Lecture 3, Oct 1, 2001

* Enigma
 - Algebraic Structures
 * Projects

Enigma

Based on material by Fauzan Mirza F.U.Mirza@sheffield.ac.uk

Enigma

The algorithm combines 3 separate encryption stages:
-The plugboard (PL)
-The main rotors (MR)
-The reflecting rotor (RR)

$$
\text { p }->\text { PL }->\text { MR }->\text { RR }->\text { MR-1 }->\text { PL }->c
$$

The Main Rotors: the most complex part of the algorithm.

Enigma

Enigma

Enigma

Plugboard and reflecting rotor
The plugboard maps a few additional letters at the beginning and end.
The reflecting rotor is just a simple fixed transformation.

Putting it together

The machine used 3 rotors. The order of the rotors was part of the key.
The first selected rotor rotates on each letter. It has one fixed position ("rotor notch") at which it triggers the second rotor to rotate (once per revolution of the first). Similarly, the second has a position at which it triggers the third.

An Example:

Rotor wirings:
Input: ABCDEFGHIJ KLMNOPQRSTUVWXYZ 1: EKMFLGDQVZNTOWYHXUSPAIBRCJ 2: AJDKSIRUXBLHWTMCQGZNPYFVOE 3: BDFHJLCPRTXVZNYEI WGAKMUSQO 4: ESOVPZJAYQUI RHXLNFTGKDCMWB 5: VZBRGITYUPSDNHLXAWMJ QOFECK

Rotor notches:

1: Q
2: E
3: V
4: J
5: Z R: YRUHQSLDPXNGOKMIEBFZCWVJAT

Key
Rotor order: $\quad 312$
Alphabet ring setting: W X T
Rotor starting positions: A W E
Plugboard:
(AM) (TE)

Input	P	3	12	R	2	1	3	P	Output
T	E	[FJTPO]][KNWTX] [BIXQM]	(MO)	[SZSLH]	[DGFCG]	[HLFBA]	A	M
H	H	[JNNJH]][DGDAE] [IPCVR]	(RB)	[FMOHD]	[ZCYVZ]	[BFCYW]	W	W
I	I	[LPEAX]][TWBYC] [GNTMI]	(IP)	[TAATP]	[LOMJN]	[QUWSP]	P	P
S	S	[WABXT]][PSSPT] [XESLH]	(HD)	[HOYRN]	[JMCZD]	[HLFBX]	X	X
I	I	[NRWSN]][JMOLP] [TAATP]	(PI)	[MTNGC]	[YBWTX]	[CGSOJ]	J	J
S	S	[YCFBV]] [RUAXB] [FMWPL]	(LG)	[KRGZV]	[RUROS]	[YCGCW]	W	W
A	M	[TXSOH]][DGDAE] [IPCVR]	(RB)	[FMOHD]	[ZCYVZ]	[GKUQJ]	J	J
T	E	[MQIEW]][SVIFJ] [NUPIE]	(EQ)	[UBJCY]	[UXQNR]	[ZDBXP]	P	P
E	T	[CGCYP]] [LOYVZ] [DKLEA]	(AY)	[CJBUQ]	[MPTQU]	[DHDZQ]	Q	Q
S	S	[CGCYO]][KNWTX] [BIXQM]	(MO)	[SZSLH]	[DGFCG]	[QUWSI]	I	I
T	E	[PTAWL]] [HKNKO][SZEXT]	(TZ)	[DKDWS]	[ORXUY]	[JNNJY]	Y	Y

See: http:// home.cern.ch/~frode/crypto/ historical.html

(Mostly) Finite Algebraic Structures

- Groups

>Abelian
$>$ Cyclic
$>$ Generator
$>$ Group order
每ings
Fields

- Subgroups
- Euclidian Algorithm
- CRT

GROUPs

DEFINITION: A set G and operator $@,(G, @)$ is a group if:

CLOSURE: for all $x, y \in G, x$ @ $y \in G$
ASSOCI ATI VI TY: for all $x, y, z \in G,(x @ y) @ z=x @(y @ z)$
IDENTITY: $\exists \mathrm{I} \in \mathrm{G}$ such that for all $\mathrm{x} \in \mathrm{G}, \mathrm{I} @ \mathrm{x}=\mathrm{x}$
I NVERSE: for all $x \in G, \exists$ inverse element $x^{-1} \in G$ such that $x-{ }^{1} @ x=1$

DEFINITION: A group (G, @) is ABELIAN if:

COMMUTATIVITY: for all $x, y \in G, x @ y=y @ x$

Groups (contd)

DEFINITION: An element $g \in G$ is a group generator of group ($G, @$) if for all $x \in G, \exists i$ such that $x=g^{i}=g @ g @ g @ . . . @ g$ (itimes)

In other words, $\mathrm{G}=<\mathrm{g}>$

DEFINITION: A group ($\mathrm{G}, @$) is cyclic if a group generator exists!

