
ORIGINAL RESEARCH
published: 04 February 2022

doi: 10.3389/fnins.2022.757125

Frontiers in Neuroscience | www.frontiersin.org 1 February 2022 | Volume 16 | Article 757125

Edited by:

Mostafa Rahimi Azghadi,

James Cook University, Australia

Reviewed by:

Haitong Li,

Stanford University, United States

Keshab K. Parhi,

University of Minnesota Twin Cities,

United States

*Correspondence:

Mohsen Imani

m.imani@uci.edu

Specialty section:

This article was submitted to

Neuromorphic Engineering,

a section of the journal

Frontiers in Neuroscience

Received: 11 August 2021

Accepted: 03 January 2022

Published: 04 February 2022

Citation:

Poduval P, Alimohamadi H, Zakeri A,

Imani F, Najafi MH, Givargis T and

Imani M (2022) GrapHD:

Graph-Based Hyperdimensional

Memorization for Brain-Like Cognitive

Learning. Front. Neurosci. 16:757125.

doi: 10.3389/fnins.2022.757125

GrapHD: Graph-Based
Hyperdimensional Memorization for
Brain-Like Cognitive Learning

Prathyush Poduval 1, Haleh Alimohamadi 2, Ali Zakeri 3, Farhad Imani 4, M. Hassan Najafi 5,

Tony Givargis 3 and Mohsen Imani 3*

1 Indian Institute of Science, Bangalore, India, 2Department of Bioengineering, University of California, Los Angeles, Los

Angeles, CA, United States, 3Department of Computer Science, University of California, Irvine, Irvine, CA, United States,
4Department of Mechanical Engineering, University of Connecticut, Storrs, CT, United States, 5 School of Computing and

Informatics, University of Louisiana, Lafayette, LA, United States

Memorization is an essential functionality that enables today’s machine learning

algorithms to provide a high quality of learning and reasoning for each prediction.

Memorization gives algorithms prior knowledge to keep the context and define

confidence for their decision. Unfortunately, the existing deep learning algorithms have

a weak and nontransparent notion of memorization. Brain-inspired HyperDimensional

Computing (HDC) is introduced as a model of human memory. Therefore, it

mimics several important functionalities of the brain memory by operating with a

vector that is computationally tractable and mathematically rigorous in describing

human cognition. In this manuscript, we introduce a brain-inspired system that

represents HDC memorization capability over a graph of relations. We propose

GrapHD, hyperdimensional memorization that represents graph-based information in

high-dimensional space. GrapHD defines an encoding method representing complex

graph structure while supporting both weighted and unweighted graphs. Our encoder

spreads the information of all nodes and edges across into a full holistic representation so

that no component is more responsible for storing any piece of information than another.

Then, GrapHD defines several important cognitive functionalities over the encoded

memory graph. These operations include memory reconstruction, information retrieval,

graph matching, and shortest path. Our extensive evaluation shows that GrapHD:

(1) significantly enhances learning capability by giving the notion of short/long term

memorization to learning algorithms, (2) enables cognitive computing and reasoning over

memorization graph, and (3) enables holographic brain-like computation with substantial

robustness to noise and failure.

Keywords: brain-inspired computing, hyperdimensional computing (HDC), neuromorphic computing, machine

leaning, memorization

1. INTRODUCTION

We face increasing needs for efficient processing for diverse cognitive tasks using a vast volume
of generated data (Bonomi et al., 2012; Chen and Lin, 2014). Therefore, there is a crucial need
for scalable algorithms to learn and reason about each prediction on today’s embedded devices.
Particularly, memorization is an essential functionality that enables today’s algorithms to provide

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2022.757125
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2022.757125&domain=pdf&date_stamp=2022-02-04
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:m.imani@uci.edu
https://doi.org/10.3389/fnins.2022.757125
https://www.frontiersin.org/articles/10.3389/fnins.2022.757125/full

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

a higher quality of learning and reason for each prediction
or decision. Memorization gives learning and information
processing algorithms prior knowledge to keep the context and
define confidence. Unfortunately, existing deep learning
algorithms have a weak and nontransparent notion of
memorization. Although Recurrent Neural Network (RNNs)
and Long Short-Term Memory networks (LSTMs) incorporate
memorization, they are very difficult to train and still not fully
transparent to explore on prior knowledge (Pascanu et al., 2013;
Sodhani et al., 2020).

There are also other crucial challenges with existing
memorization techniques. Running algorithms that incorporate
memorization (e.g., RNNs and LSTMs) often results in extremely
slow processing speed and high energy consumption or needs
a large cluster of application-specific integrated chips (ASIC),
e.g., deep learning on Google TPU (Jouppi et al., 2017). This
computation complexity is beyond the capability of resource-
constraint embedded devices. In addition, edge devices often rely
on unreliable battery-based sources, fault-tolerant memory and
logics, and noisy wireless communication (Van Kranenburg and
Bassi, 2012; Lee and Lee, 2015). Unfortunately, today’s algorithms
require high precision training and have almost no robustness
to such noise and failure. For example, the existing RNNs
and LSTMs require high-precision floating-point representation
to train (Courbariaux et al., 2014; Micikevicius et al., 2017).
This makes these algorithms highly sensitive to possible noise
or failure.

Recently, HyperDimensional Computing (HDC) has been
introduced as an alternative computational model that mimics
important brain functionalities toward high-efficiency and noise-
tolerant computation (Kanerva, 2009). Unlike deep learning,
HDC is a model of the Cerebellum cortex that biologically
represents humanmemory. HDC ismotivated by the observation
that the cerebellum cortex operates on high-dimensional data
representations (Zou et al., 2021a). In HDC, objects are thereby
encoded with high-dimensional vectors, called hypervectors,
which have thousands of elements (Rahimi et al., 2016b; Imani
et al., 2017a, 2019b). HDC incorporates learning capability along
with typical memory functions of storing/loading information. It
mimics several important functionalities of the human memory
model with vector operations which are computationally
tractable and mathematically rigorous in describing human
cognition. The natural memorization capability enables HDC
to provide several advantages as compared to the conventional
deep learning solutions: (1) HDC is suitable for on-device
learning based on hardware acceleration due to its highly parallel
nature (Li et al., 2016; Imani et al., 2017b; Hernández-Cano et al.,
2021b), (2) hidden features of information can be well-exposed,
thereby empowering both training and inference with the light-
weight computation and a small number of iterations (Rahimi
et al., 2016a; Mitrokhin et al., 2019), and (3) the hypervector
representation inherently exhibits strong robustness against the
noise and corrupted data (Imani et al., 2017b; Frady and Sommer,
2019; Frady et al., 2020).

HDC has been employed as a part of many applications,
including genomics (Kim et al., 2020; Poduval et al., 2021a),

signal processing (Karunaratne et al., 2021), robotics (Mitrokhin
et al., 2019; Neubert et al., 2019), and sensor fusion (Räsänen
and Saarinen, 2015), manufacturing (Chen et al., 2021), and
detection/recognition tasks (Genssler and Amrouch, 2021).
Although HDC is a memory model, existing algorithms do not
well exploit HDC memorization capability. For example, in all
existing HDC algorithms, memorization has a weak definition
of information accumulation. However, as has been shown by
neuroscientists, the brain has a more complex definition (O’reilly
and Munakata, 2000; Hassabis et al., 2017; Chai et al., 2018).
Our brain naturally clusters data and represents information as
a graph structure, where objects and edges show the correlation
between objects (Wiecki et al., 2015; Bassett and Sporns, 2017).
Over time, these memory graphs get larger and more complex
while the brain automatically forgets or approximates old
information (Chien and Honey, 2020). In addition, the brain
has a highly approximate but ultra-fast mechanism to retrieve
information (Schacter and Slotnick, 2004). Although we can
implement and represent a graph using existing database and
graph processing systems (Lumsdaine et al., 2007; Sahu et al.,
2017), such a system will be highly complex, costly, non-scalable,
and far from biological systems.

Prior research works have already attempted to use vector
symbolic architecture and hyperdimensional computing to
represent and process graph knowledge. Work in Gayler (1998)
exploited hyperdimensional computing for graph representation.
This method is designed specifically for graph isomorphism
and cannot support complex information extraction from graph
representation. Work in Ma et al. (2018) used holographic
reduced representation (HRR) to map graphs into high-
dimensional space. However, this approach relies on external
learning algorithms, i.e., neural networks, to extract knowledge
from the graph. As a result, the HRR encoding mainly acts as
a latent space encoding rather than a memory to store graph
information. Another existing direction focused on finding a
graph embedding in real vector space (Nickel et al., 2016).
By characterizing the similarity of the nodes using some loss
function, the dot product between vectors is proportional to the
similarity, which can be used for knowledge learning. However,
this approach is quite costly as it requires gradient descent. In
addition, it is not suitable for graph memorization.

This paper defines a brain-inspired system that better
represents HDC memorization capability. We introduce,
GrapHD, a graph-based hyperdimensional system that encodes
graphs into high-dimensional space and enables reasoning on
that graph. We use high-dimensional vectors to holographically
represent the nodes and memorize the graph. GrapHD enables
several cognitive functionalities to operate over compressed
encoded graph directly. The main contributions of the paper are
listed as follow:

• GrapHD defines an encoding method that represents complex
graph-based data structure into high-dimensional space.
GrapHD supports a wide range of memory graphs, including
weighted and unweighted graphs. Our encoder spreads the
information of all nodes and edges across into a full holistic
representation so that no component is more responsible for

Frontiers in Neuroscience | www.frontiersin.org 2 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

storing any piece of information than another. This brain-
like holographic representation enables us to define highly
efficient and robust cognitive operations over the encoded
graph without accessing original data.

• Using this memorization model, we introduce an inference
process that can be used to recover the graph information
from graph hypervector. Our reconstruction process is
iterative in nature and relies on noise prediction and
cancellation. GrapHD defines several important cognitive
functionalities over the encoded memory graph. These
operations include memory reconstruction, information
retrieval, graph matching, and shortest path.

• We propose the idea of graph refinement that increases the
capacity of memorization. Inspired by human memorization,
refinement iteratively checks and strengthens the already
known knowledge. This ensures that the known information,
e.g., graph nodes and their connections, is well memorized.
We design a statistical model that mathematically defines
the capacity of a hypervector to perform the tasks
mentioned earlier.

• We also develop an in-memory architecture that operates
as a tensor processor to accelerate GrapHD computation.
Our architecture supports row-parallel NOR-based operation
over binary vectors stored in non-volatile memory. Then, we
extend it to enable complex operations and accelerate various
GrapHD applications.

We evaluate GrapHD on a wide range of applications. Our
evaluation shows thatGrapHDmemorization capability not only
enhances the reasoning capability of existing machine learning
systems but also improves the learning accuracy. For example,
we offer GrapHD application to enhance the existing CNN
model for the object detection task. Our results show that
GrapHD achieves 3.8× faster training and 1.7× faster inference
than RNN, while ensuring the same classification accuracy. Our
evaluation also shows that our in-memory accelerator achieves
30.4× faster and 61.5× higher energy efficiency as compared
to NVIDIA 1080 GPU. We also run GrapHD operations with
the Nengo SPA module (Bekolay et al., 2014) to simulate how
GrapHD can be adapted for Neuromorphic hardware, and use
it to run our novel error correcting decoding process. This
provides feasibility forGrapHDmodel to be used as the encoding
for Neuromorphic models of the brain. An example where
this can be used is SPAUN (Stewart et al., 2012), which is a
spiking neural network which can performmultiple tasks without
requiring re-wiring. SPAUN encodes the query information using
Semantic Pointer Architecture which is then fed into the neural
network, and GrapHD can be used as the encoder to better
memorize relationships and correlations thus expanding the
cognitive abilities of SPAUN. A few examples where a graph
representation is natural is analyzing relationships in social
media and knowledge graph representations (Pitas, 2016; Bi et al.,
2019; Chian et al., 2021). Our model can also be used in graph
constructions, where the Spiking Neural Network is supposed to
construct graph representations of data, or to construct certain
sub-graphs and clusters of an input graph based on certain rules
and correlations.

