component. The jobs only ensure that their task 2 starts after task 1 is finished.
The top component sets the assumption that all tasks finish within 8 time units. The
PUs ensure that for each pair of tasks only one is active at a time. SCT encodes the
system following the rules stated in Algorithm 3, and after executing the SMT solver
we obtain a parameterized start variable for each task.

Within SCT, the design of this example is further supported by loadable templates
of jobs, tasks, and PUs, which only need to be parameterized, while tasks are linked
to actual software code and PUs to hardware modules. We discuss the performance as
well as the usability of the example in more detail in Section 5.5.

5.3. XGRID
The XGRID many-core architecture [Gunes and Givargis 2014] requires the mapping
of software processes on a reconfigurable hardware platform. In this section we show
how we can express the problem in CoDeL and compare the results of our approach to
the ILP solution presented by Gunes.

XGRID is an embedded many-core processor platform that integrates processing
cores and an FPGA-like interconnection network. XGRID uses rows and columns of
buses with programmable switching fabrics at the intersections of the row/column
buses to route the input/output of logic-blocks. The XGRID interconnect is compile-
time configurable for a specific software application. An instance of the XGRID in-
terconnection network with two rows and two columns is shown in Figure 6(a). The
figure shows two row and column buses (rails) in the interconnect network, represented
as thick lines. Appropriate switches (shown as X boxes) need to be set to establish a
communication channel between a pair of cores.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:18 S. Peter and T. Givargis

Fig. 6. 2x2 XGRID architecture (a), four-process KPN programming abstraction (b), and CoDeL represen-
tation (c). Processes have to be mapped to cores via the map interface.

Design problem. We want to map applications that are expressed as a Kahn Process
Network (KPN). A KPN with four processes is shown in Figure 6(b). Arrows between
processes indicate communication between the connected processes. In the KPN, each
process has to be mapped to one core and each communication channel between two
processes corresponds to a connection between the two cores. The connection is not
direct but has to be directed through the configurable interconnect network and its
switches. The questions to be answered are, first, how to map the processes of the KPN
to the PUs, and second, how to configure the interconnect network.

Setup. To answer the questions, we configure XGRID in CoDeL as shown in Fig-
ure 6(c). The XGRID system contains three kinds of entities: the cores (fixed netlist),
the switches (parameterizable VHDL models), and the processes of the KPN (C code).
Both, hardware blocks and software processes are modeled as components with the
map interface for the mapping. The entities have the following property models:
The process has a map interface to cores, and data interfaces to neighbored processes
(d1, d2, . . .). The properties of a process include a unique id and the constraint that the
set of required processes (ids of the neighbored processes) is a subset of the reachable
(provided) ids by the mapped core. Therefore the property model of the process is the
following.

unique id
require:=Union(d*.id)
require<=map.provide

The idea of the interconnect network is that each active connection must connect two
cores without interruption. Further, each rail must be used by one pair of cores only.
Therefore we store the two ids of the two cores in the variables id1 and id2, which are
propagated by the switches. If a rail is not used, id1 and id2 are 0.
A core has two rules: first, a relation that aggregates the ids of all rails into the provide
property, which is accessible by the processes via the map interface:

provide:=Union(p*.id1) ∪ Union(p*.id2),

and, second, the assumption that for each interface: either the connected rail contains
the local process id—or the rail is disabled (both 0)

(p1.id1=map.id) OR (p1.id2=map.id) OR ((p1.id1=0) AND (p1.id2=0)).

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:19

Fig. 7. Hierarchical composition of a 2x2 XGRID switch.

Switches. A single one-rail switch has four interfaces and can connect two or no
interfaces, while isolating the other interfaces. Therefore the switch can be configured
with a variable (x) that can be set to one of seven settings (off, North-East, NW, NS,
SW, SE, EW). The incoming ids are stored in a variable (id1), and assigned to the
active outgoing interfaces based on the setting of x. For id1 the property model is the
following.

id1:=pe.id1 ∪ pn.id1 ∪ pw.id1 ∪ ps.id1
pn.id1:=((x=NW)|(x=NS)|(x=NE))?id1:[0]
pw.id1:=((x=NW)|(x=SW)|(x=EW))?id1:[0]
pe.id1:=((x=NE)|(x=SE)|(x=EW))?id1:[0]
ps.id1:=((x=SW)|(x=SE)|(x=NS))?id1:[0]

Larger switches can be built by aligning and connecting four (or 9, or 16) 1x1 intersec-
tions and compiling a grouped component as illustrated in Figure 7. The composed 2x2
switch maintains the internal properties and switch settings (ne.x, nw.x, se.x, sw.x),
but is easier to handle and reuse within SCT.

