Lecture 5, October 8.

S-box

Table 3.6 Primitive S-Box Functions

					S_{1}										
14	4	13	1	2	15	11	8	3	10	6	12	5	9	0	7
0	15	7	4	14	2	13	1	10	6	12	11	9	5	3	8
4	1	14	8	13	6	2	11	15	12	9	7	3	10	5	0
15	12	8	2	4	9	1	7	5	11	3	14	10	0	6	13

15	1	8	14	6	11	3	4	9	7	2	13	12	0	5	10
3	13	4	7	15	2	8	14	12	0	1	10	6	9	11	5
0	14	7	11	10	4	13	1	5	8	12	6	9	3	2	15
13	8	10	1	3	15	4	2	11	6	7	12	0	5	14	9

10	0	9	14	6	3	15	5	1	13	12	7	11	4	2	8
13	7	0	9	3	4	6	10	2	8	5	14	12	11	15	1
13	6	4	9	8	15	3	0	11	1	2	12	5	10	14	7
1	10	13	0	6	9	8	7	4	15	14	3	11	5	2	12

Answer to Last Class Question

- Question: f function has expansion and compression. How can you decrypt?
>Answer: It does not matter ;-)
- Decryption

$$
\begin{aligned}
>L_{1} \mathrm{D} & =R_{16}=R_{15} \\
>R_{1} \mathrm{D} & =L_{16} \oplus f\left(R_{16}, K_{16}\right) \\
& =L_{15} \oplus f\left(R_{15}, K_{16}\right) \oplus f\left(R_{15}, K_{16}\right) \\
& =L_{15}
\end{aligned}
$$

Modes of operation

Modes of operation (cnt.)

- ECB

1. Encryption: $\mathrm{c}_{\mathrm{j}} \leftarrow \mathrm{E}_{\mathrm{K}}\left(\mathrm{x}_{\mathrm{j}}\right)$
2. Decryption: $\mathrm{x}_{\mathrm{j}} \leftarrow \mathrm{E}^{1}{ }_{\mathrm{K}}\left(\mathrm{c}_{\mathrm{j}}\right)$

- Identical plaintext (under the same key) result in identical ciphertext
- blocks are enciphered independently of other blocks
- bit errors in a single ciphertext affect decipherment of that block only
- CBC

1. Encryption: $\mathrm{c}_{0} \leftarrow \mathrm{IV}, \mathrm{c}_{\mathrm{j}} \leftarrow \mathrm{E}_{\mathrm{K}}\left(\mathrm{c}_{\mathrm{j} 1} \oplus \mathrm{x}_{\mathrm{j}}\right)$
2. Decryption: $\mathrm{c}_{0} \leftarrow \mathrm{IV}, \mathrm{x}_{\mathrm{j}} \leftarrow \mathrm{c}_{\mathrm{j} 1} \oplus \mathrm{E}_{\mathrm{K}}\left(\mathrm{c}_{\mathrm{j}}\right)$

- chaining causes ciphertext c_{j} to depend on all preceding plaintext
- a single bit error in c_{j} affects decipherment of blocks c_{j} and $\mathrm{c}_{\mathrm{j}+1}$
- self-synchronizing: error $\mathrm{c}_{\mathrm{j}}\left(\right.$ not $\mathrm{c}_{\mathrm{j}+1}, \mathrm{c}_{\mathrm{j}+2}$) is correctly decrypted to $\mathrm{x}_{\mathrm{j}+2^{*}}$
- Can use as a MAC: $x_{1}, x_{2}, \ldots, x_{n}, c_{n}$

Modes of operation (cnt.)

- CFB

1. Encryption: $I_{1} \leftarrow$ IV
2. $\mathrm{O}_{\mathrm{j}} \leftarrow \mathrm{E}_{\mathrm{K}}\left(\mathrm{I}_{\mathrm{j}}\right)$. (Compute the block cipher output)
3. $t_{j}: r$ leftmost bits of O_{j} (Assume the leftmost is identified as bit 1)
4. $\mathbf{c j} \leftarrow \mathbf{x j} \oplus \mathbf{t j}$. (Transmit the r-bit ciphertext block c_{j})
5. Shift c_{j} into right end of shift register
6. Decryption: $\mathrm{I}_{1} \leftarrow \mathrm{IV}, \mathrm{xj} \leftarrow \mathrm{cj} \oplus \mathrm{tj}$, where $\mathrm{t}_{\mathrm{j}}, \mathrm{O}_{\mathrm{j}}$ and I_{j} are as above

- re-ordering ciphertext blocks affects decryption
- one or more bit errors in any single r-bit ciphertext block cj affects the decipherment of next $\lceil n / r\rceil$ ciphertext blocks
- self-synchronizing similar to CBC, but requires $\lceil\mathbf{n} / \mathbf{r}\rceil$ blocks to recover.
- for r <n, throughput is decreased by a factor of n / r

Modes of operation (cnt.)