2. PRELIMINARY

Hyperdimensional Computing: The brain’s circuits are massive
in terms of numbers of neurons and synapses, suggesting
that large circuits are fundamental to the brain’s computing.
Hyperdimensional computing (HDC) (Kanerva, 2009) explores
this idea by looking at computing with ultra-wide words—that
is, with very high-dimensional vectors or hypervectors. The
fundamental units of computation in HDC are high dimensional
representations of data known as “hypervectors,” which are
constructed from raw signals using an encoding procedure. There
exist a huge number of different, nearly orthogonal hypervectors
with the dimensionality in the thousands (Kanerva, 1998; Ge
and Parhi, 2020). This lets us combine such hypervectors into
a new hypervector using well-defined vector space operations
while keeping the information of the two with high probability.
Hypervectors are holographic and (pseudo) random with
i.i.d. components. A hypervector contains all the information
combined and spread across all its components in a full holistic
representation so that no element is more responsible for storing
any piece of information than another.

In recent years, HDC or in general vector symbolic
architecture has been employed in a range of applications,
such as classification (Kanerva et al., 2000; Ge and Parhi,
2020; Zou et al., 2021b), activity recognition (Kim et al.,
2018), biomedical signal processing (Moin et al., 2021),
multimodal sensor fusion (Räsänen and Saarinen, 2015),
distributed sensors (Kleyko and Osipov, 2014; Kleyko et al.,
2018), voice recognition (Imani et al., 2017a), genomics (Kim
et al., 2020; Poduval et al., 2021a), regression (Hernández-
Cano et al., 2021a), and privacy (Hérnandez-Cano et al.,
2021). For example, work in Simpkin et al. (2017) used
vector symbolic architecture for representing and orchestrating
complex decentralized workflows.Work in Rallapalli et al. (2019)
developed a novel embedding mechanism for single graph nodes
that co-learns graph structure and textual descriptions. A key
HDC advantage is its training capability in one or few shots,
where object categories are learned from one or few examples
and in a single pass over the training data instead of many
iterations. HDC has achieved comparable to higher accuracy
compared to support vector machines (SVMs) (Rahimi et al.,
2018; Imani et al., 2019b), gradient boosting (Imani et al., 2019c),
and convolutional neural networks (CNNs) (Mitrokhin et al.,
2019), as well as lower execution energy on embedded processors,
compared to SVMs (Montagna et al., 2018), CNNs and long
short-term memory (Imani et al., 2019b).

Holographic Graph Representation: There are existing
research works focused on high-dimensional and holographic
graph representation. Work in Gayler and Levy (2009)
represented graphs in an HDC model by binding together
vertices to represent edges and adding the vectors together.
However, they specified only a single graph isomorphism
problem that can be solved using their model, without specifying
how their model can be generalized to solve additional problems.
On the other hand, ourmodel provides an end-to-end framework
to perform various operations and problems that can be solved
purely using HDC operations. Moreover, we also provide a novel

Frontiers in Neuroscience | www.frontiersin.org 3 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

method to recover the bundled information that is stored in the
graph memory. This method uses the iterative noise canceling
method, where the results at one iteration are used to guess
the noise in the next iteration. Additionally, we also discuss
a memory refinement process that can be used to expand the
capacity of our hypervectors.

Work in Ma et al. (2018) used holographic reduced
representation to map nodes into high-dimensional space. This
mapping, which is based on HRR, aims to learn graph as latent
space; thus, it does not explicitly memorize the graph. The
inference process is done using a 2-layered neural network. As
a result, this representation relies on a neural network and is
primarily suited for learning. In contrast, in our method, the
learning, inference, and memorization tasks can be performed
using native HDC operations. This makes our architecture
robust, efficient, and scalable and enables us to retrieve desired
information more transparently.

Work in Nickel et al. (2016) introduced a method to find an
embedding of a graph in a vector space. A graph embedding
is usually a learning process to find vector representations
of graphs such that the vectors representing two nodes are
correlated based on the nodes’ similarity within the graph. This
representation is obtained using the gradient descent method,
which is computationally costly. In addition, the vector generated
as graph representation has very low dimensionality, e.g., D =
150. In contrast, we define it entirely differently as we do
not find a graph embedding. Our solution chooses random
hypervectors to represent each node and uses them to build up
graph memory. Our model is able to represent information and
perform cognitive and inference operations using orthogonality
of random hypervectors. We only perform the tasks and
decoding using native HDC operations like bundling, binding,
and similarity search.

2.1. Hyperdimensional Primitives
Let us assume EH1, EH2 are two randomly generated hypervectors
(EH ∈ {−1,+1}D) and δ(EH1, EH2) ≈ 0 (δ is similarity metric
defined below).

Binding (∗) of two hypervectors EH1 and EH2 is done by
component-wise multiplication (XOR in binary) and denoted as
EH1 * EH2. The result of the operation is new hypervector that is
dissimilar to its constituent vectors i.e., δ(EH1 ∗ EH2, EH1) ≈ 0; thus
binding is well suited for associating two hypervectors. Binding
is used for variable-value association and, more generally,
for mapping.

Bundling (+) operation is done via component-wise addition
of hypervectors, denoted as EH1 + EH2. The bundling is
a memorization function that keeps the information of
input data into a bundled vector. The bundled hypervectors
preserves similarity to its component hypervectors, i.e., δ(EH1 +
EH2, EH1) >> 0. Hence, the majority function is well suited for
representing sets. Note that the vector that we get after bundling
will have integer components, and will be an element of ZD in
general. We do not clip the values of the components back to±1.

Permutation (ρ) operation, ρ(EH), shuffles components of
EH with a random permutation of the D components of the
hypervector, with ρp defined as ρ applied p times. The intriguing

property of the permutation is that it creates a near-orthogonal
and reversible hypervector to EH, i.e., δ(ρp(EH), EH) ≃ 0 when
p 6= 0 and ρ−p(ρp(EH)) = EH. Thus, we can use it to represent
sequences and orders.

Reasoning is done by measuring the similarity of
hypervectors. We denote the similarity with δ(EH1, EH2) =
EH1 · EH2/D, where EH1 and EH2 are two hypervectors, and · denotes
the dot product.

2.2. Motivation and Overview
As neuroscientists have already shown, the human brain
memorizes events as a sparse memory graph (Reijneveld et al.,
2007; George, 2008; Tijms et al., 2013), where nodes are the
objects/events, and the edges represent the correlation between
them. The brain does reasoning and analogy by referring to this
memory as prior knowledge. For example, as humans, when
we see a set of events or objects repeatedly occurring together,
these objects get a higher correlation in our graph memory. By
referring to this memory, we can identify the correlated objects,
make better decisions, and reason about them.

Although building up this graph is often easy, the main
challenges are: (1) how to effectively represent this graph to
enable highly efficient and robust brain-like memorization, and
(2) how to perform information retrieval and reasoning on such
representation. Unlike the existing graph processing algorithms
that perform costly exact computations, brain memorization and
cognitive computation are highly approximate and efficient.

In this paper, we propose GrapHD, a hyperdimensional
graph memory that enables robust, efficient, and holographic
cognitive learning. Figure 1 shows an overview of GrapHD.
GrapHD encodes various graph data into high-dimensional
space (Figure 1A). The encoding is based on a well-defined set of
mathematics introduced in Section 2.1. Our encoding represents
a graph using a single hypervector, where each dimension
represents a neuron. GrapHD enables a wide range of cognitive
operations directly over the graph hypervector (Figure 1B).
These cognitive operations extract information from the graph
without explicit access to original nodes. We exploit these
functionalities to enable several applications, including graph
matching, shortest path, and object detection (Figure 1C).

3. HYPERDIMENSIONAL GRAPH
REPRESENTATION

In this section, we explain how to represent graph structure
in high-dimensional space. We exploit hyperdimensional
mathematics, introduced in Section 2.1, to spread the
graph information across the fully holistic high-dimensional
representation. In this representation, no hypervector element
is more responsible for storing any piece of information than
another. Here, we explain how GrapHD encodes both weighted
and unweighted graphs.

3.1. Unweighted Undirected Graphs
Figure 2 shows the functionality of GrapHD encoding
representing unweighted graphs. We first assign a random
hypervector EHi to each node in the graph (Figure 2A).

Frontiers in Neuroscience | www.frontiersin.org 4 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

FIGURE 1 | GrapHD overview: (A) hyperdimensional graph encoding into a hypervector, (B) GrapHD cognitive operations, and (C) GrapHD applications.

Assuming a graph with V nodes and E edges, we generate
{ EH1, EH2, · · · , EHV} as high-dimensional signature of nodes,
where EHi is a D−dimensional hypervector whose components
are randomly chosen from the set {−1,+1}. Due to random
generation, the node hypervectors are nearly orthogonal:
δ(EHk, EHl) ≃ 0 (k 6= l), where δ denotes the similarity
defined in Section 2.1. This non-zero similarity is the
noise in our model which can result in misprediction.
The role of noise in our model is further elaborated in
Section 4.1.

We exploit the node hypervectors to create a memory for each
node. The node memory needs to remember all connections that
a particular node has to its neighbors (Figure 2B). For example,
we construct the node i memory by accumulating all node
hypervectors connected to it: EMi = ∑

j
EHj, where j represents

all the neighbors of node i. Thanks to HDC mathematics,
the bundling keeps the information of all connections. For
example, we can check if memory node i has connection to
node k using: δ(EMi, EHk), where δ ≫ 0 and δ ≃ 0 show
existence and non-existence, respectively. This is explained in
Section 4.1 in detail.

After generating a memory for each node, we construct
a single hypervector representing a graph. The graph
memory should memorize the information of nodes and
their connections. To this end, for each node, we associate
the node and memory hypervectors, e.g., EHi ∗ EMi for node i.
The bundling of all associated hypervectors generates a graph
memory (Figure 2C):

EG = 1

2

(EH1 ∗ EM1 + EH2 ∗ EM2 + · · · + EHV ∗ EMV

)

= 1

2

V
∑

i=1

EHi ∗ EMi

where the graph memory is a compressed, invertible, and
transparent model. Note that we have introduced a factor of
1
2 because if we expand the node memory, then EHi ∗ EHj and

EHj ∗ EHi will be counted twice. Given the graph memory EG, we
can reconstruct a local node memory using:

EHi ∗ EG = EMi + noise ≈ EMi

where this approximate equality holds true because the
HD vectors are randomly constructed; thus, they are
nearly orthogonal. Once we have the node memory, we
can check if nodes j and i are connected by calculating
the similarity R = δ(EHj, EMi), where R is termed as the
decision score. If there exists an edge between i and j,
then R ∼ 1. Otherwise, R ∼ 0.

3.2. Unweighted, Directed Graphs
We use a similar encoding method as an undirected graph to
build up each memory node. Since the graph is directed, each
memory only bundles the connections out of the node. These
memory nodes need to be combined to represent a graph. Unlike
a undirected graph, the memory needs to preserve the sequence
that nodes are connected together. Therefore, we construct the
graph memory as: EG = ∑n

i
EHi ∗ ρ EMi, where ρ is a permutation

that permutes the node memory once, which is used to preserve
the order of association. The edge between i and j is not treated
the same as the edge between j and i because the permutation
makes the binding a non-commutative operation. Therefore,
compared to undirected graphs, there is no factor 1

2 to construct
the graph memory for directed graphs.

