
In In D. Georgakopoulos, W. Prinz, and A. Wolf (eds.) Proceedings of ACM Conference on Work Activities Coordination
and Collaboration (WACC'99), ACM Press, Feb. 22-25, 1999, San Francisco

Interoperability as a Means of Articulation Work

Carla Simone1, Gloria Mark2, and Dario Giubbilei1

1Department of Computer Science
University of Torino

Corso Svizzera 185, 10149 Torino, Italy
simone@di.unito.it

2GMD-FIT
Schloß Birlinghoven

D-53754 St. Augustin, Germany
gloria.mark@gmd.de

ABSTRACT
The interoperability of systems to support cooperative
work requires moving beyond purely technical issues; it
also concerns the means and practices that users adopt to
articulate their cooperative activities. Articulation has to
be supported by a technology which focuses on this higher
level of interoperability. This claim is motivated by
observing the articulation process of users in real
cooperative work practice. Based on this study, the
functionality for this technology was designed to help
users reconcile different handling and perspectives on
shared objects in their cooperative work. The paper
presents the architecture of an application infrastructure
centered on the identified interoperability issues and
focuses on the design of a specialized module, called
reconciler, which provides the above functionality. The
current state of its implementation together with
identifying open research problems conclude the paper.

Keywords
Interoperability, cooperative work, awareness,
architectures, groupware conventions

1 INTRODUCTION
In the last decade, interoperability has become a critical
topic in the development of cooperative applications due to
the necessity to build systems that support a wide range of
cooperation modes. Currently interoperability issues are
common in the development of almost all types of systems
and significant results have been achieved both at the level
of applications and underlying infrastructure. However,
especially when cooperative work is to be supported, the
theme of interoperability reaches an additional level of
complexity. In fact, the inherent distributed nature of
cooperative work, as discussed e.g., in Simone and
Schmidt [16], implies that interoperability must be taken
into account not only at the level of the infrastructure or
between loosely-coupled applications, but also within the
same application supporting tight cooperative activities.
This is true irrespective of whether the actors cooperate
remotely.

The distributed nature of (tight) cooperative work implies
that system design must account for the local malleability
of the constituent parts of the application to guarantee
autonomy, as well as suitable support for preserving their
mutual alignment. Because changes are made locally, the
alignment process is also a distributed activity. In turn, the
local malleability of cooperative applications is made
easier by a clean separation between articulation work,
i.e., the work devoted to activity coordination and
coordinated work, i.e., the work devoted to their
articulated execution in the target domain. This distinction
has been emphasized in the framework of both CSCW
[13], and more abstract approaches to coordination models
and languages as shown by an increasing research interest
in these topics. Notice that the distinction between
articulation work and coordinated work provides two
decoupled, although connected, perspectives on
cooperative work, and excludes any hierarchical
relationship between the two perspectives. The above
distinction implies that interoperability has to be
considered and managed in relation to articulation work
as well as coordinated work, in a framework which
guarantees a smooth transition between the two.

While the second type of interoperability can be viewed in
relation to more traditional IS issues, or more recently,
within the so-called shared object approaches (e.g., see
CORBA), the first type of interoperability is a quite open
domain and requires a deep understanding of the nature of
articulation work. The CSCW literature is rich with
empirical studies showing that physically collocated actors
achieve the mutual alignment necessary for their
cooperation by using an unpredictable mixture of explicit
and implicit conventions, according to their current needs.
When articulation cannot rely on the information and cues
readily available in face-to-face cooperation, then the
design of a suitable support for facilitating and preserving
mutual alignment becomes a crucial part of the articulation
work and therefore of the application development
supporting it. That is, the infrastructure supporting the
application development must be equipped with suitable
tools to allow both types of interoperability.

The above claims identify a challenging research area in
which this paper intends to contribute by presenting
requirements and design issues of a kind of cooperative
system on the basis of empirical results from actual

cooperative work. We employ a bottom-up approach
beginning from real, special situations and extrapolate a
general solution applicable to a class of similar situations.

The paper is organized as follows. In the next section we
describe experiences of real users of a groupware system
which motivated us to think about interoperability in a new
way: users had developed individual and incongruent
conventions that adversely affected their cooperation. In
section 3 we derive requirements for how a technical
solution can promote the reconciliation of different
perspectives. We present the architecture in section 4, its
current implementation in section 5, and conclusions and
summary in section 6.

2 INCONGRUENT VIEWS ON SHARED OBJECTS
The empirical research was conducted in the PoliTeam
project [9, 12], whose aim is to supplement paper work
processes with electronic work processes as German
government ministries relocate from Bonn to the new
capital of Berlin. The results reported here are part of a
larger study of groupware use in real practice (see [10]).

Two different groups in a German ministry worked
cooperatively using shared workspaces in the PoliTeam
system: typists in a central typing pool and members of a
ministry unit. The writing office members type electronic
versions of documents for the unit members, whose job is
to support the Minister through activities such as speech-
writing, information dissemination, or answering citizens’
queries. The two groups can be distinguished by
differences in jobs, tasks, education levels, career path
orientations, salaries, and computer experience, among
other differences. The two groups were also spatially
distributed in the same Ministry building.