- CFB

1. Encryption: $I_{1} \leftarrow I V$
2. $\mathrm{O}_{\mathrm{j}} \leftarrow \mathrm{E}_{\mathrm{K}}\left(\mathrm{I}_{\mathrm{j}}\right)$. (Compute the block cipher output)
3. t_{j} : r leftmost bits of O_{j} (Assume the leftmost is identified as bit 1)
4. $\mathbf{c j} \leftarrow \mathbf{x j} \oplus \mathbf{t j}$. (Transmit the r-bit ciphertext block c_{j})
5. Shift o_{j} into right end of shift register
6. Decryption: $I_{1} \leftarrow I V, x j \leftarrow c j \oplus t j$, where t_{j}, O_{j} and I_{j} are as above
keystream is plaintext-independent

- bit errors affects the decipherment of only that character
- recovers from ciphertext bit errors, but cannot selfsynchronize
- for r <n, throughput is decreased as per the CFB mode

Breaking DES (Cryptanalysis)

- Differential Cryptanalysis
> Differential cryptanalysis discovered in 1990; virtually all block ciphers from before that time are vulnerable...
> ...except DES. IBM (and NSA) knew about it 15 years earlier
$>$ Looks for correlations in $f()$-function input and output
$>$ More precisely, the relation between input xor and output xor $\operatorname{Pr}\left[f(X) \oplus f\left(X^{\prime}\right)=\Delta \mathbf{Y} \mid \mathbf{X} \oplus X^{\prime}=\Delta X\right]$
- Linear cryptanalysis
> Looks for correlations between key and cipher input and output
> More precisely, relation between linear combination of input bits and linear combination of output bits
- Related-key cryptanalysis
> Looks for correlations between key changes and cipher input/output

Breaking DES (Cryptanalysis)

Strength of DES Key size $=56$ bits
-Brute force $=2^{\wedge} 55$ attempts
-Differential cryptanalysis $=2^{\wedge} 47$ attempts
-Linear cryptanalysis $=\mathbf{2 \wedge 4 3}^{\wedge}$ attempts

Longer than 56 bit keys don't make it any stronger
More than 16 rounds don't make it any stronger
DES Key Problems:
Weak keys (all 0s, all 1s, a few others)
Key size $=56$ bits $=8$ * 7 -bit ASCII
Alphanumeric-only password converted to uppercase $=8$ * ~ 5-bit chars $=40$ bits

Breaking DES (COST)

DES was designed for efficiency in early-70's hardware
Makes it easy to build pipelined brute-force breakers in late-90's hardware

16 stages, tests 1 key per clock cycle
Can build a DES-breaker using:

* Field-programmable gate array (FPGA), software programmable hardware
* Application-specific IC (ASIC)

100 MHz ASIC $=100 \mathrm{M}$ keys per second per chip
Chips $=\mathbf{\$ 1 0}$ in $5 \mathrm{~K}+$ quantities $\$ 50,000=500$ billion keys/sec
= 20 hours/key (40-bit DES takes 1 sec)

Breaking DES (COST)

- $\$ 1 \mathrm{M}=1$ hour per key ($\mathbf{1 / 2 0 ~ s e c ~ f o r ~} 40 \mathrm{bit}$)
- $\$ 10 \mathrm{M}=6$ minutes per key ($1 / 200 \mathrm{sec}$ for 40 bits)
-US black budget is $\sim \mathbf{~} \mathbf{2 5 - 3 0}$ billion!!!
-distributed.net $=\sim \mathbf{7 0}$ billion keys/sec with 20,000 computers (how long?)
-EFF (US non-profit) broke full DES in $21 / 2$ days
-Amortised cost over 3 years $\mathbf{=} 8$ cents per key
-If your secret is worth more than 8 cents, don't encrypt it with DES
-September 1998: German court rules DES "out of date and unsafe" for financial applications

DES Variants

- 2-DES (double DES) =
$E(K 2, E(K 1, X))$ or $D(K 2, E(K 1, X))$--- weak!
- 3-DES (triple DES) = E(K1,D(K2,E(K1,X)))or E(K3,D(K2,E(K1,X))) --same security?
- DESx =

K3 XOR E(K2, K1 XOR X): $\mathbf{2}^{184}$ security proved by Rogaway
K1 XOR E(K1,X)?
E(K1, K1 XOR X)?

DES summary

- Permutation/substitution block cipher
- 64-bit data blocks
- 56-bit keys (8 parity bits)
- 16 rounds (shifts,xors)
- Key schedule
- S-box selection secret...
- DES "aging"
* 2-DES: rendezvous attack
*-DES: 112-bit security?
- DESX : 64-bit security?

Other ciphers

Skipjack

- Classified algorithm originally designed for Clipper,
- declassified in 1998
- 32 rounds, breakable with 31 rounds
- 80 bit key, inadequate for long-term security

GOST

- GOST 28147, Russian answer to DES
- 32 rounds, 256 bit key
- Incompletely specified

Other popular ciphers

IDEA (X. Lai, J. Massey, ETH)

- Developed as PES (proposed encryption standard),
- adapted to resist differential cryptanalysis as IPES, then IDEA
- Gained popularity via PGP, 128 bit key
- Patented (Ascom CH)

Blowfish (B. Schneier, Counterpane)

- Optimised for high-speed execution on 32-bit processors
- 448 bit key, relatively slow key setup
- Fast for bulk data on most PCs/laptops

New Generation Block Cipher

* AES (Advanced Encryption Standard)

>Jan. 1997: initiation of the AES development
>Sep. 1997: formal call for algorithms
unclassified, publicly disclosed encryption algorithm(s), available royalty-free, worldwide
-block size: 128b, key size: 128, 192, 256b
$>$ Aug. 1998: a group of fifteen AES candidate
>Mar. 1999: 2nd AES2, selected five algorithms
-MARS, RC6, Rijndael, Serpent, and Twofish
$>$ Oct. 2000: Rijndael to propose for the AES
-Fast for hardware/software implementation
Pretty strong

> How do Alice and Bob get to share a secret key in the first place?
> Or
> Why do we need public key cryptography

Merkle's Puzzles (1974)