Experiments and discussion. To test the setup, we used the benchmarks provided in
Gunes and Givargis [2014], that is, parallel matrix multiplication (MMUL), discrete
cosine transformation (DCT), and distributed sort (SORT). The initial KPN for the
programs was already adapted to utilize the 4, 16, 64, or 256 core setup. We used fixed
XGRID architectures with 1, 2, and 3 rails, generated the SMT programs for each
mapping problem, solved the systems with Z3 and applied the result of the solution
to the implementation files used by the XSIM simulator. The simulator confirmed the
correctness of the generated mappings and the performance as in the original work.

Compared to the ILP approach, we see three major advantages for our proposed ap-
proach. First a faster run-time of the SMT solver, and the ability to constrain the size
of the interconnect network. We could successfully map DCT and MMUL on XGRID
architectures with two rails, while SORT could even be mapped on a single rail archi-
tecture. The ILP could not express such constraints and required six rails between the
cores. Second, our work already results in the settings for each intersection point (the
x) that can be automatically applied to the VHDL files. The original work required a
manual post-processing step to find feasible routes. Third, we state an improved us-
ability and extensibility of components and systems due to the graphical notation of
CoDeL. System architecture properties can be easily changed, while the ILP presented
in Gunes and Givargis [2014] consists of a complex system of equations. A disadvan-
tage of our work is the missing optimization of the energy consumption that is part of
the ILP solver. The ability of SMT to optimize systems is ongoing research as discussed
in Section 5.5.

5.4. Mapping of Control Applications
This section addresses the mapping of control applications on available processing units
(PUs). In traditional control design, first the CA is developed and tight constraints for

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:20 S. Peter and T. Givargis

Fig. 8. Inverted Pendulum use case modeled with Physical System (PS), Control Algorithm (CA), Scheduler
(SC), and Processing Unit (PU).

the physical and cyber implementation are set [Derler et al. 2013]. While such design
contracts can be easily implemented in CoDeL, for our example we want to go one step
further and analyze the stability of the system while looking for design alternatives of
the computation platform and the parameterization of the physical system. Therefore,
first, we show in detail how to model and evaluate the dynamics and stability of a single
inverted pendulum system. In the second part we extend the example to a mapping of
parallel control systems on a shared distributed computer platform.

5.4.1. Inverted Pendulum Use Case. Next we demonstrate how the nontrivial overfunc-
tional attribute, stability, of an inverted pendulum control system can be expressed,
evaluated, and packaged as a reusable component in CoDeL. The one degree of freedom
case of the system is illustrated on the left of Figure 8. The goal of the system is to
produce an appropriate control command u (the cart position) to keep the pendulum in
the upright position. Mirzaei et al. [2015] discuss the example in more detail. In the
first analysis step we are interested in the stability of the Control Algorithm (CA) for
the given Physical Subsystem (PS) and the resource-limited cyber system.

Setup. Figure 8 shows the CoDeL setup for a small estimation system, including
variables, describing the length, mass, and gravity of the PS and instructions per
seconds (IPS) for the PU. The scheduler (SC) assumes tasks arriving with a fixed period
and a number of instructions per instance. The variables of interest in this system
include the parameters of the PS, the IPS of the PU, and the sampling rate (period)
of the CA. The two constraints in the system concern schedulability and stability. The
schedulability can be easily answered since the system is schedulable if and only if
the density " = instructions/period/IPS ≤ 1. More challenging is the assessment of
stability, for which the function isstable has to be modeled appropriately.

Model of stability. Using the variables shown in Figure 8, the kinetic equations can
be stated as ẍ = g

L(x − u), for which the state model ⃗̇x = (ẋ
ẍ) = (0 1

g
L 0)(x

ẋ) + (0
− g

L
)u

can be derived. To stabilize the pendulum, the CA uses the state feedback method
(u = −(k1 k2)(x

ẋ) = −Kx⃗), for which LQR theory determines the values of K. To test
the stability for given L, g, K and period p in CoDeL we have three general options.