An evaluation of the system usage provided a number of
examples of how the two user groups, with different
perspectives on handling shared objects, established
unique views of the same shared workspace. By ”view”,
we refer to a very broad description concerning the
organization of a shared workspace: the information it
contains, how it is visually displayed, and how it is
internally organized. In the following, we have chosen
three different aspects of shared object use to describe,
which illustrate how different perspectives are used and
how they influence cooperation.

1) Personal information structuring. The writing office
members organize documents according to a scheme
which is logical for their work process: documents are
sorted by the name of the document owner and date of
creation, in a two-level hierarchy. In contrast, the unit
members structure their documents according to their work
processes, in rather deep multi-level structures, an
organization which is logical for them. To the typists,
accessing a document by the owner makes much more
sense to them than accessing a document by the subject
which has little meaning to them. To the unit members,
accessing a document by its subject has semantic meaning
for them, e.g. a speech on a senior citizen initiative. The
dates of the documents have less meaning for them, since

they may work on multiple projects within the same time
frame.

Unit members report that it is an overhead to find
documents among the vast array of information in the
shared workspace because the system supported only one
view: the typists’. Further, the method that is used in
exchanging documents between the unit members is
basically ad hoc. It is an overhead for both typists and unit
members to communicate about which folder finished
documents must be placed into. For some unit members,
communication is also an overhead when they exchange
documents among themselves. For example, two unit
members often exchange large numbers of documents.
One member stores them in the same folder, but her
cooperating partner uses the documents for different work
processes as well and stores them by distributing them in
different folders.

2) Naming of documents. The typists worked electronically
before PoliTeam was introduced, and during this time,
they established a convention for naming documents, using
document type, unit member name, and date. Although
after the system introduction a convention was set for all
users to use this naming system for the shared documents,
it remains confusing for the unit members. Again, their
preference is to name documents according to the subject,
which relates to their work processes. In fact, users began
using the subject field within the document to elaborate the
names, which led to even more different naming
references. One user even used fantasy names, which were
unintelligible to the others. A further complication arose
since users also can display information by lists or by
icons. When icons are used, document names are cut off,
and only a cryptic name is visible. As a result, the users
began to add their own keywords to understand the content
of the document. Thus, the preference for different views
led to a different semantic referral of the shared
documents.

3) Awareness information. Each employee, depending on
their work role, has a need for a different form of
awareness information. For the typist, it is a benefit that a
message is sent to the owners informing them when she
places finished documents in the shared folder. For the unit
members, automatic outgoing messages have less value,
but notifications of finished texts have benefits for them.
For the unit leader, he has a distinct requirement in his
management function; he would like to ascertain who had
made changes to, and who possesses a shared document.
Some unit members would like to have information about
the events and activities that occur in parts of the shared
workspace; other unit members see it as an information
overload.

Thus, awareness serves different purposes for different
workspace members, depending on their task and
perspective. Problems in interaction can arise when users
expect that others have the same awareness information as
themselves; i.e. when the awareness information is not
symmetric. And users sometimes behave as though it is

symmetric, believing that another user will receive
notification when they place a document in the workspace,
when the user in fact, has constructed an awareness profile
that only reports very general events.

3 RECONCILING INTRAGROUP AND INTERGROUP
COOPERATION

The above section provides evidence that through
intragroup cooperation, i.e. work within a long-established
group, members of the same group develop congruent
interpretations for some objects. Articulation work is about
establishing conventions that are materialized in some
artifact. More specifically, in the above scenario, artifacts
are classification schemes which not only organize
information according to specific relations but also govern
the action on this information. Action can refer to the
manipulation and retrieval of information, as well as
sending awareness information. As discussed in Schmidt
and Simone [13], classification schemes can be considered
as a special class of coordination mechanisms (CM). While
other artifacts, like the representation of the flow of
activities, are widely recognized as means for the
articulation of activities, classification schemes are in
general not considered as such in the design of the
technological support of cooperative work. As an
exception, the use of hypertext technology is used as a
support for argumentation, although this is a special kind
of application.

3.1 Coordination mechanisms as explicit artifacts
Classification schemes are of course used in current
technology; for example, they correspond to conceptual
schemes in database applications. However in this case
they are fully embedded, i.e. "wired" in the application. In
applications based on shared information spaces, they are
often left unspecified, or just implicitly specified through
conventions, e.g., by organizing objects into certain
containers or by just arranging them according to some
spatial scheme carrying a conventional semantics. In any
case, either wired or implicit, those classification schemes
can hardly serve coordination purposes; the first solution
hinders flexibility while the second one does not make the
conventions manifest, and therefore inhibits the
development of a shared understanding among the users.
Users' individual and unique patterns of technology usage
can become ingrained as we have seen, hindering the
transactions of shared objects between partners.

What we propose here (see figure 1) is to give
classification schemes, and more generally to all sorts of
coordination mechanisms, a status of explicit artifact,
which makes conventions visible and therefore more easily
modifiable by being decoupled from the field of work.
This approach is consistent with the idea of "factoring out
control" from information systems [5]. However, factoring
out per se is not sufficient; what has been factored out
must be made available and modifiable by the users.

On the other hand, the contrasting case is when
cooperation occurs intergroup, i.e. between members of
heterogeneous groups; here perspectives on shared objects

can be quite diverse. The boundary objects shared by
heterogeneous groups are vehicles for communication
about work and must be managed [17]. As found with the
PoliTeam users, the difficulty in reconciling different
perspectives is that they are generally logical for their
users’ roles and tasks.