3.3. Weighted Graphs
In weighted graphs, the connection between nodes is represented
using real values. To ensure holographic representation, our
encoding needs to first represent those weights into hypervectors.
Figure 3 shows GrapHD encoding for a node memory. Let us
assume all weights in graph are normalized values [0, 1). we
exploit stochastic representation to construct the vectors EVa

for a real number a ∈ [0, 1). We generate EV1 as a random
hypervector representing a value 1 and exploit that to generate
weight hypervectors. For example, we generate EVa by randomly
choosing (1− a)×D dimensions of EV1, and multiplying them by

Frontiers in Neuroscience | www.frontiersin.org 5 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

FIGURE 2 | Graph memory encoding in GrapHD: (A) node hypervector generation, (B) creating a node memory, and (C) graph memory generation.

FIGURE 3 | Node memory encoding in GrapHD for weighted graph: (A) node hypervector generation, (B) creating weight hypervectors, and (C) node memory

generation.

−1. We define this evaluation of EVa as: f (EVa) = δ(EVa, EV1)+1
2 =

a, where the final equality follows from the definition of EVa.
Although the randomness of weight hypervectors affects the
robustness, the randomnessmakes thismethod undesirable when
we look at the iterative method of decoding the node memory.
The key problem is that slightly different values a will result
in completely orthogonal vectors, which will eventually take up
a lot of capacity. To avoid the above drawbacks, we generate
EVa by flipping the components from (a × D)th to the Dth

component of EV1. We note that we round a × D to the closest
integer (Figure 3B). The evaluation function remains the same
and provides the same result as before. This encoding is purely
deterministic with respect to the weight value. Moreover, nearby
values will generate correlated orthogonal vectors. As a result,
we do not lose the capacity here and can represent a large set
of weights.

Using stochastic weight representation, we can construct the
node memory using EMi = ∑

j
EVwij ∗ EHj (Figure 3C). In this

manner, we can store the weights in a holographic way such that
the values of the weights do not bias the encoding. This is purely
done using an end-to-end compatible HD framework.

3.4. Graph Memory Refinement
The brain is weak in one-pass memorization, as we often need
multiple reviews of the same document to memorize the details.
HDC also may not memorize every detail of a graph by single-
time encoding and memorization (Gallistel and King, 2011; Ji
et al., 2020). To ensure the information is well-memorized,
HDC should look at a graph iteratively and strengthen nodes’
information and connection. We name this process as memory
refinement. In HDC, the model memorizes connections between
nodes by bundling together hypervectors that represent different
edges. However, these hypervectors are not perfectly orthogonal
with each other. As a result, during the decision process, when the
model calculates the similarity of a connection with the memory,
the noise from the different connections can accumulate. This
can lead to two possibilities: (1) the similarity of an existing node
goes below a decision threshold, and (2) the similarity of a non-
existing node goes above the threshold. These possibilities can
result in misprediction of the connection.

The problem is that given a node vector i, we need to recognize
which other nodes have vertices to node i. In other words,
we need to check which memory nodes include the node i

Frontiers in Neuroscience | www.frontiersin.org 6 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

hypervector. This can be done by calculating the similarity of all
memory nodes with node i hypervector:

Rij = δ
(EMj, EHi

)

where, Rij is called the decision score. As described in Section
4.1, if Rij is greater than T (called a decision threshold), then we

conclude that EHi exists in EMj. Our expectation is that all local
memories which include node i should get a higher similarity
than a threshold (R > T). The refinement procedure is done in
multiple iterations. In each iteration, we chose a node iwith node
hypervector EHi. Then, we go through the local memories of all
the nodes j and perform the following update procedure

EMj → EMj + EHi If Rij < T but j and i share an edge

EMj → EMj − EHi If Rij > T but j and i do not share an edge

By this operation, we aim to strengthen the memory of the
connections that are weakly memorized. However, refinement
may result in some other connections being mispredicted. To
prevent this, we perform memory refinement in an iterative
manner until we converge into a final memory model. Note that
the refined memory is an integer component hypervector.

Refinement is a process that is used in almost all other HD
problems too, and is more commonly called Retraining. Almost
all HD models require retraining to make them stronger in
memory. Usually, retraining is implemented in models that use
association search, where we match a query with multiple classes
(For example, in classification tasks). Then, we subtract the query
from the class with which it does not belong (with a factor
proportional to similarity) and we add the query to the class with
which it belongs if the similarity is not high enough. This results
in a large separation between the similarity of the matching
classes and mismatching classes with a query, which is the aim.

However, GraphHD uses a thresholding-based method to
check if an node or edge exists (Based on Section 4.1 and
4.3, respectively) in the graph memory. For this, we need
an alternative way of refinement which is different from the
retraining used in the traditional context. This is why in our
model we subtract or add the edge vector pairs to the graph
memory based on whether the similarity is above or below the
threshold, as described in the previous paragraph. Our aim here is
not to differentiate between the classes, but to separate the signal
distribution from the noise.

In Section 6.2, we show the impact of the memory
refinement on increasing the hypervector capacity to memorize
larger graphs.

4. ALGORITHMS WITH GraphHD
REPRESENTATION

We perform several important cognitive functionalities over the
memory graph to extract information or reason based on that.
We discuss a few key capabilities which have a wide range of
applications in robotic, genomics, signal processing, andmachine
learning. All tasks can be directly implemented over a single

graph memory hypervector without storing original nodes or
their connection. In other words, we will show how a single
graph hypervector can answer several cognitive questions in a
fast and efficient way. In the following, we demonstrate the
algorithms only for an undirected unweighted graphs. However,
the algorithms described can be extended to directed and
weighted graphs without much difficulty. For directed graphs, we
would have an additional step of applying an inverse permutation
when reconstructing the node memory from graph memory, and
using the permutation while checking existence of edge inside the
graph memory. For the weighted graphs, we need to recover the
weight of the edge using the similarity search, and then define
a reasonable threshold for the similarity above which we can
confidently conclude the edge actually exists inside the graph
(and that the measure similarity is not the noise). We generate
graphs randomly by first considering a fully connected graphs,
and then deleting a random but uniformly chosen set of edges.

4.1. Information Retrieval
The main objective of information retrieval is to extract
information about the edges connected to a node and the
information associated with each node. We devise a statistical
framework to study the errors and data recovery. Given the graph
memory EG, we can use this to reconstruct the node memory.
Using the node memory, we run inference to find the two main
quantities—the nodes that share an edge with the current node
and the information that has been associated with the current
node via binding.

First, we consider the task of identifying whether a node A
is connected to node B given the node memory EMA. The node

memory can be written as EMA = ∑dA
i=1

EHi, where EHi is the
hypervectors of all the nodes connected to A and dA is the degree
of the node A. If the hypervector of node B is given by EHB, then
we calculate the decision score R given by:

R = δ(EMA, EHB) =
dA∑

i=1,i6=B

δ(EHi, EHB)

︸ ︷︷ ︸

Noise

+ δ(EHB, EHB)
︸ ︷︷ ︸

signal

(1)

This is for the case that the node B is connected to node A.
If not, then the signal term would become part of the noise
term. The similarity between two random hypervectors can be
written as δ(EV1, EV2) = 1

D (
∑D

i=1 ai) where ai are random variables
with values uniformly sampled from {−1,+1}. As a result by the
central limit theorem, 1

D (
∑D

i=1 ai) is a Gaussian distribution with

mean 0 and standard deviation 1√
D
. Thus, by the central limit

theorem again we get that

N
∑

i=1

δ(EVi, EV) ∼ N(0,

√

N

D
)

Where EV and EVi are randomly chosen vectors, and N is
an integer. Thus, in the case that A and B have an edge
connecting them, then the decision score R follows a Gaussian
N(1,

√

(dA − 1)/D) distribution. When there is no edge between

Frontiers in Neuroscience | www.frontiersin.org 7 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

A and B, then R follows a Gaussian N(0,
√

dA
D) distribution.

Using this, we can construct a theoretical Receiver operating
characteristic (ROC) curve and then define a threshold value T.
If R > T, then we can conclude that nodes A and B have an edge
between them, and if R < T then we can conclude that there is
no edge between A and B.

Figure 4A shows the similarity distribution of existing
patterns (blue color, called signal) and non-existing patterns
(orange color, called noise) in the reference or memorized
hypervector. Both signal and noise follow Gaussian distribution,
where the spread is an effect of interference noise as shown
in Equation 1. To identify the existence of a pattern, our
goal is to put a threshold that can separate signal and noise
distribution. Figure 4B shows the ROC curve indicating the
impact of threshold value on true and false-positive rates. Ideally,
we want the ROC curve to pass through the left-top corner,
where true and false positive rates are 100 and 0%, respectively.
The sharp turning point would represent the optimal scenario.
However, the ROC would be less sharp if we decreased the
dimensionality. For example, in D = 1k, signal and noise will
have wider distribution; thus, the perfect true positive rate can
only be obtained with a very high false-positive rate.

4.2. Node Memory Reconstruction
In this section, we discuss an iterative method to recover the node
memory from the graph hypervector in an error-correcting way.
The main idea is to first formulate a reasonable estimation of all
node memories using the unbinding procedure. Then, we find
a revised estimate for all the nodes by recursively canceling out
the interference noise. Figure 5 shows GrapHD functionality for
node memory reconstruction. Suppose we are given the graph
memory hypervector EG. The first estimation of node memory i

can be computed as, EM(1)
i (•a):

EHi ∗ EG = EMi +
∑

j 6=i

EHi ∗ EHj

︸ ︷︷ ︸

≃0

∗ EMj (2)

Here, we use the fact that EHi ∗ EHi ∗ EMi = EMi because EHi is
a bipolar vector. This equation gives us the first estimation of
all node memories (•b), which is often noisy. The noise comes
from the nearly orthogonal distribution of node hypervectors.
Through an iterative process, we can start reducing the cross-
interference noise (•c). In each iteration, we find an estimation
of memory nodes, EMj (j 6= i), and deduct that noise from the
next estimation. For example, we can recursively construct the
following vectors (•d):

EM(k+1)
i = EHi ∗

 EG −
∑

j 6=i

EHj ∗ EM(k)
j

 (3)

= EHi ∗ EG −
∑

j 6=i

EHi ∗ EHj ∗ EM(k)
j (4)

The guess for the (k+ 1)th step is constructed by first subtracting
the guess from the kth step, which minimizes the error. For

example, EM2
i is the revised estimate that we get from EM1

i (the
first estimation) to cancel the noise. This process is repeated until
we reach convergence. Section 6.4 explores the impact of different
parameters on the quality of node memory reconstruction.

Mathematical Capacity: The accuracy of error reconstruction
models depends primarily on two parameters: the number of
edges of the graph, n, and the dimension of hypervectors, D.
If there are more edges in the graph, then the cross-terms can
contribute a higher value of noise in the iterative reconstruction
step. A way to measure the noise can be done using the Signal
Noise Ratio. Suppose that each node has on average d = E/V
edges connecting to it. Then the node memory of a specific node
is the sum of d different neighbor vertices of that node. Consider

node A, with node memory EMA =∑d
i=1

EHvi , where vi are all the
nodes containing an edge to A. To check whether the node B has
an edge with A, we calculate the similarity given by

R = δ(EHB, EMA) = δ(EHB, EHB)
︸ ︷︷ ︸

Signal

+
∑

vi 6=B

δ(EHB, EHvi)

︸ ︷︷ ︸

Noise

The signal term is of magnitude 1, because every node vector is
bipolar. Next, as we have demonstrated in Section 4.1, the noise

term follows a gaussian distribution N(0,
√

d−1
D). Thus, we can

define the signal to noise ratio to be

SNR = 10 log

(

1
√

(d − 1)/D

)

≈ 5 log
D

d

As we can see, the increase of D decreases the noise, and we can
decrease the noise by decreasing the average number of edges per
vertices. Note that we assume the dimension D and the number
of edges E are large to validate our approximation.