(1) Invocation of a simulation environment. CoDeL can resolve the isstable function by
invoking an executable simulation, for example, from Simulink. For our example
we instantiate a Simulink model consisting of 20 Simulink blocks as a black box
in CoDeL. The Simulink model was designed by control experts to determine the
stability of a control system with high accuracy. In SCT, the Matlab function is

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:21

called with the relation isstable=matlab(isstable(ps.l,p)). The matlab function
resolves the communication with the Matlab program and defines the isstable
property. By invoking the model in CoDeL we can combine stability with system
attributes such as platform, scheduling, or run-time. A clear disadvantage of this
approach is that the run-time does not scale with larger design spaces.

(2) Derivation of a stability function. We can also apply knowledge from control experts
to express the stability as a static equation. Using the Schur-Cohn algorithm [Stoica
and Moses 1992], we can conclude that a system can be successfully discretized if
the eigenvalues of matrix Fcl reside in a unit circle, enforcing the constraint

|det(Fcl)| < 1
∧

|trace(Fcl)| < 1 + det(Fcl) (2)

with
Fcl = (C + k1(C − 1) #−1 S + k2(C − 1)

#S + k1#S C + k2#S); # =
√

g
L, C = cosh(p#), S = sinh(p#).

The resulting constraint (2) is the stability criterion as a set of algebraic
(in)equalities, with parameters L and p that can be expressed as reusable com-
ponents in CoDeL.

(3) Discretization of the stability function. Since Equation (2) contains nonlinear op-
erations that are not supported by all solvers, we alternatively can compute the
trajectory of the stability function offline. The result is a table that describes the
design space over n fixed regions (hi,1, hi,2) × (pi,1, pi,2), which can be expressed
as a conjunct set of assertions: isstable(h, p) = (h1,1 ≤ h ≤ h1,2) ∧ (p1,1 ≤ p ≤
p1,2)

∧
· · ·

∧
(hn,1 ≤ h ≤ hn,2) ∧ (pn,1 ≤ p ≤ pn,2) which can be expressed as one long

conjunct statement in the property model of CA.

Experiments and discussion. As one result of this short survey, we obtained three
reusable blocks in CoDeL—all designed by control experts—to assess isstable. This
demonstrates the expressiveness of CoDeL to describe complex over-functional at-
tributes. To test the stability functions, we executed experiments with 100 physical
systems (pendulum length 0.01m to 1.0m) and 100 sampling rates (1ms to 100ms).
Taking the simulation results as benchmarks, the nonlinear stability function is 99.9%
accurate but is three orders of magnitude faster. The discretized models with 20 fix
points is 99.0% correct and is about five orders of magnitude faster than the simula-
tion. Based on the beneficial trade-off, we applied the discretized approach for the full
mapping example described next.

5.4.2. Mapping of Distributed Control Systems. In this section we extend the single pen-
dulum control system to a system of distributed control applications that should be
mapped on available processing units (PUs). The experiment is inspired by the work
in Aminifar et al. [2013]. We select a set of control applications (inverted pendulum,
falling ball, servos), which each require a physical subsystem and a control implemen-
tation. The control applications, expressed as KPN, have to be mapped to a shared
computation platform. The goal for each system is to find a suitable set of PUs (se-
lection), map the tasks to the PUs (binding), and parameterize the sampling rate and
intercommunication network to satisfy the timing and resource requirements of the
CAs.

The example reuses the concepts described in the previous sections: jobs are ex-
pressed as KPNs, each of the tasks of the jobs needs a specific set of instructions and
has to be mapped on a platform consisting of PUs and interconnects (see XGRID exam-
ple). The intertask constraints are evaluated as shown in Figure 5, that is, we assume
an earliest deadline first (EDF) scheduler with a set of tasks running at a constant
sampling rate. As a schedulability test we can evaluate the density of the combined

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:22 S. Peter and T. Givargis

Fig. 9. Example for a mapping problem. Two control applications (CA1, CA2), implemented as a sequential
set of tasks should be mapped on shared processing units (PU1-3) and its interconnect network (X). Tasks
need access to interfaces that can only be provided by a subset of the PUs (indicated by red arrows).