CM1 CM2

CM2=
local
procedures and
conventions 2

 CM1=
local
procedures and
conventions 1

Coordinated
Work in the
Field of Work

Shared Entities
with their primitives

Reconciler

Articulation Work

These results
are likely to be a general problem with cooperative
systems. Hence, the technology supporting intergroup

cooperation has to deal with the tension between
maintaining the needed individual perspective and a shared
meaning to interpret boundary objects and actions
characterizing intergroup cooperation. The technology has
to provide a means to manage this tension, that is, a kind
of interface whose goal is to aid actors in reconciling
differences in their perspectives, which may be reflected in
different views and organizations of a shared workspace.
We call this special kind of interface a reconciler (see
figure 2). The reconciler can be distinguished from
personalized groupware interfaces which serve to meet the
requirements of unique working styles of group members
or subgroups, by tailoring an interface to an individual
perspective, e.g. [18]. In contrast, a reconciler is intended
to provide relevant information to users about how other
users are handling shared objects in order to promote the
convergence of perspectives. Another approach to
handling individual and group working styles was taken
recently by Gutwin and Greenberg [7] who promote
flexibility for individuals and groups through split views,
symbolic manipulation techniques, and gestural
communication to align different representations. Their
approach is less active in promoting an alignment of views
as compared to our proposed reconciler interface.

3.2 Requirements for aligning incongruent views
Cooperating partners switch back and forth between
individual and shared work. An important requirement of
such a reconciler is that it must be flexible to adapt to these
dynamic needs. In some cases, it should enable users to
retain individual views; in other cases, it should identify
incongruencies to promote the merging of perspectives. In
the former case, the reconciler saves overhead by working
”behind the scenes”, in the latter case, it actively supports
an articulation process among the group members. We
need to consider that a learning curve exists with

Figure 1. A logical framework supporting articulation
work across coordination mechanisms

groupware and the group needs time to learn the system
supporting their cooperative activities [10]. Here, learning
implies the understanding of both system functionality and
work practices developing from, and changed by, the
system usage. A reconciler interface can promote learning
within and across groups about their work practices since
users can cooperatively process the contents of their work:
interpreting, modifying, and aligning them. Of course, the
effectiveness of a reconciler depends on both its contents
and its active behavior. Figure 2 gives a schematic view of
the functionality we envisage using.

RECONCILER

VISUALIZATION OF
AGREED CONVENTIONS

RULES FOR DEFINING AND
MODIFYING CONTENTS AND BEHAVIOR

CORRESPONDENCE BETWEEN:
* names and relations
* actions
* awareness notifications

ENCODING OF RULES

U
S
E
R
S

SYSTEM

First of all, conventions are not always (or at least not
immediately) "algorithmic", that is, directly translatable in
a system behavior. Then, the reconciler contains a section
which serves as a shared space where users can record,
possibly in a free format, such type of conventions. This

section can be accessed intentionally by users in order to
become aware of, interpret, and apply established
conventions as the need arises. In addition, users can send
this, or appropriate sections of it, to others as reminders
when conventions may be violated. Secondly, when
conventions become algorithmic (possibly due to the
above mentioned learning process) then users can decide
to delegate their management to the reconciler. Then the
reconciler should support the definition of the rules to
reconcile the different perspectives and the associated
active behavior, that is, the correspondence between names
and relations, between actions and the related awareness
behavior in the two perspectives. Such rules, once defined,
can be incorporated and presented to the users in the above
shared space. Finally, the third section contains the code
implementing the behavior delegated to the reconciler;
such code is automatically generated from rule definition.

The scenario considered in section 2 provides an example
of a correspondence between incongruent actions: sending
a document to a unit member corresponds to depositing it
actually, to a specified folder related to him/her. Moreover,
this induces a correspondence between the awareness
information of actions in the source and target
perspectives; the awareness information generated by a
typist is to be interpreted so as to send a signal to the unit
member (recipient) when the document is deposited in
his/her specified folder. Rules can define also a
correspondence of different ways to identify objects in the
two perspectives. The two different ways of organizing
documents described in section 2 allows a unit member to

ask a typist, "send all documents in folder X to John".
Those documents can be identified and contextualized in
the typists' workspace using their system of organization,
if the appropriate rule is defined. The same approach can
solve the problem of different naming conventions, e.g.
task/work process names used by unit members vs. owner-
id/date names used by typists.

To sum up, the reconciler dynamically contains the
relevant information one cooperating partner needs to
know about another partner's system usage. All the rest of
the information can be hidden, or accessed through other
means. In addition, the rules can also define how and when
the reconciler should convey this information to the users,
by defining subscribe and publish policies. Then the
reconciler is able to make users aware of the fact that
awareness information is not always reciprocal, by
visualizing and comparing the above policies. Moreover,
suitable policies can make users aware of the extent to
which their changes and related actions, as a result of their
view, impact other users, and vice versa, e.g., changing
access rights to a shared folder affects all who are
cooperating with it. Awareness information can be
modulated in strength and mode of support depending on
the relevance of the event triggering it. The reconciler can
thus serve as a catalyst for the group to identify
congruency problems. There will of course be cases where
the process of forming congruencies is too complex for the
reconciler to handle; the group can then use other
strategies, such as social methods using negotiation.