4.3. Graph Reconstruction
Here, we will discuss methods to reconstruct the whole graph
given its memory hypervector EG. There are two main paths one
can take for this: (1) follow the methods in Section 4.2 and first
reconstruct the local node memory, and (2) use the methods of
Section 4.1 to retrieve all the edges that are connected to the node
via the node memory. We observe that the first technique can
come with a large error rate. This is because the reconstruction of
the node memory is not a binary classification process. Since we
rely on convergence, the converged value of the node memory
might have various errors that can make the node memory
reconstruction vulnerable to error.

In this paper, we present an iterative process to reconstruct
the graph directly from the graph memory. We first define a
function f (A,B) that checks the existence of an edge between
nodes A and B. f (A,B) = 0 shows that there is no edge from
node A to B, while f (A,B) = 1 indicates an edge. Figure 6 shows
GrapHD functionality for graph memory reconstruction. In the
first step, we generate a hypervector for all possible edges in the
graph and initiate f (1) = 0 for all edges. Then, we consider the
existence of each edge (e.g., EHA ∗ EHB) in the graph memory,
EG (•a). As we explained in Section 4.1, this existence can be

Frontiers in Neuroscience | www.frontiersin.org 8 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

FIGURE 4 | Information retrieval (A) Distribution of signal and noise during information retrieval, and (B) ROC curves for different dimensionalities.

FIGURE 5 | Node memory reconstruction. (A) node hypervectors, (B) estimated node memory based on node hypervectors, (C) cross-interference noise estimation,

and (D) recursive noise cancellation in graph memory.

FIGURE 6 | Graph memory reconstruction: (A) create all possible edge hypervectors, (B) checking the existence of each edge on the graph, (C) iterative noise

cancellation.

computed by checking the similarity of the edge hypervector with
graph memory (•b). If the returned similarity value is larger than
the threshold, we set f (1) = 1. This is the inference process as
described in 4.1. We repeat this process for all the nodes of the
graph, and we construct the first estimation of the graph, EG(1).

Our goal is to enhance our estimation through an iterative
noise cancellation method. Suppose there is an edge between A

and B in f (1)(A,B), thus the noise vector is given by EN (1)
AB =

EG(1) − EHA ∗ EHB. if there is no edge, the noise vector is simply
EN (1)
AB = EG(1). In short, we can write this as (•c):

EN (1)
AB = EG(1) − f (1)(A,B)(EHA ∗ EHB)

Frontiers in Neuroscience | www.frontiersin.org 9 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

We construct the second estimation of the graph by initializing
the function f (2)(A,B) = 0, and then checking whether the edge

betweenA and B exists in the noise-correctedmemory EM− EN (1)
AB .

If the result is positive, then we modify f (2)(A,B) = 1 and
repeat the process for all pairs of nodes. This process is repeated
iteratively as follows. Suppose we’re given the kth estimate of
the graph f (k). We initialize the graph representation f (k+1) to
0. Then we use this to generate the graph memory EG(k) which
corresponds to the graph f (k)(A,B). We calculate the noise for A
and B as follows:

EN (k)
AB = EG(k) − f (k)(A,B)(EHA ∗ EHB)

We then check whether the edge from A to B exists inside the

vector EG(k) − EN (k)
AB . If the answer is yes, we set f

(k+1)(A,B) = 1

otherwise we set f (k+1)(A,B) = 0. We repeat the process until the
convergence of the function f .

Figure 7 shows a visual example of graph memory
reconstruction during iterative noise cancellation. The results
are shown for a graph with 30 nodes and 150 edges. The blue
lines show the correct edges on the graph, while the red lines
are edges in the actual graph but are not predicted by our graph
reconstruction. Note that our method does not predict extra
edges that are not a part of the graph. Our result shows that the
initial graph reconstruction is approximate and cannot predict
several existing edges. However, going further through iterative
noise cancellation, we can get a higher accuracy by predicting
more edges correctly. With 15 iterations, our technique can
recover the entire graph accurately. Section 6.3 explores the
impact of different parameters onGrapHD graph reconstruction.

4.4. Graph Matching
In this section, we formulate an algorithm to match two graphs
directly using the HD framework. The aim here is to estimate
the number of edges that occur in both graphs between the
corresponding edges. One specific assumption we make about
our model is that each node serves a specific function or specific
memory. For example, in a cognitive model, wemight have nodes
that could represent items like cat, dog, animal, and pencil. The
cat, dog, and animals would have edges among each other that
represent the amount of correlation between them, while the
pencil vertex would not be attached to any of them due to a
lack of correlation with the other three items. This assumption is
required to define the problem of graph matching appropriately.
In cases where the node ordering does not matter, then matching
two graphs has an additional component of finding a mapping
between the vertices of two graphs which maximizes a similarity
metric. However, by assuming themapping of vertices to be fixed,
our problem simplifies to finding how much the edges match.

Suppose we are given the graph memory EM, EM′ of two
directed unweighted graphs G and G′. Then, using the method
of Section 4.2, we can find the node memory EMa, EM′

a of node a
of both the graphsG,G′, respectively. Our aim is to now compare
these two graphs. To proceed, we find the difference of the node
memory EDa = EMa − EM′

a of node a. Now, we note that all the
nodes that are connected to node a in both the graphs cancel out.

Only the nodes that are connected to node a in exactly one of the
graphs are present in the difference vector ED. We can write

ED =
N
∑

i=1

(−1)ni EHi

where ni = 0 if EHi is connected to node a in G but not in
G′, ni = 1 if EHi is connected to the node in G′ but not in
G. Here, N is the number of differences in the neighborhood
of the node in both the graphs. That is, the number of nodes
connected to the current node in exactly one of the graphs. Now,
we use a statistical method to estimate the value of N. Each
component of ED is a sum of N random variables which take up
values 1 or −1. Thus, each component of ED goes as 2B − N,
where B is a binomial distribution with p = 0.5 and N terms.
The standard deviation of a binomial distribution is given by
σB =

√

Npq = √
N × 0.5× 0.5 =

√
N/2. We can then use the

method of moments to estimate N. Suppose Y = 2B − N. Then,
we have 〈Y〉 = 2〈B〉 − N = N − N = 0. As a result, 〈Y2〉〈= σY
is the standard deviation of Y . From the properties of standard
deviation, σY = 2σB =

√
N. Thus, we can estimate N as 〈Y2〉. In

Section 6.5, we show the capability of our proposed technique to
enable efficient and parallel brain-like graph matching.

5. NEUROMORPHIC HARDWARE
ACCELERATION

GrapHD operations are highly parallel; thus, they can be
accelerated on existing platforms. However, operating over
long binary vectors could still be costly or non-optimized
for CPU and GPU platforms. CPUs do not have enough
resources for parallelism, and GPUs are more suitable for high-
precision computations such as floating-point values (Halawani
et al., 2021; Imani et al., 2021; Poduval et al., 2021b). To
accelerate GrapHD, we develop a novel platform that naturally
operates over long binary vectors. The capability of Non-
Volatile Memories (NVMs) to act as both storage and a
processing unit has encouraged us to use Processing In-Memory
(PIM) platform for GrapHD acceleration. Since 2016, there
have been several hardware accelerators for hyperdimensional
computing based on processing in-memory technology. For
example, work in Li et al. (2016), Imani et al. (2017b), and Imani
et al. (2020) developed a novel PIM architecture accelerating
associative search using content addressable memory. Work
in Imani et al. (2019d) designed scalable PIM architecture
to support encoding and scalable associative search. However,
unlike existing hyperdimensional learning models, GrapHD is
not based on association search. GrapHD performs computation
using highly parallel (low-precision) arithmetic operation. This
makes all existing hyperdimensional accelerators unable to
accelerate GrapHD. GrapHD operations are mainly bitwise or
low-precision vector-vector operations over long hypervectors.
For example, binding is primarily based on XNOR operation
between two vectors stored in different memory columns.

Frontiers in Neuroscience | www.frontiersin.org 10 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

FIGURE 7 | Visual graph reconstruction: red are mismatched edges and blue are existing edges. # Edges = 150, # Nodes = 30, and D = 3, 500.

5.1. NOR-Based In-memory Computing
In this paper, we develop DPIM that exploits the switching
characteristic of memristor devices to internally perform the
bitwise computation on the selected memory element without
reading them out of array or using any sense amplifier. Figure 8A
shows the structure of DPIM. DPIM exploits crossbar memory
with single-bit NVM device and implements NOR operation in
a row-parallel way among the selected memory columns (Imani
et al., 2019a). In crossbar, each memristor device switches
between two resistive states, RON (low resistive state, “1”) and
ROFF (high resistive state, “0”), whenever the voltage across the
device exceeds a threshold (Biolek et al., 2021). This property
can be exploited to implement NOR gate between the memory
elements (Kvatinsky et al., 2014). Figure 8A also shows the NOR
functionality on a single row of a crossbar memory. To execute
NOR in a row, an execution voltage, V0, is applied at the p
terminals of the inputs devices while the p terminal of the output
memristor is grounded. If one or more input memristors are in
a low resistance state (storing “1” value), the voltage across the
output device will be V0, resulting in switching the output device
to the high resistance stage (“0” value). However, if all input
devices are in the high resistance stage, the voltage across the
output device cannot switch the output device; thus, the output
device keeps “1” value.

Since NOR is a universal logic gate, it can be used to implement
other logic operations like addition and multiplication (Haj-Ali
et al., 2018; Imani et al., 2019a). DPIM arithmetic operations
are, in general, slower than the corresponding CMOS-based
implementations. This is because memristor devices are slow in
switching. However, this PIM architecture can provide significant
speedup with massive parallelism. PIM can support addition
and multiplications in parallel, irrespective of the number of
rows. For example, to add values stored in different columns
of memory, PIM takes the same amount of time to process the
addition in a single row or all memory rows. Depending on the
size of the operation, the computation takes a different time to
execute. Let us assume the computation of k vertical vectors of
N-bits with a length of l. When k ≤ R/N − Mop, the execution
time of addition and multiplication can be modeled as:

Top = (k− 1)× ⌈l/R⌉
︸ ︷︷ ︸

Crossbar Reuse

×Top + w× TD
write

where Top is the time of either fixed-point or floating-point
arithmetic operations, R is the number of array rows, and 0 ≤
w ≤ N × k is the number of write operations.

5.2. DPIM Operations
In DPIM, at each time step, the main computation is a bitwise
NOR operation between two columns of memory, storing two
vectors. DPIM supports row-parallel computation, meaning that
regardless of the number of rows, it takes the same amount
of time to perform addition/multiplication. Figure 8B shows
the functionality of DPIM performing row-parallel arithmetic
operations. For any selected columns, DPIM computes a series of
the NOR-based operations to implement bundling and binding.
To perform computation among more than two vectors, the
arithmetic operations are performing serially. For an example
shown in Figure 8B, to perform arithmetic over three vectors,
DPIM computes arithmetic between (A ± B), then the result is
aggregated with the third vector (A± B± C).

DPIM only supports column-wise computation; thus, it
cannot perform vector-matrix multiplication entirely in a single
memory block. To address this, work in Imani et al. (2019a)
proposed the idea of transposed vector-matrixmultiplication that
enables both multiplication and accumulation to happen using
column-wise operations. This approach stores multiple copies
of a transposed input vector (horizontal vector) in different
memory rows. However, this method is slow and requires a large
amount of reserved memory; thus, eliminating high-precision
computation in a DPIM block.