Table I. Performance Results for the Mapping Test Cases

CAs,Tasks,PUs INT1 INT2 SMT assertions
5, 25, 4 240 sec 1 sec <1 sec 510
7, 50, 5 - 5 sec 1 sec 2100
9, 100, 6 - 220 sec 14 sec 8700

task set: " =
∑n

i=1 ci/pi ≤ 1, where ci is the computation time and pi is the constant
period [Zhang and Burns 2009]. The stability of the CA is modeled as a discretized
stability function.

As a major addition in this example, tasks may require access to physical interfaces,
such as sensors (e.g. angle encoder) and actuators (e.g. motor). Therefore, each task
states the needed type of interface, and each PU has a list of physical interfaces
(sensors, actuators) it can serve.

An example for two CAs (with three and four tasks) and three PUs is illustrated in
Figure 9. In the figure, Task T3 from CA1 needs the left actuator, while T1 needs the
specific sensor. This relation is illustrated by the thin red arrow.

Experiment and Discussion. For the experiment, we generated random design spaces
of variable size, physical properties, PU utilization rate, and resource contention, uti-
lizing the available set of components stored in the project repository. The tests were
performed with a 60% PU system utilization rate, which corresponds to the rate in
similar industrial applications [Zhu et al. 2012]. To evaluate the performance and scal-
ability of our approach, we compared systems of variable sizes with three approaches:
(INT1), a classic backtracking algorithm, that assembles a system along the interfaces
and assesses system properties for complete systems, (INT2), which utilizes an early
conflict detection mechanism to identify conflict clauses in the property model early in
the search, and (SMT), the encoding and solving with the Z3 SMT solver.

We conducted experiments containing design spaces of medium size (25 tasks) up to
a relatively large complexity (100 tasks). The generation of the SMT program required
about 5 seconds for the largest of the tested systems, which included 8700 assertions.
The required time to solve the mapping problem and the number of assertions as
part of the SMT program are shown in Table I. The results confirm that the SMT
solver clearly has the best performance and shows the best scalability. INT2 is still two
orders of magnitude faster than INT1, which could not finish the search for the larger

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:23

problems within the five-minute time limit we set for the tests. However, INT2 is still
significantly slower than the SMT solver. The advantage of the internal algorithm,
compared to an external solver, is the improved user experience, since the internal
solver allows direct interactive analysis and an improved conflict analysis. In contrast,
the output from the SMT solver is often limited to SAT (yes) or UNSAT (no) with a set
of assignments or error clause, respectively.

5.5. Discussion
The examples discussed in this section, first, demonstrate various aspects of the appli-
cation of SCT, CoDeL, and SMT, and second, facilitate a study of the desired criteria
usability, expressiveness, reusability, and scalability. In this section, we summarize the
results and discuss strengths and weaknesses of our approach.

Usability. One claim of our work is the easier application of CoDeL compared to
a direct description of solver programs. While the choice of a high-level abstraction
naturally benefits this claim, we conducted an experiment to gain objective data in
this matter. We asked 21 students and researchers in the area of embedded systems
to understand and extend a system model described in SMT and CoDeL. For the small
scheduling use case (see Section 5.2) the requested modifications are: Job 3 has an
additional task (T33) that should be mapped to PU1. The delay of T33 is 3. The total
allowed time should be 10.

One correct addition for the SMT Equation (1) is

t3,3 ≥ 0 ∧ t3,3 ≥ t3,2 + 3 ∧ 10 ≥ t1,2 + 1 ∧ 10 ≥ t2,2 + 1 ∧ 10 ≥ t3,3 + 3∧
(t1,1 ≥ t3,3 + 3 ∨ t3,3 ≥ t1,1 + 2) ∧ (t2,1 ≥ t3,3 + 3 ∨ t3,3 ≥ t2,1 + 3).

(3)

The changes in Equation (3) are minimal, but require in-depth knowledge of the equa-
tion, and significant attention in setting the indices.

The required modifications of the CoDeL model in Figure 5 are more practical:

—duplicate one task (T32) and name it to T33;
—add a new port t3 to J3 and add support for t3 in the property model

(t3.start>=t2.end)—or replace J3 with a three-task job from the repository;
—connect T33 to J3 and PU1;
—change the allowed end time in Top from 8 to 10.