4 INTEROPERABILITY AT DIFFERENT SEMANTIC
LEVELS

The theme of interoperability and individual perspectives
is not new, at the technological as well as the conceptual
levels. For example, the relational database technology
supports the notion of view to select items according to
specific user needs. On the other hand, interoperability is
the main goal of the CORBA standard [1] which in
addition provides services and facilities that make the
compliant infrastructure at the same time very rich and yet
still not sufficient for our purposes, as we will see later on.

At the conceptual level, interoperability and individual
perspectives are considered in the frameworks of
cooperative IS and agent-based systems. It is beyond the
scope of this paper to account for the rich set of proposals
originated from these frameworks. It is sufficient to notice
that their main application domain is the design of systems
where cooperation is among artificial entities: the so-called
federated databases in the first case (see, e.g. [11]), and
the artificial agents of Distributed AI in the second one
(see, e.g. [4]). Then, the goal of the proposed approaches is
to define, on the basis of the knowledge of a human
designer, ways to let cooperation happen, in the best
possible way, without each component being aware of the
problems cooperation raises in the other components.
Hence, the techniques proposed by both the technological
and conceptual frameworks, although quite sophisticated
and inspiring, cannot be directly used in the design of a

Figure 2. A schematic view of the functionality of a
reconciler.

CSCW system, and specifically of the reconciler, for a
combination of different reasons: the lack of flexibility
and visibility by the users, the inappropriate semantic
level, or finally the lack of support for mutual and
reciprocal awareness. All these requirements can be
fulfilled just by considering a comprehensive framework
where all of them can be dealt with in an integrated way to
support articulation work. This "ideal" architecture is
described in figure 3 as an infrastructure for cooperative
CSCW applications, which reflects the logical framework
illustrated in figure 1. This architecture deals with the
above mentioned ways to look at interoperability.
Therefore, we will adopt CORBA's lexicon to describe it
as CORBA as a common point of reference when speaking
about interoperability, at the technological level. Let's
consider the various components in turn (from the bottom)
together with their mutual relations.

The two (heterogeneous) Client/Server environments
interact through the Shared Objects, according to
CORBA's approach based on IDL and the supporting
services at the lower ISO/OSI levels (thick short double-
arrows). So, for our purposes, it is sufficient to think of
the shared objects as specified according to the notion of
CORBA's interface, in terms of attributes and operations,
to guarantee the interoperability, say, at the system level.
Client/Server environments and Shared Objects correspond
to the space of field of work of figure 1. Going up, the next
components are the two Contexts defined through a
CORBA-like Relationship Service which allows the
definition of proxy objects for the shared ones (roles and
nodes in CORBA's terms) together with their relationships.
The two levels of the service refer to the definition and

manipulation of the resulting graphs, respectively. The
latter materialize the protocols and classification schemes
(all together, Coordination Mechanisms) of figure 1.
Hence, the architecture preserves the distinction between
articulation work and coordinated work in two separated
modules which are, consequently, also not hierarchical.

Moreover, the way in which the Relationship Service is
interpreted in our architecture goes far beyond its standard
use within CORBA. In fact, there it is mainly reduced to a
feature allowing for (minor) user interface adaptability.
On the contrary, here it plays the central role to let the
related graphs become visible to and manipulable by the
application users (vertical thick shaded arrows). They are
the user access point to the Shared Objects. The
Relationship Service has thus to maintain a connection
between these manipulations and the related ones at the
Shared Objects level (thin double-arrows).

At the top-most level, we have the reconciler to manage
how the two Contexts interact. The term Context is used in
accordance with CORBA's terminology because Contexts
define the distributed space where the Naming Service
operates. Obviously, the service provided by the reconciler
is by far more articulated than CORBA's Naming Service.
However, we keep the same name as the former can be
seen as a generalization of the latter, as discussed in the
next section. According to the schema of figure 2, the
reconciler has both an information content and an
(autonomous) behavior. Hence, it is an object, specifically
the privileged shared object that allows for the
interoperation of the two Contexts as it functions as their
mediator. Again, it can be realized in terms of a CORBA-
like interface operating at the semantic level of articulation

SHARED OBJECTSCLIENT/SERVER
ENVIRONMENT

CLIENT/SERVER

ENVIRONMENT

SERVICE (1rst level) SERVICE (1rst level)
RULES

VISUALIZATION
AND

DEFINITION

RULES
ENCODING

REL.
SERV.

(2nd
level)

REL.
SERV.

(2nd
level)

Figure 3. An architecture of an infrastructure supporting articulation work and interoperability across CMs.

work. This basically implies two things: first, it has to be
explicitly programmed, as part of the whole cooperative
application, to incorporate the conventions supporting
intergroup cooperation; secondly, it has to be implemented
so as to be accessible and malleable by the users.

We conclude this section by clarifying why the
architecture based on the 'pure' CORBA standard (as well
as any analogous solution) is not adequate, per se, to
support the above ideal architecture. The answer is that
CORBA's features (IDL and Services) are at the
programming level and not at the level of the articulation
work. Therefore they are not adequate and usable by users
for this purpose. Moreover, the assumption underlying
their design is typical of Software Engineering approaches,
that is, to base interoperability on information abstraction
and hiding. On the contrary, the field studies show that
interoperability as an articulation support has to be based
on a flexible non-obtrusiveness (see section 2) and on the
promotion of mutual awareness, which in turn, are based
on the accessibility and malleability of the related
linguistic constructs.

