

	An Example:	
1: 2: 3: 4: 5: R: <u>Key</u> Rotor Alphal	ABCDEFGHIJKLMNOPQRSTUVWXYZ EKMFLGDQVZNTOWYHXUSPAIBRCJ AJDKSIRUXBLHWTMCQGZNPYFVOE BDFHJLCPRTXVZNYEIWGAKMUSQO ESOVPZJAYQUIRHXLNFTGKDCMWB VZBRGITYUPSDNHLXAWMJQOFECK YRUHQSLDPXNGOKMIEBFZCWVJAT order: 3 1 2 bet ring setting: W X T starting positions: A W E	Rotor notches: 1: Q 2: E 3: V 4: J 5: Z
	Gene Tsudik, ICS 268 Fall 2001	9

Inciphe	rir	ng "THIS:	ISATEST	' using	these	e settin	gs			
Input	Ρ	3	1	2	R	2	1	3	Р	Output
Т		[FJTPO]			(MO)	[SZSLH]	[DGFCG]	[HLFBA]	А	M
Н	Н	JNNJH]	[DGDAE]	[IPCVR]	(RB)	[FMOHD]	[ZCYVZ]	[BFCYW]	W	W
I	I	[LPEAX]	[TWBYC]	[GNTMI]	(IP)	[TAATP]	[LOMJN]	[QUWSP]	Ρ	P
S	S	[WABXT]	[PSSPT]	[XESLH]	(HD)	[HOYRN]	[JMCZD]	[HLFBX]	Х	Х
I	I	[NRWSN]	[JMOLP]	[TAATP]	(PI)	[MTNGC]	[YBWTX]	[CGSOJ]	J	J
S	S	[YCFBV]	[RUAXB]	[FMWPL]	(LG)	[KRGZV]	[RUROS]	[YCGCW]	W	W
A	М	[TXSOH]	[DGDAE]	[IPCVR]	(RB)	[FMOHD]	[ZCYVZ]	[GKUQJ]	J	J
Т	Е	[MQIEW]	[SVIFJ]	[NUPIE]	(EQ)	[UBJCY]	[UXQNR]	[ZDBXP]	Ρ	P
Е	т	[CGCYP]	[LOYVZ]	[DKLEA]	(AY)	[CJBUQ]	[MPTQU]	[DHDZQ]	Q	Q
S	S	[CGCYO]	[KNWTX]	[BIXQM]	(MO)	[SZSLH]	[DGFCG]	[QUWSI]	I	I
Т	Е	[PTAWL]	[HKNKO]	[SZEXT]	(TZ)	[DKDWS]	[ORXUY]	[JNNJY]	Y	Y
<u>See:</u>		http://	home.c	<u>ern.ch</u>	<u>/~fro</u>	ode/cry	r <u>pto∕hi</u>	storica	<u>l.h</u>	<u>ıtml</u>

Positive Integers under Exponentiation?

 $G = \{0, 1, 2, 3...\}$ the group operator is "^", exponentiation

- closed under exponentiation
- \Box the identity is 1, x^1=x
- $\Box \quad \text{the inverse of x is always 0, } x^0=1$
- □ the integers are NOT commutative,
- x^y<>y^x (non-abelian)
- □ the integers are NOT associative,

$$(x^{y})^{z} = x^{y}(y^{z})$$

Gene Tsudik, ICS 268 Fall 2001

16

Non-abelian Groups: GL(2), 2x2 nonsingular real matrices under matrix mult-n $GL(2) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}, ad-bc \neq 0 \right\}$ • if A and B are non-singular, so is AB • the identity is I = $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$ $\left[\begin{pmatrix} a & b \\ c & d \end{bmatrix}^{-1} = \left[\begin{pmatrix} d & -b \\ -c & a \end{bmatrix} / (ad-bc) \right]$ • matrix multiplication is associative • matrix multiplication is **not** commutative

Drader of an element Example: Z_{7}^{*} : the multiplicative group modulo 7 Note: $Z_{7}^{*} = Z_{7}^{*}$ $Z_{7}^{*} = \{1, 2, 3, 4, 5, 6\}^{*}$ ord(1) = 1 because 1¹ = 1 ord(2) = 3 because 2³ = 8 = 1 ord(3) = 6 because 3⁶ = 9³ = 2³ = 1 ord(4) = 3 because 4³ = 64 = 1 ord(5) = 6 because 5⁶ = 25³ = 4³ = 1 ord(6) = 2 because 6² = 36 = 1

Projects

Last Winter Projects:

- •Survey of Copy Protection and Watermarking
- •A prototype group signature scheme
- A Survey of Digital Watermarking
- •Knapsack Cryptosystems: Past, Present and Future
- •A Secure FTP Client Prototype
- •A Survey of Cryptography Research at KTH
- •A Program to perform cryptanalysis of Vigenere
- •A Multi-Party Non-repudiation Protocol
- •A PCS Secure Communication Architecture
- An Analysis of Well-Known Secret Sharing Methods
- •An Implementation of IPSec with Literate Programming

Gene Tsudik, ICS 268 Fall 2001

31