Using feedback from participants, we determined that more than 80% of the responses
had the correct adaptation of the CoDeL model, requiring between 1 and 5 minutes
to complete the task. In spite of the good results, most answers stated uncertainty
on the semantics of CoDeL. In contrast, the equation-based model had the preferred
semantics, but less than 30% of the responses were correct, and the stated required time
varied between 4 and 15 minutes. The results of this study confirm that even scholars
who are trained to express their problems in the form of mathematical clauses, are
significantly more confident in expressing the problem space in the form of components,
properties, and constraints—as provided by CoDeL. The lack of semantics in CoDeL at
this point of development is expected and has been discussed in Section 3.3.

Reusability. Improved usability facilitates extensibility and reusability of existing
systems and components. In our examples we showed three kinds of reusability.

—Reusability of components and models developed by external domain experts. With
the pendulum use case, we showed how complex overfunctional assessment models
can be used by system engineers as black boxes in CoDeL. This property is required
to enable the separation of concerns, needed for large systems.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:24 S. Peter and T. Givargis

—Extensibility of a system. The XGRID example showed, step by step, how a large
system can be gradually developed and studied starting from small parts of the
system, concluding with a complete implementation.

—Reusability of components between projects. The distributed control application ex-
ample reuses components from the XGRID, pendulum, and scheduler examples and
extends them with a shared resource model.

All three kinds of reusability are essential for the development of large systems, for
which we could demonstrate an advancement of the practical application compared
to mathematical languages. In this regard, however, one disadvantage of CoDeL at
this point of development is the lack of guidelines and catalogs of supported com-
ponents and properties, which has to be addressed in order to foster reusability in
practice.

Expressiveness. In particular, the pendulum example demonstrated alternatives in
the expression of nontrivial structural and overfunctional properties, based on the
concepts introduced in Section 3.3. While so far only a few models are practically imple-
mented in CoDeL, we can reuse a large set of existing equation-based and simulation-
based models (see Section 3.3.2). The models are exposed to model-specific precision-
to-effort-trade-offs, which have to be studied, similar to the pendulum study, case by
case in future work.

Scalability. With the XGRID configuration and the distributed mapping examples we
could study the performance and scalability of the CoDeL/SMT approach. In particular
the discussed real-time system of up to 100 tasks on a many-core platform corresponds
in size to typical industrial use cases, for instance, in the automotive industry where
dozens of jobs have to be mapped to a network of EPUs [Zhang and Burns 2009]. For
these examples we could see that, first, our approach performs significantly better com-
pared to alternative internal solvers, and second, that even very large SMT programs
can be parsed and solved within a few seconds. These observations were expected and
in fact motivated the work of this article but they also trigger a range of follow-up
questions.

First, can we further improve the solving performance with a more efficient encod-
ing? Bjørner [2011] showed that the encoding impacts the solver performance signif-
icantly. But so far, no general guidelines or rules are available to define an optimal
SMT program. The encoding presented in this article was not subject to optimizations.
Algorithm 3 evidently results in an overhead of assertions in the SMT program. For
the small scheduling case (Section 5.2), the hand-written SMT program had less than
half as many assertions as the generated program (15 to 36). In an extended test,
we manually optimized redundant assertions and merged variables for the XGRID use
case. In particular, the binding rules (R8) produce many of those invariant equalities to
describe the hardware structure, which in XGRID is fixed. Our test could identify only
a marginal performance gain (<2%), which originates from the initial input processing
and optimization phase of the solver. The actual model finding phase, which entails the
complex search process, was not impacted by the reduction of assertions.

A second idea to improve the performance, is to support the solver in finding a
solution faster by adding model knowledge, heuristics, and hints. To test this idea for
the XGRID case, we enforced the process with the highest connectivity to a core in
the center of the system, where the processors with the best connectivity are located.
In this experiment, we could reduce the average time to find a solution by up to 15%
for the 16-core setup. This outcome was expected since we reduced the complexity
of the design space. The risk is, however, that our heuristic is wrong, leading to an

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:25

unsatisfiable design situation, or unnecessarily constrains the design space, which
would extend the run-time of the solver.

Another reason for the good performance of SMTs, is that satisfiability solvers only
look for one satisfiable solution instead of delivering an optimal one.