To enable DPIM to perform accumulation in a row-
parallel way, we propose a novel technique that enables
multiplication and accumulation to be performed in two
different blocks (Figure 8C). DPIM performs column-wise
multiplication between the input vector and the matrix stored
in memory. This multiplication is performed on the original
data without transposing the input vector or matrix. To enable
column-wise accumulation, our method writes the transposed
multiplication results on the second block. To minimize the
cost of data movement, we exploit the sense amplifier to
perform row-parallel/bit-serial read operation of multiplication
results and write them in the pipeline on the next memory
block (accumulation block). This enables fast and efficient data
transfer. Finally, we compute the vector-matrix multiplication
by column-wise addition of the vectors in (A × B)T matrix. In

Frontiers in Neuroscience | www.frontiersin.org 11 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

FIGURE 8 | (A) NOR-based in-memory computing using switching characteristic of NVM devices. (B) row-parallel arithmetic operations, including addition and

multiplication, and (C) row-parallel dot product operation.

Section 6.8, we evaluate DPIM capability in accelerating different
GrapHD applications.

6. APPLICATIONS EVALUATION

6.1. Experimental Setup
GrapHD has been implemented in both software and hardware
co-module. In software, we verified GrapHD functionality
by implementing it using Python on CPU. To ease the
deployment on parallel platforms, we integrate GrapHD with
PyTorch library. We optimized the PyTorch library to more
effectively work with hypervectors as a common GrapHD
data structure. We evaluated the framework on NVIDIA
Jetson TX2, which has a CUDA-enabled GPGPU running with
low-power profiles. We measure the latency of the learning
procedure and the power consumption using the NVIDIA
tegrastats utility.

We evaluate GrapHD functionality on multiple cognitive
and learning tasks: (1) Graph memory and node memory
reconstruction, (2) graph matching that checks the similarity of
graphmemories, (3) shortest path between nodes to reason about
the relation and closeness of two memorized objects in the graph
memory. (4) context-aware learning in object detection, where
GrapHD is used as external memory to keep the relation between
the objects occurring in different video frames.

For circuit-level simulation, we use HSPICE to measure
the energy consumption and performance of DPIM in 28nm
technology. The robustness of all proposed circuits, i.e.,
interconnect, has been verified by considering 10% process
variations on the size and threshold voltage of transistors using
5,000 Monte Carlo simulations. DPIM works with any bipolar
resistive technology, which is the most commonly used in
existing NVMs. Here, we adopt a memristor device with a
VTEAM model (Kvatinsky et al., 2015; Biolek et al., 2021). The
memristor’s model parameters are chosen to produce a switching
delay of 1.1ns, a voltage pulse of 1V and 2V for RESET and SET
operations to fit practical devices (Kvatinsky et al., 2014).

6.2. Graph Memory Refinement
Figure 9 shows the similarity distribution of existing and

non-existing patterns into graph hypervectors. The results
are obtained for the initial (left) and the adjusted graph
memory. As explained in Section 3.4, for perfect prediction
and information retrieval, we would like to have no overlap
between noise and signal distribution such that a threshold value
can separate distributions. GrapHD memory refinement aims
to iteratively increase the hypervector capacity and reduce the
overlap between the signal and noise distribution. This would
enable us to store large graphs in smaller dimensions. Graph
refinement increases the similarity (decision score) of the existing
patterns by recursively checking if the graph memory correctly
memorizes them. For each misprediction (decision score lower
than threshold T for existing patterns), we adjust the graph
hypervector. As Figure 9 shows, the iterative graph refinement
reduces the overlap between the noise and signal distribution
until having zero overlaps in 20 iterations. This technique
increases the capacity of a hypervector with fixed dimensionality
to store a larger graph. In other words, this technique makes the
ROC curve (Figure 4B) sharper, resulting in 100% true positive
with 0% false-positive rates.

6.3. Graph Reconstruction
Figure 10A shows the impact of hypervector dimensionality and
the number of edges on the quality of information retrieval.
Our results indicate a larger graph requires higher hypervector
dimensionality to ensure full graph memorization. For example,
a graph with 100 and 200 edges can be accurately stored in a
graph hypervector with D = 4k and D = 6k dimensionality,
respectively. Figure 10B shows the number of required iterations
for data recovery. Our technique requires fewer iterations of
noise cancellation when the dimensionality of a hypervector is
larger than the number of edges that it can accurately store. On
the other hand, when the dimensionality is much lower than the
required value, our algorithm may still require a few iterations,
but it would converge to a random solution. In summary,
maximum iterations are required when the dimensionality is the

Frontiers in Neuroscience | www.frontiersin.org 12 February 2022 | Volume 16 | Article 757125

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

FIGURE 9 | Distribution of existing and non-existing nodes in graph memory without and with an iterative graph memory refinement, shown for 100, 000 edges.

FIGURE 10 | Graph reconstruction: (A) reconstruction accuracy, (B) required iterations vs. graph size and dimensions, (C) error rate v. iterations, and (D) robustness

to noise (Shown over 1,000 trials).

lowest possible value that provides enough capacity to accurately
recover the stored information.

Figure 10C also shows the number of mismatched edges
during different noise cancellation iterations. Initially, our graph
reconstruction comes with a large number of mismatched edges.
This mismatch is larger for larger graph sizes. The error rate starts
decreasing during our recursive error correction mechanism.
When the size of the graph is within a capacity of a hypervector
(V ≤ 150 for D = 4k, as shown in Figure 10A), our
reconstruction will accurately recover the model. However, when
the hypervector stores more patterns, our data recovery often
diverges to a random graph (red line shown in Figure 10C). By
increasing the number of vertices (and fixing the number of edges
to 100), we find that the capacity is unchanged by the number of
vertices for high dimensions. This could be because whenwe have
a large enough number of vertices, then most of them will not be
connected to any other vertices (due to a fixed number of edges).
As a result, they will have 0 node memory and will contribute
nothing to the graph memory, thus preserving capacity. The
primary bottleneck is in generating orthogonal hypervectors that
represent the nodes, so that in the decoding steps we do not make
any false decisions. This is why at low dimensions we get a higher
error, because the generated hypervectors for the nodes are not
completely orthogonal to each other.

One of the main advantages of hyperdimensional
representation is its high robustness to noise and failure. In
GrapHD, hypervectors are random and holographic with i.i.d.
components. Each hypervector stores the information across

all its components so that no component is more responsible
for storing any piece of information than another. This
makes a hypervector robust against errors in its components.
Figure 10D shows the impact of noise in dimensions on graph
memory reconstruction. The results are reported when different
percentages of hypervector dimensions are randomly dropped.
Our representation provides inherent robustness to such noise,
as the data can still be reconstructed when the dimensionality is
large enough. For example, our method tolerates 10% random
noise using D = 6k dimensions to represent a graph with 30
nodes and 150 edges.

6.4. Node Memory Reconstruction
Figure 11A shows the impact of graph size and hypervector
dimension on node memory reconstruction error. Similar to
graph reconstruction, the node reconstruction error depends on
the graph size and dimensionality. A larger graph with more
edges requires a higher dimensionality to ensure accurate node
memory reconstruction. For example, for graphs with 100 and
200 nodes, our technique requires D = 2k and D = 4k to
ensure 100% accurate node reconstruction. Note that using a
hypervector with lower dimensionality to store a large graph
could result in a quality loss during the information extraction.
For example, using D = 2k to store a graph with 200 nodes
reduces the chance of node memory reconstruction. Note that
HDC is an approximate computational model. Therefore, it
cannot theoretically ensure 100% data reconstruction. However,
as our results show, in practice it is highly possible to get

Frontiers in Neuroscience | www.frontiersin.org 13 February 2022 | Volume 16 | Article 757125

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

FIGURE 11 | Node memory reconstruction: (A) error rate, (B) required iterations vs. graph size and dimensions, (C) error rate vs. iterations, and (D) robustness to

noise.

completely accurate reconstruction rate when your nodememory
is not loaded with more than its theoretical capacity.

Figure 11B also shows how the number of required
iterations changes depending on the graph size and hypervector
dimensionality. As expected, node reconstruction is faster when
hypervector dimensionality is larger (in fixed graph size). The
lower number of iterations comes from a low error rate
and interference noises. Figure 11C shows the node memory
reconstruction error for a hypervector with D = 4k dimensions
that stores different graph sizes. The larger graph, the more
iterations we need to cancel the noise. In addition, the noise is
less likely to cancel out to decrease the error rate (as also shown
in Figure 11A heatmap).

Similar to graph reconstruction, node reconstruction is
inherently robust to noise and failure on random hypervector
elements. Our evaluation in Figure 11D shows higher robustness
in hypervectors with higher dimensionality. For example,
hypervectors with D = 6k can tolerate a 5% error rate with no
error. Even dropping more dimensions still has a small impact
on the reconstruction error.

6.5. Graph Matching
Figure 12 evaluates the quality of GrapHD for graph matching
using hypervectors with different dimensions. For all evaluations,
the graph size is assumed to be fixed (30 nodes and 150 edges).
The x-axis in the graph shows the actual edge difference between
the two graphs, while the y-axis shows our estimated node
difference. Ideally, we expect to see a graph with a straight line
(y = x), indicating that our estimation accurately matches
the actual edge difference. However, graph matching comes
with an error when the hypervector dimensionality is low. As
our evaluation indicates, the estimated edge difference gets a
higher error (becomes far from the diagonal line) when the
dimensionality gets lower.

6.6. Shortest Path Between Nodes
In a graphical model of memory, identifying the context of
information and making inferences often require identifying
correlated nodes separated by certain distances in graphs. These
are nodes that are not directly related; rather, they are related
by a series of nodes that connect only to the next node. This is

similar to how a reasoning process occurs; we start off with an
observation connected to another memory. This memory would,
in turn, lead to a connection with another memory through
reasoning. This is equivalent to finding the path between two
nodes and studying its connections in the graph.

We can use GrapHD algorithms to find a path between two
nodes and find the shortest distance between them. Suppose
we want to find the shortest path between two nodes A and B
in a graph EG. First, we reconstruct all the local node memory
for all nodes in the graph. Next, we maintain a distance value
associated with all nodes, and this value is initialized to 0. This
value will later be substituted with the step at which the node is
encountered in the graph algorithm, which is also the distance of
the node from A.

Here we explain our algorithm. In the first step, we consider
the node A with node memory EHA. Next, using the thresholding
method from section 4.1, we find all the nodes that have an
edge with A. These nodes are distance 1 away from A, and we
assign a distance value of 1 to these nodes. Next, we consider
the node memory of all the distance d = 1 nodes and add
them together. Then we repeat the same process to find all nodes
not encountered before that share an edge with the distance of
d = 1 nodes. These nodes are a distance of d = 2 away.
Suppose we have the set of all distance d = n nodes; we add
up all their local memories. Then, we find the set of all nodes
not encountered before, which share an edge of one of the
distance d = n nodes. These nodes will be labeled with distance
d = n + 1. The process is repeated until either the node B
is encountered, until all the nodes are encountered, or no new
nodes are encountered.

If the node B is never encountered when the process
terminates, we conclude no path between the nodes A and B.
If B is encountered, we begin finding out the exact path joining
A and B. Suppose node B is at a distance d away from A. We
consider the node memory of B and then find which one of the
d − 1 distance nodes shares an edge with the node B. If there are
multiple, we choose one of them randomly. Next, we consider
the node memory of this d − 1 distance node. We find which of
the d − 2 distance nodes share an edge with the d − 1 distance
node. If there are multiple, then we again chose one of the nodes
arbitrarily. We continue this process recursively. After reaching

Frontiers in Neuroscience | www.frontiersin.org 14 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

FIGURE 12 | (A) Graph matching vs. dimensions: actual vs. estimated edge difference (For a single model) and (B) GrapHD success rate performing shortest path on

an encoded graph (shown over 1,000 trials).

the d − k distance node, we consider its node memory and find
a d − k − 1 distance node that shares an edge with the distance
d − k node. The process is continued until we reach the node A.
Following the nodes back will allow us to find the shortest path
that joins the nodes A and B.