DEFINITION: Group order of a group ($\mathrm{G}, @$) is the size of set G, i.e., $|G|$ or $\#\{G\}$ or $\operatorname{ord}(G)$

DEFINITION: Group ($\mathrm{G}, @$) is finite if $\operatorname{ord}(\mathrm{G})$ is fixed.

Rings and Fields

DEFINITION: A structure ($R,+, *$) is a ring if $(R,+)$ is an abelian group and:

* CLOSURE: for all $x, y \in R, x * y \in R$
ASSOCI ATIVITY: for all $x, y, z \in R,\left(x^{} y\right) * z=x^{*}\left(y^{*} z\right)$
IDENTITY: $\exists I \in R$ such that for all $x \in R, I^{} x=x$
* COMMUTATIVITY: for all $x, y \in R, x^{*} y=y^{*} x$

DISTRIBUTION: for all $x, y, z \in R,(x+y)^{*} z=x^{*} z+y^{*} z$

DEFINITION: A structure ($\mathrm{F},+, *$) is a field if $(\mathrm{F},+, *)$ is a ring and:
*INVERSE: for all $x \in R, \exists$ inverse element $x^{-1} \in R$ such that $x-{ }^{1 *} x=1$

Examples: I ntegers under addition

$\mathrm{G}=\mathbf{Z}=$ integers $=\{\ldots-3,-2,-1,0,1,2 \ldots\}$
the group operator is " + ", ordinary addition
the integers are closed under addition
the identity is 0

- the inverse of x is $-x$
a the integers are associative
the integers are commutative (so the group is abelian)

Positive I ntegers under Exponentiation?

$$
\begin{aligned}
& \qquad G=\{0,1,2,3 \ldots\} \\
& \text { the group operator is " } " \wedge \text { ", exponentiation }
\end{aligned}
$$

- closed under exponentiation
\square the identity is $1, x^{\wedge} 1=x$
\square the inverse of x is always $0, x^{\wedge} 0=1$
\square the integers are NOT commutative,
$x^{\wedge} y<>y^{\wedge} x$ (non-abelian)
\square the integers are NOT associative,
$\left(x^{\wedge} y\right)^{\wedge} z=x^{\wedge}\left(y^{\wedge} z\right)$

Non-zero rationals under multiplication

$G=\mathbf{Q}-\{0\}=\{a / b\}$ where $a, b \in \mathbf{Z}^{*}$
the group operator is "*", ordinary multiplication

- If $a / b, c / d \in Q-\{0\}$, then $a / b * c / d=(a c / b d) \in Q-\{0\}$
- the identity is 1
- the inverse of a / b is b / a
- the rationals are associative
- the rationals are commutative (so the group is abelian)

Non-zero reals under multiplication

$$
G=\mathbf{R}-\{0\}
$$

the group operator is "*", ordinary multiplication

- If $a, b \in R-\{0\}$, then $a * b \in R-\{0\}$
- the identity is 1
- the inverse of a is $1 / a$
- the reals are associative
- the reals are commutative (so the group is abelian)

Integers mod \mathbf{N} under addition

$\mathrm{G}=\mathbf{Z}^{+} \mathbf{N}=$ integers $\bmod \mathrm{N}=\{0 \ldots \mathrm{~N}-1\}$
the group operator is " + ", modular addition

- the integers modulo N are closed under addition
- the identity is 0
- the inverse of x is $-x(=N-x)$
- addition is associative
- addition is commutative (so the group is abelian)

I ntegers mod p (prime) under multiplication

$$
G=\mathbf{Z}_{\mathbf{p}}^{*}=\text { non-zero integers } \bmod p=\{1 \ldots p-1\}
$$

the group operator is "*", modular multiplication

- integers mod p are closed under *:
because if $\operatorname{GCD}(x, p)=1$ and $\operatorname{GCD}(y, p)=1$
then $\operatorname{GCD}(x y, p)=1$
- the identity is 1
- the inverse of x is from Euclid's algorithm:

$$
\begin{aligned}
& u x+v p=1=G C D(x, p) \\
& \text { so } x^{-1}=u \\
& \text { also } x^{-1}=u=x^{p-2}
\end{aligned}
$$

- * is associative
- * is commutative (so the group is abelian)

$Z^{*}{ }_{N}$: positive integers mod N relatively prime to \mathbf{N}

$\mathrm{G}=\mathbf{Z}^{*} \mathbf{N}^{\mathbf{N}}=$ non-zero integers $\bmod \mathrm{N}=\{1 \ldots, \mathrm{x}, \ldots \mathrm{n}-1\}$ such that $\operatorname{gcd}(x, N)=1$

Group operator is "*", modular multiplication
Group order $\operatorname{ord}\left(\mathrm{Z}^{*}{ }_{\mathrm{N}}\right)=$ number of integers relatively prime to N denoted by $\phi(\mathrm{N})$