Model optimization. Even though today’s SMT solvers return only one satisfying
model, which usually is not the optimal one, SMT solvers can be utilized to find optimal
solutions, as for example discussed by Nieuwenhuis and Oliveras [2006]. The general
idea is to successively tighten a cost constraint until the solver fails to find a solution.
Practically, the idea of optimizing SMTs has been discussed and implemented by
Nieuwenhuis and Oliveras [2006], Sebastiani and Tomasi [2012], and Li et al. [2014].
While the first two approaches require specific solvers and input languages, the latter
(SYMBA) uses an unmodified Z3 as black box and the SMT-LIB2 syntax, which we use
in this article as well. SYMBA supports multiple cost functions, which allows one to
cover typical performance and cost trade-offs in the design. While the practicality of
using SMT optimizers still has to be studied in future work, SYMBA is a very promis-
ing step to complement the results of our article: a system expressed in CoDeL and
translated into SMT can be directly analyzed and optimized using SYMBA.

6. CONCLUSIONS
In this article we showed how the performance of the Satisfiability Modulo Theory
(SMT) can be systematically harnessed to solve general system synthesis problems in
the domain of embedded systems. We described CoDeL—a generic component-based
description language to express the structure and properties of individual building
blocks of the embedded system, such as tasks, resources, sensors, or actuators. These
reusable component models can be leveraged to compose complex designs, respecting
the design variabilities such as component selection, component connection, and pa-
rameterization. Our proposed SMT encoding algorithm translates system models that
can be expressed using CoDeL, to SMT programs that can be solved with state-of-the-
art SMT solvers. The key contribution of the encoding scheme is the definition of the
design space over possible bindings between the parameterizable blocks. We applied
this SMT encoding to scheduling and process mapping examples and demonstrated
that our approach can streamline the modeling of design problems and improve the
performance in exploring large design spaces.

As a result, we could replace the technicality of solving and analyzing the design
space of embedded systems with actual model and system building. Designers may
build new systems and add new models on design viewpoints without having to be
concerned about how to solve them or how to describe the constraint programs.

REFERENCES
Siddharth Agarwal and Amey Karkare. 2013. Functional SMT solving with Z3 and racket. In Proceedings of

the 1st FME Workshop on Formal Methods in Software Engineering (FormaliSE). 15–21.
Amir Aminifar, Petru Eles, Zebo Peng, and Anton Cervin. 2013. Control-quality driven design of cyber-

physical systems with robustness guarantees. In Proceedings of Design, Automation and Test in Europe
(DATE).

Clark Barrett, Silvio Ranise, Aaron Stump, and Cesare Tinelli. 2013. The satisfiability modulo theories
library (SMT-LIB). www.SMT-LIB.org.

Victor Berman. 2006. Standards: The P1685 IP-XACT IP metadata standard. IEEE Des. Test Comput. 23, 4,
316–317.

Nikolaj Bjørner. 2011. Engineering theories with Z3. In Proceedings of the 9th Asian Symposium on Pro-
gramming Languages and Systems (APLAS). Springer, 4–16.

Paraskevas Bourgos, Ananda Basu, Marius Bozga, Saddek Bensalem, Joseph Sifakis, and Kai Huang. 2011.
Rigorous system level modeling and analysis of mixed HW/SW systems. In Proceedings of the ACM-IEEE
International Conference on Formal Methods and Models for Codesign (MEMOCODE).

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

49:26 S. Peter and T. Givargis

Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. 2010. The openSMT solver. In
Tools and Algorithms for the Construction and Analysis of Systems, Springer, 150–153.

Michael R. Bussieck and Alex Meeraus. 2004. General algebraic modeling system (GAMS). In Modeling
Languages in Mathematical Optimization. Springer, 137–157.

Werner Damm, Angelika Votintseva, Alexander Metzner, Bernhard Josko, Thomas Peikenkamp, and Eckard
Böde. 2005. Boosting reuse of embedded automotive applications through rich components. In Proceed-
ings of Foundations of Interface Technologies (FIT).

Luca De Alfaro and Thomas A. Henzinger. 2001a. Interface automata. ACM SIGSOFT Softw. Eng. Notes 26,
5, 109–120.

Luca De Alfaro and Thomas A. Henzinger. 2001b. Interface theories for component-based design. In Embed-
ded Software. Springer, 148–165.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 337–340.

Leonardo De Moura and Nikolaj Bjørner. 2011. Satisfiability modulo theories: Introduction and applications.
Commun. ACM 54, 9, 69–77.

Patricia Derler, Edward Lee, Martin Törngren, and Stavros Tripakis. 2013. Cyber-Physical System Design
Contracts. In Proceedings of the ACM/IEEE International Conference on Cyber-Physical Systems.

