ICS 268 Fall 2001: Introduction to Cryptography

Homework 2 November 17, 2001

DUE at 9:30am, Monday, November 26

Problem 1

Suppose two people (Bob and Eve) are assigned the same RSA modulus N. Someone (say, their boss Alice) selects p and q and computes N while keeping p and q secret. Then, Alice computes two key-pairs: (e_a, d_a) and (e_e, d_e) and gives the first one to Bob and the second one – to Eve. Recall that $e_e * d_e = 1 \mod \phi(n)$ and $e_b * d_b = 1 \mod \phi(n)$.

Now, suppose Alice sends a secret message M to Bob by encrypting it: $C = M^{e_b} modn$. Eve sees this encrypted message.

Show how Eve can compute M from C. In fact, Eve can compute d_b as well!!!

Hits:

- Start by showing that, knowing e_e and d_e , Eve can compute a multiple of $\phi(n)$.
- Proceed by showing that, knowing a multiple of $\phi(n)$, Eve can recover d_b from e_b .
- At this point decrypting C is trivial...

Problem 2

Consider the following 2 ways to construct a MAC (Message Authentication Code):

$$MAC_x(data) = h(K||data)$$

 $MAC_y(data) = h(data||K)$

Here "——" denotes concatenation. h() is a collision-resistant strong hash function that operates on a sequence of n-bit blocks and produces a n-bit output. Assume K is an n-bit secret and data is p * n bits.

Which one is more secure: MAC_x or MAC_y ? Assume Alice and Bob share K. Eve is listening, as always and sees packets of the type:

where MAC is either MAC_x or MAC_y . Comment on why $MAC_z(data) = h(K, data, K)$ is better than MAC_x and MAC_y .

Problem 3

Consider the following secret sharing scheme:

We take an n-bit secret K and split it into t sub-secrets: $S_1, ..., S_t$ where each S_i is n/t bits long. Each party, P_i receives a share, S_i .

Then, to reconstruct K, the parties simply concatenate their shares and obtain K.

Is this a good t-out-of-t scheme? Evaluate it... Is it better then the one presented in class? Explain your answer well.

Problem 4

Suppose we modify the Diffie-Hellman key exchage method as follows:

1) Alice generates random aThen, Alice sends to Bob: $g^a \mod p$

2) Bob generates random b, computes $g^b \ mod \ p$ Then, Bob sends to Alice: $g^ab \ mod \ p$

Alice computes $(g^{ab})^{a^{-1}} \mod p = g^b \mod p$ The secret key that Alice and Bob share is $K = g^b \mod p$

Formally show (prove) that this method is as secure as the original Diffie-Hellman method discussed in class and in the book.