5 IMPLEMENTING THE RECONCILER
Strictly speaking, the reconciler can be viewed as an
autonomous component that can be constructed
independently of different applications supporting
articulation work, and used to mediated among the related
coordination mechanisms. However, its effectiveness
depends greatly on how the latter are implemented in terms
of accessibility and malleability. For this reason we prefer
to present briefly how our previous work defined a
framework to construct mechanisms of this sort. In fact,
some of the available features are suitable for the
implementation of a reconciler naturally interacting with
them. These features can be seen as a kind of services that
any other approach has to 'simulate' in order to incorporate
a reconciler as a mediating component.

5.1 Supporting intragroup cooperation
The requirement of accessibility and malleability of
coordination mechanisms and, by consequence, all their
constituent components, is the main concern of a research
effort started within the COMIC European project. This
led to the definition and implementation of two prototypes:
ABACO, implementing a notation (called, Ariadne) for the
definition and the manipulation of coordination
mechanisms [15], and the AW-Manager supporting the
promotion of awareness [14]. The definition of Ariadne is
based on empirical studies of how actors articulate their
cooperative work. We derived from them a set of basic
categories together with their relationships to express the
mechanisms actors define to obtain articulation [13].
Among others, the most relevant category here is the
Active Artifact. Its role in articulation work is to
materialize and to make visible to the cooperative actors
the state of the distributed procedures and conventions
incorporated in the coordination mechanism. The Active
Artifact, through its information structure and
communication behavior, is one of the sources to promote

mutual awareness among actors. Being at the semantic
level of articulation work, the basic categories together
with their relationships are immediately usable by the
actors who can represent procedure and conventions in a
quite flexible way, according to their culture and habits, by
defining and modifying combinations of categories and
relationships in a practically open-ended set of modeling
approaches.

Due to the central role of awareness, this functionality has
been specifically considered and implemented in a
dedicated component, the AW-Manager, again
characterized by a set of linguistic features (called
Awareness Language, AL) that can be composed to realize
awareness capabilities. The latter aim at propagating
awareness information generated by specific components
to the other ones by taking into account their spatial
location within the cooperative application, both at the
physical and logical levels. This idea was first proposed in
[3]. To guarantee the high modularity required by
malleability and interoperability, Ariadne and AW-
Manager are implemented as a multi-agent architecture.
AL is the agent language of the latter, while ABACO, the
agent-based abstract machine [6] defining Ariadne's
operational semantics, uses an agent language called (not
surprisingly) Interoperability Language (IL). Its basic
primitives allow for the coordination (tell/ask), the
subscription (activate), and the malleability (overwrite) of
mechanism behaviors.

In relation to the above ideal architecture, the two
mentioned prototypes cover the definition and activation of
individual coordination mechanisms able to support intra-
mechanism coordinating protocols and awareness
capabilities (corresponding to the Contexts of figure 3).
The system level interoperability is solved by having
homogeneous JAVA™ client/server environments.
Moreover, IL and AL are implemented in JAVA™ too by
exploiting RMI capabilities.

5.2 Supporting intergroup cooperation
Supporting intergroup cooperation requires defining how
the related mechanisms interact, that is, an inter-
mechanism interoperability. An initial inter-mechanism
interoperability was achieved by using the same primitives
of IL and AL across coordination mechanisms. This
solution is inadequate for the scope of a reconciler as it
focuses only on a standardized inter-mechanism
communication and disregards its contents and pragmatics.
However, since Ariadne allows one to construct a
coordination mechanism as the composition of more
elemental ones, and associate to each its Active Artifact, it
is natural to incorporate a reconciler in a compound
coordination mechanism. In fact, the reconciler can be
viewed as the Active Artifact characterizing a compound
coordination mechanism. In this way, one can use the
features of Ariadne to define it and inherit the related
capabilities in terms of malleability and visibility.
Moreover, the reconciler's communicative behavior is
directly implemented through AL and IL. What is still

needed is a way to let this Active Artifact represent the
information contents shown in figure 2 and the related
action towards the reconciled mechanisms.

We are currently implementing the reconciler according to
a bottom-up strategy which considers the special cases we
have identified in the described field study and in our
experience in our own work environments. This means
that the current solution is not complete; rather it can be
seen as a test of feasibility for an incremental construction
of an articulation support based on interoperability. The
bottom-up approach is crucial since it must support a
learning process which also occurs bottom-up. Once new
cases are recognized, the related rules are added and a
consistency check is made in order to avoid contradictions;
the same happens in actual work practice when
ambiguities are to be kept under control. This is fully in
agreement with the incremental approach to the
construction of coordination mechanisms characterizing
both Ariadne and the AW-Manager.

The basic idea is to construct a user interface guiding the
cooperative actors in defining the correspondences (see
figure 2) on which the reconciler functionality is based.
Then, according to the above requirements for a reconciler,
the first goal is to make the reconciler a shared information
space where actors progressively record (and access) the
outcomes of the incremental learning process discussed in
section 3.2. In this paper we focus on the construction of
the formalized correspondences which support the
reconciler's active behavior. To this aim, the interface
proposes a dialogue to capture the necessary "knowledge"
according to the following two steps; their order is not
prescriptive, except that the process possibly starts out
with a partial accomplishment of the first step:

1) identification of the entities which are involved in the
intergroup communication. Those entities are mainly (but
not exclusively) selected from the lexicon used within the
coordination mechanisms (here, conventionally called A
and B) to be reconciled.