Juraj Feljan, Luka Lednicki, Josip Maras, Ana Petricic, and Ivica Crnkovic. 2009. Classification and sur-
vey of component models. Tech. Rep. ISSN 1404-3041 ISRN MDH-MRTC-242/2009-1-SE. http://www.
es.mdh.se/publications/254-

Robert Fourer, David M. Gay, and Brian W. Kernighan. 1989. AMPL: A mathematical programming language.
In Algorithms and Model Formulations in Mathematical Programming, Springer, 150–151.

Daniel D. Gajski, Samar Abdi, Andreas Gerstlauer, and Gunar Schirner. 2009. Embedded System Design:
Modeling, Synthesis and Verification. Springer Science & Business Media.

Matthias Gries. 2004. Methods for evaluating and covering the design space during early design development.
Integration VLSI J. 38, 2, 131–183.

Volkan Gunes and Tony Givargis. 2014. XGRID: A scalable many-core embedded processor. In Proceedings
of the IEEE International Conference on Embedded Software and Systems (ICESS).

Christine Hang, Panagiotis Manolios, and Vasilis Papavasileiou. 2011. Synthesizing cyber-physical architec-
tural models with real-time constraints. In Computer Aided Verification, Springer, 441–456.

Christian Haubelt and R. Feldmann. 2003. SAT-based techniques in system synthesis. In Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition. IEEE, 1168–1169.

Julien Henry, Mihail Asavoae, David Monniaux, and Claire Maı̈za. 2014. How to compute worst-case execu-
tion time by optimization modulo theory and a clever encoding of program semantics. In Proceedings of
the Conference on Languages, Compilers and Tools for Embedded Systems (LCTES). 43–52.

Joachim Keinert, Martin Streubühr, Thomas Schlichter, Joachim Falk, Jens Gladigau, Christian Haubelt,
Jürgen Teich, and Michael Meredith. 2009. SystemCoDesigneran automatic ESL synthesis approach by
design space exploration and behavioral synthesis for streaming applications. ACM Trans. Des. Autom.
Electron. Syst. 14, 1.

Pratyush Kumar, Devesh B. Chokshi, and Lothar Thiele. 2013. A satisfiability approach to speed assignment
for distributed real-time systems. In Proceedings of the Conference on Design, Automation, and Test in
Europe. 749–754.

Luka Lednicki, Jan Carlson, and Kristian Sandström. 2013. Model level worst-case execution time analysis
for IEC 61499. In Proceedings of the 16th International ACM SIGSOFT Symposium on Component-Based
Software Engineering (CBSE).

Philip Levis, Sam Madden, Joseph Polastre, et al. 2005. TinyOS: An operating system for sensor networks.
In Ambient Intelligence, Springer, Berlin, 115–148.

Yi Li, Aws Albarghouthi, Zachary Kincaid, Arie Gurfinkel, and Marsha Chechik. 2014. Symbolic optimization
with SMT solvers. In Proceedings of the 41st Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. 607–618.

Weichen Liu, Zonghua Gu, Jiang Xu, Xiaowen Wu, and Yaoyao Ye. 2011. Satisfiability modulo graph theory
for task mapping and scheduling on multiprocessor systems. IEEE Trans. Parallel Distrib. Syst. 22, 8,
1382–1389.

Martin Lukasiewycz, Michael Glaß, Christian Haubelt, and Jürgen Teich. 2008. Efficient symbolic multi-
objective design space exploration. In Proceedings of the Asia and South Pacific Design Automation
Conference.

Panagiotis Manolios and Vasilis Papavasileiou. 2013. ILP modulo theories. In Computer Aided Verification,
Springer, 662–677.

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

Component-Based Synthesis of Embedded Systems Using Satisfiability Modulo Theories 49:27

Jose A. Martin, Fabio Martinelli, Ilaria Matteucci, Ernesto Pimentel, and Mathieu Turuani. 2014. On the
synthesis of secure services composition. In Engineering Secure Future Internet Services and Systems,
140–159.

Hamid Mirzaei, Steffen Peter, and Tony Givargis. 2015. Including variability of physical models into the
design automation of cyber-physical systems. In Proceedings of the Design Automation Conference (DAC).

Nina Mühleis, Michael Glaß, Liyuan Zhang, and Jürgen Teich. 2011. A Co-simulation approach for control
performance analysis during design space exploration of cyber-physical systems. SIGBED Rev. 8, 2,
23–26.

