ICS 268 Fall 2001: Introduction to Cryptography

Homework $2 \quad$ November 17, 2001

DUE at 9:30am, Monday, November 26

Problem 1

Suppose two people (Bob and Eve) are assigned the same RSA modulus N. Someone (say, their boss Alice) selects p and q and computes N while keeping p and q secret. Then, Alice computes two key-pairs: $\left(e_{a}, d_{a}\right)$ and (e_{e}, d_{e}) and gives the first one to Bob and the second one - to Eve. Recall that $e_{e} * d_{e}=1 \bmod \phi(n)$ and $e_{b} * d_{b}=1 \bmod \phi(n)$.
Now, suppose Alice sends a secret message M to Bob by encrypting it: $C=M^{e_{b}} \bmod n$. Eve sees this encrypted message.
Show how Eve can compute M from C. In fact, Eve can compute d_{b} as well!!!
Hits:

- Start by showing that, knowing e_{e} and d_{e}, Eve can compute a multiple of $\phi(n)$.
- Proceed by showing that, knowing a multiple of $\phi(n)$, Eve can recover d_{b} from e_{b}.
- At this point decrypting C is trivial...

Problem 2

Consider the following 2 ways to construct a MAC (Message Authentication Code):

$$
\begin{aligned}
& M A C_{x}(\text { data })=h(K \| d a t a) \\
& M A C_{y}(\text { data })=h(\text { data } \| K)
\end{aligned}
$$

Here "__" denotes concatenation. $h()$ is a collision-resistant strong hash function that operates on a sequence of n-bit blocks and produces a n-bit output. Assume K is an n -bit secret and data is $p * n$ bits.

Which one is more secure: $M A C_{x}$ or $M A C_{y}$? Assume Alice and Bob share K. Eve is listening, as always and sees packets of the type:
packet, MAC(packet)
where $M A C$ is either $M A C_{x}$ or $M A C_{y}$. Comment on why $M A C_{z}($ data $)=h(K, d a t a, K)$ is better than $M A C_{x}$ and $M A C_{y}$.

Problem 3

Consider the following secret sharing scheme:

We take an n-bit secret K and split it into t sub-secrets: S_{1}, \ldots, S_{t} where each S_{i} is n / t bits long. Each party, P_{i} receives a share, S_{i}.

Then, to reconstruct K, the parties simply concatenate their shares and obtain K.
Is this a good t-out-of-t scheme? Evaluate it... Is it better then the one presented in class? Explain your answer well.

Problem 4

Suppose we modify the Diffie-Hellman key exchage method as follows:

1) Alice generates random a

Then, Alice sends to Bob: $g^{a} \bmod p$
2) Bob generates random b, computes $g^{b} \bmod p$

Then, Bob sends to Alice: $g^{a} b \bmod p$
Alice computes $\left(g^{a b}\right)^{a^{-1}} \bmod p=g^{b} \bmod p$ The secret key that Alice and Bob share is $K=g^{b} \bmod p$
Formally show (prove) that this method is as secure as the original Diffie-Hellman method discussed in class and in the book.