2) iterative check and a solution for different types of
conflicts. To improve understandability, the latter are
classified here according to the terminology proposed in
[2] and [8]. Two observations are in order: first of all,
these technical terms are not (all) used in the user interface
as users are not supposed to be experts in information
systems; secondly, adopting this terminology does not
mean adopting the related prescriptive constraints in terms
of consistency. In fact, on the one hand, consistencies
have to be identified together with their follow-up in terms
of possible new inconsistencies. On the other hand,
solutions can just be negotiated, suggested, and possibly
solved, but never be imposed on the basis of some abstract
reconciliation strategy. The types of conflict currently
taken into account are:

Terminology conflicts: identification of synonyms,
homonyms and local terms. In the first case, a

correspondence table is constructed to make equivalent
terms visible. In the second, the homonyms are
distinguished by giving them an extension associated to
the source context and possibly inserted in the synonyms
table, if needed. Terms local either to A or B are identified
and recorded as a means to promote awareness of the
possible communication problems they invoke.

Category conflicts: here the reconciler considers concepts
identified by equivalent terms and highlights the conflicts
arising from the sets of attributes of the related entities.
Possible communication problems arise when an entity of
A corresponds to a super/sub-concept of some concept of
B (i.e. the set of attributes of the first entity is contained
by/or contains the attributes of second one) or when the
two sets simply overlap. In fact, the nonintersecting
attributes, when referred to during communication, could
not be understood by the receiver.

Type conflicts: here the reconciler considers concepts
identified by equivalent terms and highlights the conflicts
arising from the different roles they could have in A and B.
A recurrent case in our field studies is when a term
identifies an attribute in A and the equivalent one identifies
an entity in B (see figure 4). In this case, the reconciler
represents and records the concept (represented as an
attribute) in A as an entity identified by the same term and
carrying a single attribute (see figure 4). The general idea
is to reduce Type conflicts to Category conflicts. Simple
cases can be managed almost automatically; more complex
cases require a combination of the proposed techniques
with alternative solutions such as social methods discussed
in [10]. However, users can decide to avoid this effort and
be content with minimal support. In any case, the conflicts
are recorded.

Dependency conflicts: here the reconciler considers pairs
of concepts identified by equivalent terms and highlights
the conflicts arising from the different relations linking the
elements of those pairs. A recurrent case in our field
studies is when in context A it is necessary to keep a
record of a sequence of values, and in context B just one of
them makes sense. Here the reconciler asks the users to
define a criterion for selecting the appropriate value out of
the sequence. Again, a recurrent criterion is to use
order/time as a parameter (the last, the first, the more
recent value). However, the following example proposes a
different criterion.

Unit conflicts: here the conflicts arise from the different
domains associated with attributes identified by equivalent
terms. A typical example is the attribute name whose
domain depends on the naming convention of the pertinent
context. Examples of this type of conflict are given in
section 2. The reconciler asks the users to make explicit
the naming conventions and records the related
correspondences.

Figure 4. Examples of correspondences, identification of conflicts, and solution

invoiceunit itemdescription descriptionvalue

serial# LABS

ADMIN

id

supplier date

1 N

Dom:
 supplier X
date

Dom:
Technical features Dom: archive #

Dom:
Informal text

(1) Homonyms: description
(2) Synonyms: unit <-> item; value <-> invoice;
 description.LABS <-> description.ADMIN

(3) Unit conflict: Domain: description.LABS ° Domain: description.ADMIN
 Resolution criteria: [common set of keywords in both descriptions]
(4) Type conflict: Attribute: value ° Entity: invoice;
 New schema:

unit descriptionvalue

serial#

Dom:
Dom:

LABS.reconciler

info

bank

id Dom: registry #

Figure 4 shows examples of conflicts derived from the
analysis of some communication problems which arose in
the cooperation between the Laboratories and the
Administration of our Computer Science Department in
Torino. The concepts they use are expressed by an Entity-
Relationship formalism: rectangles represent entities, ovals
represent their attributes, primary keys are underlined;
dotted lines link attributes with the domain of their values.
In the following we give a hint of how the reconciler
interactively builds the correspondences on which its
Naming Service is based (numbers in brackets refer to
steps in figure 4).