- integers $\bmod \mathrm{N}$ are closed under multiplication:
if $\operatorname{GCD}(\mathrm{x}, \mathrm{N})=1$ and $\operatorname{GCD}(\mathrm{y}, \mathrm{N})=1, \operatorname{GCD}\left(\mathrm{x}^{*} \mathrm{y}, \mathrm{N}\right)=1$
- identity is 1
- inverse of x is from Euclid's algorithm:

$$
\begin{aligned}
& u x+v N=1=G C D(x, N) \\
& \text { so } x^{-1}=u\left(=x^{\phi(N)-1}\right)
\end{aligned}
$$

- multiplication is associative
- multiplication is commutative (so the group is abelian)

Non-abelian Groups: GL(2), 2×2 nonsingular real matrices under matrix mult-n

$\mathrm{GL}(2)=\left\{\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], a d-b c \neq 0\right\}$

- if A and B are non-singular, so is $A B$
- the identity is $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right] /(a d-b c)
$$

- matrix multiplication is associative
- matrix multiplication is not commutative

Non-abelian Groups (contd)

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 5 \\
10 & 30
\end{array}\right]^{-1}=\left[\begin{array}{cc}
3 & -0.5 \\
-1 & 0.2
\end{array}\right]} \\
& {\left[\begin{array}{cc}
2 & 5 \\
10 & 30
\end{array}\right]\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
11 & 20 \\
60 & 11
\end{array}\right]} \\
& {\left[\begin{array}{ll}
3 & 5 \\
1 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 5 \\
10 & 30
\end{array}\right]=\left[\begin{array}{cc}
56 & 165 \\
22 & 65
\end{array}\right]}
\end{aligned}
$$

What about positive integers under MOD operation?

Subgroups

DEFINITION: $(H, @)$ is a subgroup of $(G, @)$ if:

- H is a subset of G
$\bullet(H, @)$ is a group

Subgroup example

Let $(G, *), G=Z^{*}{ }_{7}=\{1,2,3,4,5,6\}$
Let $H=\{1,2,4\}(\bmod 7)$
Note:

1. H is closed under multiplication mod 7
2. 1 is still the identity
3. 1 is 1 inverse, 2 and 4 are inverses of each other
4. associativity holds
5. commutativity holds (H is abelian)

Subgroup example

Let $(\mathrm{G}, *), \mathrm{G}=\mathrm{R}-\{0\}=$ non-zero reals
Let $(\mathrm{H}, *), \mathrm{Q}-\{0\}=$ non-zero rationals
H is a subset of G and G, H are groups

Order of an element

Let \mathbf{X} be an element of a (multiplicative) finite integer group G. The order of \mathbf{x} is the smallest positive number k such that $\mathbf{X}^{k}=1$

Notation: ord(x)

Order of an element

Example: $Z^{*}{ }_{7}$: the multiplicative group modulo 7
Note: $Z^{*}{ }_{7}=Z_{7}$

$$
\begin{aligned}
& Z^{*}=\{1,2,3,4,5,6\} \\
& \operatorname{ord}(1)=1 \text { because } 1^{1}=1 \\
& \operatorname{ord}(2)=3 \text { because } 2^{3}=8=1 \\
& \operatorname{ord}(3)=6 \text { because } 3^{6}=9^{3}=2^{3}=1 \\
& \operatorname{ord}(4)=3 \text { because } 4^{3}=64=1 \\
& \operatorname{ord}(5)=6 \text { because } 5^{6}=25^{3}=4^{3}=1 \\
& \operatorname{ord}(6)=2 \text { because } 6^{2}=36=1
\end{aligned}
$$

Theorem (Lagrange)

$\Phi(n)$ - order of $\mathrm{G}_{\mathrm{n}}^{*}$
largest order of any element!

order of $g:$ smallest
m such that
$g^{m} \equiv 1 \bmod n$

Theorem (Lagrange): Let G be a multiplicative group of order n.
For any g in G, ord(g) divides n.
COROLLARY 1:
$b^{\Phi(n)} \equiv 1 \bmod n \forall b \in Z_{n}{ }^{*}$
because: $\Phi(n)=\operatorname{ord}\left(Z_{n}^{*}\right)$ $\operatorname{ord}(b)=\operatorname{ord}\left(Z_{n}^{*}\right) / k=\Phi(n) / k$
thus : $b^{\Phi(n)}=b^{\Phi(n) / k}=1^{1 / k}=1$

COROLLARY 2:
if p is prime then
$\forall b \in Z_{p}^{*}$
1) $b^{p} \equiv b \bmod p$
and
$2) \quad \exists a \in Z_{p} \ni \operatorname{ord}(a)=p-1$
$a-$ primitive element

Primitive Example

$$
\mathrm{p}=13 \text {, primitive elements }=\{2,6,7,11\}
$$

Projects

Last Winter Projects:
-Survey of Copy Protection and Watermarking
-A prototype group signature scheme

- A Survey of Digital Watermarking
-Knapsack Cryptosystems: Past, Present and Future
-A Secure FTP Client Prototype
- A Survey of Cryptography Research at KTH
- A Program to perform cryptanalysis of Vigenere
-A Multi-Party Non-repudiation Protocol
-A PCS Secure Communication Architecture
-An Analysis of Well-Known Secret Sharing Methods
-An Implementation of I PSec with Literate Programming