Himanshu Neema, Zsolt Lattmann, Patrik Meijer, James Klingler, Sandeep Neema, Ted Bapty, Janos
Sztipanovits, and Gabor Karsai. 2014. Design space exploration and manipulation for cyber physi-
cal systems. In Proceedings of the Workshop on Design Space Exploration of Cyber-Physical Systems
(IDEAL).

Robert Nieuwenhuis and Albert Oliveras. 2006. On SAT modulo theories and optimization problems. In
Theory and Applications of Satisfiability Testing-SAT, Springer, 156–169.

Pierluigi Nuzzo, Huan Xu, Necmiye Ozay, John B. Finn, Alberto L. Sangiovanni-Vincentelli, Richard M.
Murray, Alexandre Donz, and Sanjit A. Seshia. 2014. A contract-based methodology for aircraft electric
power system design. IEEE Access, 2, 1–25.

Steffen Peter, Krzysztof Piotrowski, and Peter Langendorfer. 2008. In-network-aggregation as case study for
a support tool reducing the complexity of designing secure wireless sensor networks. In Proceedings of
the 33rd IEEE Conference on Local Computer Networks (LCN).

Felix Reimann, Michael Glaß, Christian Haubelt, Michael Eberl, and Jürgen Teich. 2010. Improving
platform-based system synthesis in the presence of stringent real-time constraints. In Proceedings
of the Design Automation Conference (DAC).

Felix Reimann, Martin Lukasiewycz, Michael Glass, Christian Haubelt, and Jürgen Teich. 2011. Symbolic
system synthesis in the presence of stringent real-time constraints. In Design Automation Conference
(DAC).

Alberto Sangiovanni-Vincentelli and Grant Martin. 2001. Platform-based design and software design
methodology for embedded systems. IEEE Des. Test Comput. 18, 6, 23–33.

Bernard Schmidt, Carlos Villarraga, Jörg Bormann, Dominik Stoffel, Markus Wedler, and Wolfgang Kunz.
2013. A computational model for SAT-based verification of hardware-dependent low-level embedded
system software. In Proceedings of ASP-DAC.

Roberto Sebastiani and Silvia Tomasi. 2012. Optimization in SMT with LA(Q) Cost Functions. In Automated
Reasoning, Springer, 484–498.

Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carlson, and Ivica Crnković. 2008. A component
model for control-intensive distributed embedded systems. In Proceedings of Component-Based Software
Engineering (CBSE). 310–317.

Timothy E. Sheard. 2012. Painless programming combining reduction and search: Design principles for
embedding decision procedures in high-level languages. ACM SIGPLAN Notices 47, 9, 89–102.

Simulink. 2013. Simulation and Model-Based Design. http://www.mathworks.com/products/simulink/.
Petre Stoica and Randolph L. Moses. 1992. On the unit circle problem: The Schur-Cohn procedure revisited.

Signal Process. 26, 1, 95–118.
Nikola Trcka, Martijn Hendriks, Twan Basten, Marc Geilen, and Lou Somers. 2011. Integrated model-

driven design-space exploration for embedded systems. In Proceedings of Embedded Computer Systems
(SAMOS).

A. Vachoux, C. Grimm, and K. Einwich. 2003. SystemC-AMS requirements, design objectives and rationale.
In Proceedings of the Design, Automation and Test in Europe Conference and Exhibition. IEEE, 388–393.

Fengxiang Zhang and Alan Burns. 2009. Schedulability analysis for real-time systems with EDF scheduling.
IEEE Trans. Comput. 58, 9, 1250–1258.

Lintao Zhang, Conor F. Madigan, Matthew H. Moskewicz, and Sharad Malik. 2001. Efficient conflict driven
learning in a Boolean satisfiability solver. In Proceedings of the IEEE/ACM International Conference on
Computer-Aided Design. 279–285.

Qi Zhu, Haibo Zeng, Wei Zheng, Marco DI Natale, and Alberto Sangiovanni-Vincentelli. 2012. Optimization
of task allocation and priority assignment in hard real-time distributed systems. ACM Trans. Embed.
Comput. Syst. 11, 4 (2012), 85.

Received September 2014; revised December 2014, February 2015; accepted March 2015

ACM Transactions on Design Automation of Electronic Systems, Vol. 20, No. 4, Article 49, Pub. date: September 2015.