In the evaluations, we simulate d disjoint random graphs, each
with Vav = 21 vertices and Eav = 270 edges. In all these graphs,
we chose one random node and labeled it as 1, 2, 3, 4, · · · , d. Next,
we form an edge between all nodes. In this way, we construct a
random graph that contains pairs of nodes with distances 1 to d
in a controlled manner. In our evaluations, we chose d = 50 and
the results are shown in Figure 12B. We see that as we increase
the distance between the destination node and the starting node,
the accuracy decreases drastically. This is because the number of
edges that GrapHD searches through in each iteration increases
exponentially with each step. As a result, the capacity eventually
saturates if the graph is too big and if the distance is too large.
On the other hand, increasing the dimension also increases the
accuracy. This is expected since larger dimensions would increase
the capacity of GrapHD, which allows storing a larger number of
neighbors efficiently.

The shortest path detection has a natural interpretation in the
case of weighted graph. In the weighted graph representation,
the weights on edges become proportional to the similarity of
the edge with memory. This results in a stochastic path finding
algorithm, where the probability an edge is identified as being
connected to the current node is proportional to the weight on
edge. This has interpretation in the cognitive framework that
the edge weight can be thought of as how strongly two nodes
are correlated in the memory or how strongly the connection
is memorized. The Human brain would form reasoning-based
connections between two such objects depending on whether
the two items in memory are strongly correlated. We can
mimic a probabilistic path finding algorithm by using the
current algorithm for the weighted graphs, which can mimic the
reasoning process of the human brain. However, if we want to
find a path independent of the weights, then we would need to
store the graph using the unweighted encoding, and then the
same algorithm would work as expected.

6.7. Object Detection
Based on the mathematical discussion in the paper (Section 4.1),
we already showed the advantages that GrapHD for information
retrieval, which is a key operation involved in traditional
knowledge graph and relational learning benchmarks. Instead,
in this work, we focus on a more advanced task that exploits
knowledge graphs as a memorization model to enhance existing
machine learning models. Our task also involves operations and
computations that are not in high-dimension. Particularly, we
evaluate GrapHD capability to help existing object detection
algorithms. Deep learning models have already been used for
highly accurate object detection (Ren et al., 2015). Particularly,
convolutions neural networks (CNNs) showed promising results
in extracting information from image and video data. However,
CNN has a weak notion of time; thus, their predictions might be
non-sense or out of context, e.g., predicting a moon as a light in
videos taken from the sky.

GrapHD is a memorization model that can be used beside any
learning algorithm. To eliminate these miss-predictions, CNNs
need to keep the context by associating the objects during the
training and inference phase. We exploit GrapHD to memorize
the relation of objects as a memory graph. GrapHD assigns
strong weights between objects that are more likely to happen
together in a video frame. For every prediction, CNN predicts all
objects that have been seen in a frame. Next, GrapHD encodes
the objects into high-dimensional space and checks the graph
memory to see a possible correlation of these items (i.e., the
distance or existence of edges in a graph memory). This enables
CNNs to provide more accurate decisions and also the capability
to reason about the prediction based on prior knowledge. To
get the maximum benefit from GrapHD, the learning and
memorization models need to be integrated. In other words,
both CNN and GrapHD models need to be updated using the
same procedure and rules. In our study, the GrapHD is placed
as a dynamic memory beside the CNN. For each given train
data, the data is processed using both CNN and GrapHD. At
first, CNN operates over the data to make a prediction. Next,
GrapHD look at the CNN prediction and accordingly gives a
new loss term to the CNN in order to get updated. This loss

Frontiers in Neuroscience | www.frontiersin.org 15 February 2022 | Volume 16 | Article 757125

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

FIGURE 13 | (A) GrapHD vs. RNN for object detection: Accuracy and efficiency. (B) DPIM speedup and energy efficiency running different GrapHD operations over

GPU.

represents how far the CNN prediction was compared to a
GrapHD memorization prediction.

Figure 13A shows the accuracy and efficiency of CNN
enhanced with GrapHD and recurrent neural networks (RNNs)
for object detection task (Karpathy and Fei-Fei, 2015). The
results are reported over the Microsoft COCO object detection
dataset (Lin et al., 2014). Work in Karpathy and Fei-Fei (2015),
Kousik et al. (2021) integrated CNN and RNN in series,
thus providing memorization capability for CNN in making a
prediction. The results are reported for networks running on
NVIDIA Jetson TX2, an embedded processor. Our evaluation
shows that CNN enhanced with GrapHD can provide the same
accuracy as the RNN network. However, our method can provide
significantly higher computation efficiency. Our solution enables
parallel construction of CNN and GrapHD model, thus enabling
parallel training. Our evaluation shows that GrapHD achieves
3.8× faster training and 1.7× faster inference than RNN while
ensuring the same classification accuracy. Note that GrapHD
provides a higher capability for reasoning, as it has direct access
to the transparent memorized values.

6.8. Hardware Acceleration
As we explained in Section 5, GrapHD applications can be
accelerated on parallel platforms. Here, we study the capability
of the proposed DPIM architecture in accelerating GrapHD
applications. Figure 13B shows the performance and energy
efficiency of DPIM running different GrapHD applications. The
results are reported for a large graph with 1,000 nodes that
have been mapped to a hypervector with different dimensions.
All results are reported respective to NVIDIA GTX 1080 GPU
when GPU runs multiple queries to ensure maximum resource
utilization. Our results indicate that DPIM provides higher
speedup and energy efficiency as compared to GPU regardless of
the dimensionality and GrapHD operation. For example, DPIM
achieves 10.6× faster and 42.0× higher energy efficiency than
GPU with D = 1K dimensions. DPIM efficiency depends on
two factors: (1) Application: operations required by GrapHD
applications. DPIM provides higher benefits for applications
that require lower precision arithmetic. This is due to a linear
and quadratic increase in DPIM bundling and binding time in
respect to bit-precision. For example, GrapHD during graph and

node reconstruction operates over low precision hypervectors,
thus providing higher computation efficiency over GPU. (2)
Dimensionality:DPIM efficiency increases with the hypervector
dimensionality. This efficiency comes from DPIM capability
to support fast and row-parallel operations and also address
data movement issues by eliminating costly data access to
off-chip memory. Our results indicate that DPIM provides
significantly higher performance speedup for graphs with higher
dimensionality. For example, GrapHD using D = 16K and
D = 32K dimensions provide on average 23.1× and 30.4× faster
computation compared to GPU. In terms of energy efficiency,
DPIM efficiency has a lower relation to dimensionality as both
DPIM and GPU will require the same number of operations. The
slight improvement in DPIM energy efficiency comes from its
capability in data movement reduction.

6.9. Graph Decoding With Nengo
In this section, we demonstrate GrapHD memory decoding
using the Nengo SPA module to simulate how our model can
work with Neuromorphic hardware and support existing models
that try to make more brain-like models of cognition and
reasoning. A key example where our model can be applied is
SPAUN (Stewart et al., 2012), which is a large-scale cognitive
model of the brain. SPAUN consists of about 2.3 million spiking
neurons which are used to run various tasks like addition,
digit recognition, and question answering without requiring
any rewiring of the neurons. SPAUN represents information
using Holographic Reduced Representation (HRR) (DuBois
and Phillips, 2017), where the hypervectors are unit real
vectors, and the binding is done using circular convolution.
Our model for storing graph memory can be used to better
represent associated information and correlated memory events
in graph-based format and also decoded using the algorithms
in this paper.

The implementation of GrapHD uses the HRR encoding that
comes with the Nengo SPA module. The module implements
HRR operations like binding, bundling and similarity using
a Spiking Neural Network architecture. Our implementation
contains an encoding module and decoding module. First, we
generate random D = 64 dimensional vectors for each of
the nodes. The encoding module then constructs the Graph

Frontiers in Neuroscience | www.frontiersin.org 16 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

FIGURE 14 | Results of the graph decoding process on neuromorphic hardware. (A) graph structure and the initial reconstructed graph, (B) similarity of the query

vector with each of the nodes, (C) similarity with each of the node vector with graph memory of the model, (D,E) output of the graph decoding process in the first (D)

and second iterations (E).

memory of the graph based on the algorithm in Section 3. This
is done using the binding and bundling operations implemented
in Nengo SPA. The decoding module requires additional steps of
first unbinding the memory vector with all possible node vectors,
and then checking the similarity of the result with all other nodes.
Based on the thresholding process, it is then decided whether an
edge between two nodes exist. Calculating the similarity with all
the nodes is done automatically by Nengo where it checks the
similarity between all the semantic pointers in the vocabulary of
the model. The main step is in unbinding the memory vector
with all the nodes, which is done by calculating the unbinding
of a query vector and memory vector. The query vector is chosen
to cycle through all the node vector over a period of 0.5s, and
thenNengo calculated the similarity of the result with all the node
vectors as a function of time.

As Figure 14A shows, we use a graph with six vertices and
ten edges and demonstrate at each step how the neuromorphic
model of GrapHD decodes the graph. We decode the memory at
each iteration by sending a query signal for a total of 0.5 s which
sequentially changes value from the SPA representing EV0 to EV5.
From the output similarity at each of these time frames with the
rest of the vertices, we can understand whether a connection
between two nodes exists. For example, consider Figure 14C,
which is the first iteration of the decoding process. To find
whether an edge between node 2 and node 3, we look at the time
of 0.21 s, when the query has the vector representing node 2 and
then find the similarity of the line representing node 3 (Red). This

similarity is about 0.3, which is greater than the threshold value
(chosen to be 0.1).

In Figure 14, we show the results of the Graph decoding
process. The figures show the similarity of the semantic pointer
with each of the vectors representing all the nodes. In Figure 14B,
we show the similarity of the query vector with each of the
nodes as a function of time. It keeps cycling between all the
nodes once within one cycle of 0.5 s. In Figure 14C, we show
the Graph memory of the model and its similarity with each of
the node vectors when we feed in the query vector to calculate
the similarity. In Figures 14D,E, we show the output of the graph
decoding process in the first and second iterations. We find that
the output graph in the first iteration has an edge missing, but
then it finds this edge and accurately decodes the graph in the
second iteration.

Besides SPAUN, as vector symbolic architecture, GrapHD has
full compatibility with the new Intel neuromorphic framework,
i.e., LAVA. This further shows the capability of GrapHD to be
used as neuromorphic computing framework.

7. CONCLUSION

This paper defines a brain-inspired system, called GrapHD,
that better represents HDC memorization capability in terms
of a graph of relations. We introduce, GrapHD, graph-based
hyperdimensional memorization that represents information

Frontiers in Neuroscience | www.frontiersin.org 17 February 2022 | Volume 16 | Article 757125

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

into high-dimensional space and enables reasoning. GrapHD
defines an encoding method that represents complex graph-
based data structure into high-dimensional space. Our encoder
spreads the information of all nodes and edges across into a full
holistic representation so that no component is more responsible
for storing any piece of information than another. Then,
GrapHD defines several important cognitive functionalities
over the encoded memory graph. These operations include
memory reconstruction, information retrieval, graph matching,
and shortest path.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are publicly
available. This data can be found here through Microsoft COCO
dataset: https://cocodataset.org/#home.

AUTHOR CONTRIBUTIONS

PP and MI conceived the research. PP, HA, AZ, FI, MHN, TG,
and MI conducted the research and analyzed the data. PP, HA,
FI, TG, and MI wrote the manuscript. All authors reviewed the
manuscript and agreed on the contents of the paper.

FUNDING

This work was supported in part by National Science Foundation
(NSF) #2127780 and #2019511, Semiconductor Research
Corporation (SRC) Task No. 2988.001, Department of the
Navy, Office of Naval Research, Grant #N00014-21-1-2225
and #N00014-22-1-2067, Air Force Office of Scientific
Research, the Louisiana Board of Regents Support Fund
#LEQSF(2020-23)-RD-A-26, and a generous gift from Cisco.