First of all, homonyms are considered (1). At first glance,
actors require distinguishing between the two occurrences
of the attribute 'description', since they don't agree about
its meaning and use. They require the reconciler to add the
related extensions and put them in the list of synonyms to
be treated in the next step (at the end, they refer to the
same thing, but they are not completely equivalent). Other
synonyms are recognized (2); each pair gives rise to a
different type of conflict as follows. The two views of the
attribute 'description' can be reconciled by solving a unit
conflict (3): a resolution criteria is needed. Actors decide
that the two descriptions are equivalent if they contain a
predefined set of keywords, irrespective of their format
and position in the text. The equivalence of 'unit' and
'item' raises a category conflict; however this is not a
serious problem as the additional attribute of 'unit' is not
used by the Administration. One relevant aspect is that the
two groups define a different primary key for unit and
item, respectively. They agree to avoid using these keys in
their communication since the true link between them is
based on the information about the description and the
suppliers. This aspect refers to the last pair of synonyms:
'value' and 'invoice'. Their equivalence give rise to a type
conflict (4), since the first is an attribute while the second
is an entity. A new schema is proposed by the reconciler,
in order to solve this inconsistency. 'Value' is raised to the
role of entity with the new attribute 'info'; the latter takes
the old domain of 'value'. This new schema raises a
dependency conflict (5) with the ADMIN schema, since
the cardinality of the relationships between the pairs of
equivalent entities (value <--> invoice and unit <--> item)
are different. Again, a resolution criteria is required. The
reconciler proposes to build a correspondence between the
value domains of the primary keys (serial no. and id). The
actors refuse this solution as it does not provide enough
semantics to solve possible critical situations; the attribute
description makes much more sense to them. The actors
decide to use the attribute description as follows: the pair
<info, description> of 'unit' selects the corresponding item
out of the list of items associated to 'invoice'. In this way,
as agreed, the primary keys are not involved.

Once the goal of highlighting the conflicts and building the
correspondences is achieved, the reconciler can then
reward users' effort by activating the services supporting
their interaction through the communication capabilities of
the reconciled coordination mechanisms. Since this

communication is translated into the IL/AL languages
then the services are based on their syntax. Let us consider
the case of a request by someone in context A to perform
an action on some shared objects. In a semi-formal
representation of IL this corresponds to:

a of A asks b of B to perform action X on E1
A ... Ek

A

The reconciler tries to identify the entities of B
corresponding to the ones mentioned in the request by
using the information collected in the above constructed
correspondences. Let's suppose that this naming problem
can be solved successfully and that the reconciler is able to
identify a correspondence between E1

A Ek
A and

some E1
B Eh

B. Then the reconciler can use the way
in which entities are organized in B to translate the above
command into one or more commands on the identified
entities in B. Let's consider an example similar to the one
discussed in section 3.2. The command could be:

John of the Typist group asks Mary of the Unit Member
group to perform a check on documents D1, ...,Dk.

Then the first action of the reconciler is to identify the
corresponding documents in the Unit Member context.
Since the document organization in the latter is different
from the other one, and the documents can belong to
different sub-contexts (in the example, to different folders)
the reconciler translates the single command to a set of
commands that can be contextualized in the sub-context of
each corresponding document in the Unit Member context.
The case of folders is simple and is just a support for
document retrieval. A more interesting case is when the
target context is organized into a structure of working
spaces, equipped with significant contextual information.
Then the reconciler's support is much more rewarding
since the activation of one of the commands automatically
accesses the pertinent working space. Let's consider the
following example which is based on the situation depicted
in figure 4. The message:

Bruno of LABS asks Claudia of ADMIN to perform
payment of unit

where info = <'XY', 1998> and description = PC

is transformed by using the new schema LABS.reconciler
into the following:

Bruno of LABS asks Claudia of ADMIN to perform
payment of {unit, value}

where info = <'XY', 1998> and description = PC

and finally, by using the dependency conflict resolution, it
is transformed into:

Bruno of LABS asks Claudia of ADMIN to perform
payment of {item,invoice}

where supplier = 'XY' and date = 1998 and
description = PC.

Moreover, since the Administration organizes the invoices
according to the bank dealing with the payment, the
command is split into a set of commands accordingly.
Specifically, the latter are directed to the person
responsible for each set of invoices. When this person
wants to execute the command, the related working space
is open. It contains the procedure to be used with the
pertinent bank. For example, one bank provides on-line
payments, another one has special payment policies, and so
on. In the real situation, this is done manually by Claudia
and her colleagues. This working habit could be naturally
incorporated into a coordination mechanism and then the
related communication directly managed by the reconciler,
possibly notifying Claudia, the ADMIN manager, of both
the request and the carrying out of the whole command by
her colleagues.

If the naming problem cannot be fully solved by the
reconciler, then the latter activates a dialogue with the
source context in order to clarify the ambiguities. Again,
the involved user can refuse this cooperation and delegate
the related overhead to the receiver. The receiver can use
the information managed by the reconciler in order to
understand the request and in so doing, can reduce the
number of additional questions to the sender. Finally, if in
the source coordination mechanism a command goes
together with some awareness communication, then a
similar process is activated on the latter by using the
syntax of the commands belonging to AL.

We conclude this section by noticing that if a framework
as Ariadne/ABACO and the AW-Manager is used, then
actors can increase the reconciler's active behavior by
using their standard interface for the definition of a generic
Active Artifact. The type of support provided by the
reconciler can therefore be tailored to the type of
investment the two groups want to make to improve the
interoperability of their coordination mechanisms.

6 SUMMARY AND CONCLUSIONS
In this paper, we began by presenting empirical evidence
showing the consequence of multiple perspectives in a
cooperative situation: the development of different views
of shared workspaces resulting in incongruent conventions.
Based on these observations, we developed requirements
for a reconciler that can serve to aid users in managing
these different views. The reconciler incorporates only that
information which is relevant for the cooperative task at
hand. The goal is to help users gain an intergroup
perspective of the shared objects, in addition to enabling
them to retain their individual views.