REFERENCES

Bassett, D. S., and Sporns, O. (2017). Network neuroscience. Nat. Neurosci. 20,
353–364. doi: 10.1038/nn.4502

Bekolay, T., Bergstra, J., Hunsberger, E., DeWolf, T., Stewart, T. C.,
Rasmussen, D., et al. (2014). Nengo: a python tool for building large-scale
functional brain models. Front. Neuroinform. 7:48. doi: 10.3389/fninf.2013.
00048

Bi, Y., Chadha, A., Abbas, A., Bourtsoulatze, E., and Andreopoulos, Y. (2019).
“Graph-based object classification for neuromorphic vision sensing,” in
Proceedings of the IEEE/CVF International Conference on Computer Vision

(Seoul), 491–501.
Biolek, D., Kolka, Z., Biolková, V., Biolek, Z., and Kvatinsky, S. (2021). (v)

team for spice simulation of memristive devices with improved numerical
performance. IEEE Access 9, 30242–30255. doi: 10.1109/ACCESS.2021.30
59241

Bonomi, F., Milito, R., Zhu, J., and Addepalli, S. (2012). “Fog computing and its
role in the internet of things,” in Proceedings of the First Edition of the MCC

Workshop on Mobile Cloud Computing (New York, NY), 13–16.
Chai, W. J., Abd Hamid, A. I., and Abdullah, J. M. (2018). Working memory

from the psychological and neurosciences perspectives: a review. Front. Psychol.
9:401. doi: 10.3389/fpsyg.2018.00401

Chen, R., Imani, M., and Imani, F. (2021). Joint active search
and neuromorphic computing for efficient data exploitation and
monitoring in additive manufacturing. J. Manuf. Process. 71, 743–752.
doi: 10.1016/j.jmapro.2021.09.048

Chen, X.-W., and Lin, X. (2014). Big data deep learning: challenges and
perspectives. IEEE Access 2, 514–525. doi: 10.1109/ACCESS.2014.23
25029

Chian, V. C., Hildebrandt, M., Runkler, T., and Dold, D. (2021). “Learning through
structure: towards deep neuromorphic knowledge graph embeddings,” in 2021

International Conference on Neuromorphic Computing (ICNC) (Wuhan: IEEE),
61–70.

Chien, H.-Y. S., and Honey, C. J. (2020). Constructing and forgetting
temporal context in the human cerebral cortex. Neuron 106, 675–686.
doi: 10.1016/j.neuron.2020.02.013

Courbariaux, M., Bengio, Y., and David, J.-P. (2014). Training deep neural
networks with low precision multiplications. arXiv [Preprint] arXiv:1412.7024.

DuBois, G. M., and Phillips, J. L. (2017). “Working memory concept encoding
using holographic reduced representations,” in MAICS (Fort Wayne, IN),
137–144.

Frady, E. P., Kleyko, D., and Sommer, F. T. (2020). Variable binding
for sparse distributed representations: theory and applications.
arXiv [Preprint] arXiv:2009.06734. doi: 10.1109/TNNLS.2021.31
05949

Frady, E. P., and Sommer, F. T. (2019). Robust computation with
rhythmic spike patterns. Proc. Natl. Acad. Sci. U.S.A. 116, 18050–18059.
doi: 10.1073/pnas.1902653116

Gallistel, C. R., and King, A. P. (2011).Memory and the Computational Brain: Why

Cognitive ScienceWill Transform Neuroscience, vol. 6. Hoboken, NJ: JohnWiley
& Sons.

Gayler, R. W. (1998). Multiplicative binding, representation operators analogy
(workshop poster). Preprint.

Gayler, R. W., and Levy, S. D. (2009). “A distributed basis for analogical mapping,”
in New Frontiers in Analogy Research: Proceedings of the Second International

Conference on Analogy, Vol. 9 (Sofia).
Ge, L., and Parhi, K. K. (2020). Classification using hyperdimensional computing:

a review. IEEE Circ. Syst. Mag. 20, 30–47. doi: 10.1109/MCAS.2020.29
88388

Genssler, P. R., and Amrouch, H. (2021). “Brain-inspired computing for wafer map
defect pattern classification,” in 2021 IEEE International Test Conference (ITC)

(Anaheim, CA: IEEE), 123–132.
George, D. (2008). How the brain might work: a hierarchical and temporal

model for learning and recognition (Ph.D. thesis). Stanford University.
Available online at: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.
163.7566&rep=rep1&type=pdf

Haj-Ali, A., Ben-Hur, R., Wald, N., and Kvatinsky, S. (2018). “Efficient algorithms
for in-memory fixed point multiplication using magic,” in 2018 IEEE

International Symposium on Circuits and Systems (ISCAS) (Florence: IEEE),
1–5.

Halawani, Y., Kilani, D., Hassan, E., Tesfai, H., Saleh, H., and
Mohammad, B. (2021). Rram-based cam combined with time-
domain circuits for hyperdimensional computing. Sci. Rep. 11, 19848.
doi: 10.21203/rs.3.rs-608660/v1

Hassabis, D., Kumaran, D., Summerfield, C., and Botvinick, M. (2017).
Neuroscience-inspired artificial intelligence. Neuron 95, 245–258.
doi: 10.1016/j.neuron.2017.06.011

Hérnandez-Cano, A., Cammarota, R., and Imani, M. (2021). “Prid: model
inversion privacy attacks in hyperdimensional learning systems,” in 2021 58th

ACM/IEEE Design Automation Conference (DAC) (San Francisco, CA: IEEE),
553–558.

Hernández-Cano, A., Zhuo, C., Yin, X., and Imani, M. (2021a). “Reghd: robust
and efficient regression in hyper-dimensional learning system,” in 2021 58th

ACM/IEEE Design Automation Conference (DAC) (San Francisco, CA: IEEE),
7–12.

Hernández-Cano, A., Zhuo, C., Yin, X., and Imani, M. (2021b). “Real-time and
robust hyperdimensional classification,” in Proceedings of the 2021 on Great

Lakes Symposium on VLSI, 397–402.
Imani, M., Gupta, S., Kim, Y., and Rosing, T. (2019a). “Floatpim: In-memory

acceleration of deep neural network training with high precision,” in 2019

Frontiers in Neuroscience | www.frontiersin.org 18 February 2022 | Volume 16 | Article 757125

https://cocodataset.org/#home
https://doi.org/10.1038/nn.4502
https://doi.org/10.3389/fninf.2013.00048
https://doi.org/10.1109/ACCESS.2021.3059241
https://doi.org/10.3389/fpsyg.2018.00401
https://doi.org/10.1016/j.jmapro.2021.09.048
https://doi.org/10.1109/ACCESS.2014.2325029
https://doi.org/10.1016/j.neuron.2020.02.013
https://doi.org/10.1109/TNNLS.2021.3105949
https://doi.org/10.1073/pnas.1902653116
https://doi.org/10.1109/MCAS.2020.2988388
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.7566&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.163.7566&rep=rep1&type=pdf
https://doi.org/10.21203/rs.3.rs-608660/v1
https://doi.org/10.1016/j.neuron.2017.06.011
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

ACM/IEEE 46th Annual International Symposium on Computer Architecture

(ISCA) (Phoenix, AZ: IEEE), 802–815.
Imani, M., Kim, Y., Riazi, S., Messerly, J., Liu, P., Koushanfar, F., et al. (2019b).

“A framework for collaborative learning in secure high-dimensional space,”
in 2019 IEEE 12th International Conference on Cloud Computing (CLOUD)

(Milan: IEEE), 435–446.
Imani, M., Kong, D., Rahimi, A., and Rosing, T. (2017a). “Voicehd:

Hyperdimensional computing for efficient speech recognition,” in 2017

IEEE International Conference on Rebooting Computing (ICRC) (Washington,
DC: IEEE), 1–8.

Imani, M., Morris, J., Messerly, J., Shu, H., Deng, Y., and Rosing, T. (2019c). “Bric:
locality-based encoding for energy-efficient brain-inspired hyperdimensional
computing,” in Proceedings of the 56th Annual Design Automation Conference

2019 (Las Vegas, NV), 1–6.
Imani, M., Pampana, S., Gupta, S., Zhou, M., Kim, Y., and Rosing, T. (2020).

“Dual: acceleration of clustering algorithms using digital-based processing
in-memory,” in 2020 53rd Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO) (Athens: IEEE), 356–371.
Imani, M., Rahimi, A., Kong, D., Rosing, T., and Rabaey, J. M. (2017b). “Exploring

hyperdimensional associative memory,” in 2017 IEEE International Symposium

on High Performance Computer Architecture (HPCA) (Austin, TX,: IEEE),
445–456.

Imani, M., Yin, X., Messerly, J., Gupta, S., Niemier, M., Hu, X. S., et al. (2019d).
Searchd: a memory-centric hyperdimensional computing with stochastic
training. IEEE Trans. Comput. Aided Design Integrat. Circ. Syst. 39, 2422–2433.
doi: 10.1109/TCAD.2019.2952544

Imani, M., Zou, Z., Bosch, S., Anantha Rao, S., Salamat, S., and Kuma,
V. (2021). “Revisiting hyperdimensional learning for fpga and low-power
architectures,” in 2021 IEEE International Symposium on High-Performance

Computer Architecture (HPCA) (Seoul: IEEE), 221–234.
Ji, X., Henriques, J., Tuytelaars, T., and Vedaldi, A. (2020). Automatic recall

machines: Internal replay, continual learning and the brain. arXiv [Preprint]

arXiv:2006.12323.
Jouppi, N. P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R.,

et al. (2017). “In-datacenter performance analysis of a tensor processing
unit,” in 2017 ACM/IEEE 44th Annual International Symposium on Computer

Architecture (ISCA) (Toronto, ON: IEEE), 1–12.
Kanerva, P. (1998). “Encoding structure in boolean space,” in ICANN, Vol. 98 (Los

Angeles, CA: Springer), 387–392.
Kanerva, P. (2009). Hyperdimensional computing: An introduction

to computing in distributed representation with high-dimensional
random vectors. Cogn. Comput. 1, 139–159. doi: 10.1007/s12559-009-
9009-8

Kanerva, P., Kristofersson, J., and Holst, A. (2000). “Random indexing of text
samples for latent semantic analysis,” in Proceedings of the 22nd Annual

Conference of the Cognitive Science Society, Vol. 1036 (Philadelphia, PA).
Karpathy, A., and Fei-Fei, L. (2015). “Deep visual-semantic alignments for

generating image descriptions,” in Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (Boston, MA: IEEE),
3128–3137.

Karunaratne, G., Le Gallo, M., Hersche, M., Cherubini, G., Benini, L., Sebastian,
A., et al. (2021). Energy efficient in-memory hyperdimensional encoding for
spatio-temporal signal processing. IEEE Trans. Circ. Syst. II 68, 1725–1729.
doi: 10.1109/TCSII.2021.3068126

Kim, Y., Imani, M., Moshiri, N., and Rosing, T. (2020). “Geniehd: efficient dna
pattern matching accelerator using hyperdimensional computing,” in 2020

Design, Automation Test in Europe Conference Exhibition (DATE) (Grenoble:
IEEE), 115–120.

Kim, Y., Imani, M., and Rosing, T. S. (2018). “Efficient human activity recognition
using hyperdimensional computing,” in Proceedings of the 8th International

Conference on the Internet of Things (New York, NY: ACM), 38.
Kleyko, D., and Osipov, E. (2014). “Brain-like classifier of temporal patterns,”

in 2014 International Conference on Computer and Information Sciences

(ICCOINS) (Kuala Lumpur: IEEE), 1–6.
Kleyko, D., Osipov, E., Papakonstantinou, N., and Vyatkin, V. (2018).