The reconciler can be seen as an extension of an
architecture for cooperative applications, that is, as a
component specialized to manage interoperability at the
semantic level of articulation work. Although the current
implementation manages simple cases of conflicts and
supporting services, it shows the technical feasibility of
solutions to problems identified in the actual situations that
were described.

The functionality currently envisaged for the reconciler has
to be further investigated through empirical studies to
better identify the source of problems in inter-group
cooperation and to develop ways for providing views at
different levels of abstraction of the different perspectives
to improve its effectiveness and flexibility. This will make
the reconciler more adaptable to the users' practices and to
the evolution of the coordination mechanisms to be
reconciled. This is one of the most challenging efforts of
our ongoing research.

ACKNOWLEDGMENTS
We thank Wolfgang Gräther and Piercarlo Giolito for their
valuable comments.

REFERENCES
1. Baker, S. (1997): CORBA distributed objects using

Orbix. Harlow, UK: Addison Wesley.

2. Batini, C., M. Lenzerini, and S.B. Navathe (1986): A
comparative analysis of methodologies for database
schema integration. ACM Computing Surveys, vol. 18,
no. 4, pp. 323-364.

3. Benford, S. and L. Fahlén (1993): A Spatial Model of
Interaction in Large Virtual Environments, Proc. of the
Third European Conference on Computer Supported
Cooperative Work, G. De Michelis, C. Simone, and K.
Schmidt, Editor. 1993, Kluwer Acdemic Publishers:
Dordrecht, p. 109-124.

4. Bordini, R. H., Campbell, J.A. and Vieira, R. (1997):
Ascription of intentional ontologies in anthropological
descriptions of multi-agents systems. In CAI 97.
Springer Verlag- Berlin, vol. LNCS 1202, 235-247.

5. De Michelis, G., E. Dubois, M. Jarke, F. Matthes, G.
Mylopoulos, M. Papazouglou, K. Pohl, J. Schmidt, C.
Woo, and E Yu (1997): Cooperative Information
Systems: a manifesto. In M. Papazouglou and G.
Schlageter (eds.) Cooperative Information Systems:
Trends and directions, Academic Press, 315-363.

6. Divitini, M., Simone, C. and Schmidt, K. (1996):
ABACO: coordination mechanisms in a multi-agent
perspective. In COOP ’96 International Workshop on
the Design of Cooperative Systems, Antibes-Juan-les-
Pins, France, 19--22 June1996.

7. Gutwin, C. and Greenberg, S. (1998): Design for
individuals, design for groups: Tradeoffs between
power and workspace awareness. Proceedings of
CSCW'98, Seattle, Nov. 14-18, 1998, 207-216.

8. Kahng, J. and D. McLeod (1998): Dynamic
classification ontologies: mediation of information
sharing on cooperative federated database systems. In
M. P. Papazouglou and G. Schlagter, (eds.),
Cooperative information systems, San Diego:
Academic Press, 179-203.

9. Klöckner, K., P. Mambrey, M. Sohlenkamp, W. Prinz,
L. Fuchs, S. Kolvenbach, U. Pankoke-Babatz, and A.
Syri (1995): PoliTeam - Bridging the gap between
Bonn and Berlin for and with the users. Proceedings of

ECSCW ‘95, Stockholm. Kluwer Academic Publishers,
17-31.

10. Mark, G., L. Fuchs., and M. Sohlenkamp (1997):
Supporting groupware conventions through contextual
awareness. Proceedings of ECSCW’97, Lancaster,
Kluwer Academic Publishers, 253-268.

11. Papazoglou, M.P. and G. Sclageter, ed. (1997):
Cooperative Information Systems: trends and
Directions, San Diego: Academic Press.

12. Prinz, W. and S. Kolvenbach (1996): Support for
workflows in a ministerial environment. Proceedings
of CSCW’96, Boston: ACM Press.

13. Schmidt, K. and Simone, C. (1996): Coordination
Mechanisms: towards a conceptual foundation for
CSCW systems design. CSCW, vol. 5, no. 2/3, 155-
200.

14. Simone, C. and S. Bandini (1997): Compositional
features for promoting awareness within and across
cooperative applications. In S. C. Hayne and W. Prinz

(eds.) Proc. of GROUP'97, Phoenix, AZ, ACM Press,
358-367.

15. Simone, C. and M. Divitini (1998): Ariadne:
Supporting Coordination Through a Flexible Use of
Knowledge Processes. In Information Technology for
Knowledge Management, U.M. Borghoff and R.
Pareschi (eds.) Berlin-Heidelberg: Springer, 121-148.

16. Simone, C. and K. Schmidt (1998): Taking the
distributed nature of cooperative work seriously. In 6th
Euromicro Workshop on Parallel and Distributed
Processing, Madrid (Spain), January 21-23, 1998.
IEEE Computer Society, 295-301.

17. Star, S. L. and J. R. Griesemer (1989): Institutional
Ecology, ‘Translations’ and Boundary Objects:
Amateurs and Professionals in Berkeley’s Museum of
Vertebrate Zoology, 1907-39. Social Studies of
Science, vol. 19, 387-420.

18. Wasserschaff, M. and R. Bentley (1997): Supporting
Cooperation through Customization: the Tviews
Approach. CSCW, , no. 6-4, 305-325.