Hyperdimensional computing in industrial systems: the use-case of
distributed fault isolation in a power plant. IEEE Access 6, 30766–30777.
doi: 10.1109/ACCESS.2018.2840128

Kousik, N., Natarajan, Y., Raja, R. A., Kallam, S., Patan, R., and Gandomi, A. H.
(2021). Improved salient object detection using hybrid convolution recurrent
neural network. Expert. Syst. Appl. 166:114064. doi: 10.1016/j.eswa.2020.
114064

Kvatinsky, S., Belousov, D., Liman, S., Satat, G., Wald, N., Friedman, E. G., et al.
(2014). Magic memristor-aided logic. IEEE Trans. Circ. Syst. II 61, 895–899.
doi: 10.1109/TCSII.2014.2357292

Kvatinsky, S., Ramadan, M., Friedman, E. G., and Kolodny, A. (2015). Vteam: a
general model for voltage-controlled memristors. IEEE Trans. Circ. Syst. II 62,
786–790. doi: 10.1109/TCSII.2015.2433536

Lee, I., and Lee, K. (2015). The internet of things (iot): Applications,
investments, and challenges for enterprises. Bus. Horiz. 58, 431–440.
doi: 10.1016/j.bushor.2015.03.008

Li, H., Wu, T. F., Rahimi, A., Li, K.-S., Rusch, M., Lin, C.-H., et al.
(2016). “Hyperdimensional computing with 3d vrram in-memory kernels:
device-architecture co-design for energy-efficient, error-resilient language
recognition,” in Electron Devices Meeting (IEDM), 2016 IEEE International (San
Francisco, CA: IEEE).

Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., et al. (2014).
“Microsoft coco: common objects in context,” in European Conference on

Computer Vision (Zurich: Springer), 740–755.
Lumsdaine, A., Gregor, D., Hendrickson, B., and Berry, J. (2007).

Challenges in parallel graph processing. Parallel Proces. Lett. 17, 5–20.
doi: 10.1142/S0129626407002843

Ma, Y., Hildebrandt, M., Tresp, V., and Baier, S. (2018). “Holistic representations
for memorization and inference,” in UAI (Monterey, CA), 403–413.

Micikevicius, P., Narang, S., Alben, J., Diamos, G., Elsen, E., Garcia,
D., et al. (2017). Mixed precision training. arXiv [Preprint] arXiv:1710.
03740.

Mitrokhin, A., Fermller, C., and Aloimonos. Y. (2019). Learning sensorimotor
control with neuromorphic sensors: toward hyperdimensional active
perception. Sci. Rob. 4:30. doi: 10.1126/scirobotics.aaw6736

Moin, A., Zhou, A., Rahimi, A., Menon, A., Benatti, S., Alexandrov, G.,
et al. (2021). A wearable biosensing system with in-sensor adaptive
machine learning for hand gesture recognition. Nat. Electron. 4, 54–63.
doi: 10.1038/s41928-020-00510-8

Montagna, F., Rahimi, A., Benatti, S., Rossi, D., and Benini, L. (2018). “Pulp-hd:
accelerating brain-inspired high-dimensional computing on a parallel ultra-low
power platform,” in 2018 55th ACM/ESDA/IEEEDesign Automation Conference

(DAC) (San Francisco, CA: IEEE), 1–6.
Neubert, P., Schubert, S., and Protzel, P. (2019). An introduction to

hyperdimensional computing for robotics. KI-Künstliche Intell. 33, 319–330.
doi: 10.1007/s13218-019-00623-z

Nickel, M., Rosasco, L., and Poggio, T. (2016). Holographic embeddings of
knowledge graphs. In Proceedings of the AAAI Conference on Artificial

Intelligence, volume 30.
O’reilly, R. C., and Munakata, Y. (2000). Computational Explorations in Cognitive

Neuroscience: Understanding the Mind by Simulating the Brain. Cambridge,
MA: MIT Press.

Pascanu, R., Mikolov, T., and Bengio, Y. (2013). “On the difficulty of training
recurrent neural networks,” in International Conference on Machine Learning

(Atlanta: PMLR), 1310–1318.
Pitas, I. (2016). Graph-Based Social Media Analysis, Vol. 39. Boca Raton, FL: CRC

Press.
Poduval, P., Zou, Z., Najafi, H., Homayoun, H., and Imani, M. (2021b). “Stochd:

stochastic hyperdimensional system for efficient and robust learning from raw
data,” in IEEE/ACM Design Automation Conference (DAC) (San Francisco, CA:
IEEE).

Poduval, P., Zou, Z., Yin, X., Sadredini, E., and Imani, M. (2021a). “Cognitive
correlative encoding for genome sequence matching in hyperdimensional
system,” in IEEE/ACM Design Automation Conference (DAC) (San Francisco,
CA: IEEE).

Rahimi, A., Benatti, S., Kanerva, P., Benini, L., and Rabaey, J. M. (2016a).
“Hyperdimensional biosignal processing: a case study for emg-based hand
gesture recognition,” in 2016 IEEE International Conference on Rebooting

Computing (ICRC) (San Diego, CA: IEEE), 1–8.
Rahimi, A., Kanerva, P., Benini, L., and Rabaey, J. M. (2018). Efficient

biosignal processing using hyperdimensional computing: network templates

Frontiers in Neuroscience | www.frontiersin.org 19 February 2022 | Volume 16 | Article 757125

https://doi.org/10.1109/TCAD.2019.2952544
https://doi.org/10.1007/s12559-009-9009-8
https://doi.org/10.1109/TCSII.2021.3068126
https://doi.org/10.1109/ACCESS.2018.2840128
https://doi.org/10.1016/j.eswa.2020.114064
https://doi.org/10.1109/TCSII.2014.2357292
https://doi.org/10.1109/TCSII.2015.2433536
https://doi.org/10.1016/j.bushor.2015.03.008
https://doi.org/10.1142/S0129626407002843
https://doi.org/10.1126/scirobotics.aaw6736
https://doi.org/10.1038/s41928-020-00510-8
https://doi.org/10.1007/s13218-019-00623-z
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

Poduval et al. GrapHD: Graph-Based Hyperdimensional Cognitive Learning

for combined learning and classification of exg signals. Proc. IEEE 107,
123–143. doi: 10.1109/JPROC.2018.2871163

Rahimi, A., Kanerva, P., and Rabaey, J. M. (2016b). “A robust and energy-efficient
classifier using brain-inspired hyperdimensional computing,” in ISLPED (San
Francisco, CA: ACM), 64–69.

Rallapalli, S., Ma, L., Srivatsa, M., Swami, A., Kwon, H., Bent, G., et al. (2019).
“Sense: semantically enhanced node sequence embedding,” in 2019 IEEE

International Conference on Big Data (Big Data) (Los Angeles, CA: IEEE),
665–670.

Räsänen, O. J., and Saarinen, J. P. (2015). Sequence prediction with sparse
distributed hyperdimensional coding applied to the analysis of mobile
phone use patterns. IEEE Trans. Neural Netw. Learn. Syst. 27, 1878–1889.
doi: 10.1109/TNNLS.2015.2462721

Reijneveld, J. C., Ponten, S. C., Berendse, H. W., and Stam, C. J. (2007).
The application of graph theoretical analysis to complex networks in
the brain. Clin. Neurophysiol. 118, 2317–2331. doi: 10.1016/j.clinph.2007.
08.010

Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn: towards
real-time object detection with region proposal networks. arXiv [Preprint]

arXiv:1506.01497.
Sahu, S., Mhedhbi, A., Salihoglu, S., Lin, J., and Özsu, M. T. (2017). The ubiquity

of large graphs and surprising challenges of graph processing. Proc. VLDB
Endowment 11, 420–431. doi: 10.1145/3186728.3164139

Schacter, D. L., and Slotnick, S. D. (2004). The cognitive neuroscience
of memory distortion. Neuron 44, 149–160. doi: 10.1016/j.neuron.2004.
08.017

Simpkin, C., Taylor, I., Bent, G. A., de Mel, G., and Rallapalli, S. (2017). Semantic
workflow encoding using vector symbolic architectures. Available online
at: https://orca.cardiff.ac.uk/112242/1/camera-ready-semanticworkflow-
encoding.pdf

Sodhani, S., Chandar, S., and Bengio, Y. (2020). Toward training recurrent
neural networks for lifelong learning. Neural Comput. 32, 1–35.
doi: 10.1162/neco_a_01246

Stewart, T., Choo, F.-X., and Eliasmith, C. (2012). “Spaun: a perception-cognition-
action model using spiking neurons,” in Proceedings of the Annual Meeting of

the Cognitive Science Society, Vol. 34 (Sapporo).

Tijms, B. M., Wink, A. M., de Haan, W., van der Flier, W. M., Stam, C. J.,
Scheltens, P., et al. (2013). Alzheimer’s disease: connecting findings from
graph theoretical studies of brain networks. Neurobiol. Aging 34, 2023–2036.
doi: 10.1016/j.neurobiolaging.2013.02.020

Van Kranenburg, R., and Bassi, A. (2012). Iot challenges. Commun. Mobile

Comput. 1, 1–5. doi: 10.1186/2192-1121-1-9
Wiecki, T. V., Poland, J., and Frank, M. J. (2015). Model-based cognitive

neuroscience approaches to computational psychiatry: clustering and
classification. Clin. Psychol. Sci. 3, 378–399. doi: 10.1177/2167702614565359

Zou, Z., Alimohamadi, H., Imani, F., Kim, Y., and Imani, M. (2021a). Spiking
hyperdimensional network: neuromorphic models integrated with memory-
inspired framework. arXiv [Preprint] arXiv:2110.00214.

Zou, Z., Kim, Y., Imani, F., Alimohamadi, H., Cammarota, R., and Imani, M.
(2021b). “Scalable edge-based hyperdimensional learning system with brain-
like neural adaptation,” in Proceedings of the International Conference for High

Performance Computing, Networking, Storage and Analysis (St. Louis, MO),
1–15.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Poduval, Alimohamadi, Zakeri, Imani, Najafi, Givargis and

Imani. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Neuroscience | www.frontiersin.org 20 February 2022 | Volume 16 | Article 757125

https://doi.org/10.1109/JPROC.2018.2871163
https://doi.org/10.1109/TNNLS.2015.2462721
https://doi.org/10.1016/j.clinph.2007.08.010
https://doi.org/10.1145/3186728.3164139
https://doi.org/10.1016/j.neuron.2004.08.017
https://orca.cardiff.ac.uk/112242/1/camera-ready-semanticworkflow-encoding.pdf
https://orca.cardiff.ac.uk/112242/1/camera-ready-semanticworkflow-encoding.pdf
https://doi.org/10.1162/neco_a_01246
https://doi.org/10.1016/j.neurobiolaging.2013.02.020
https://doi.org/10.1186/2192-1121-1-9
https://doi.org/10.1177/2167702614565359
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles

	GrapHD: Graph-Based Hyperdimensional Memorization for Brain-Like Cognitive Learning
	1. Introduction
	2. Preliminary
	2.1. Hyperdimensional Primitives
	2.2. Motivation and Overview

	3. Hyperdimensional Graph Representation
	3.1. Unweighted Undirected Graphs
	3.2. Unweighted, Directed Graphs
	3.3. Weighted Graphs
	3.4. Graph Memory Refinement

	4. Algorithms With GraphHD Representation
	4.1. Information Retrieval
	4.2. Node Memory Reconstruction
	4.3. Graph Reconstruction
	4.4. Graph Matching

	5. Neuromorphic Hardware Acceleration
	5.1. NOR-Based In-memory Computing
	5.2. DPIM Operations

	6. Applications Evaluation
	6.1. Experimental Setup
	6.2. Graph Memory Refinement
	6.3. Graph Reconstruction
	6.4. Node Memory Reconstruction
	6.5. Graph Matching
	6.6. Shortest Path Between Nodes
	6.7. Object Detection
	6.8. Hardware Acceleration
	6.9. Graph Decoding With Nengo

	7. Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	References

