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Abstract. Smart metering of utility consumption is rapidly becoming
reality for multitudes of people and households. It promises real-time
measurement and adjustment of power demand which is expected to
result in lower overall energy use and better load balancing. On the
other hand, finely granular measurements reported by smart meters can
lead to starkly increased exposure of sensitive information, including all
kinds of personal attributes and activities. Reconciling smart metering’s
benefits with privacy concerns is a major challenge.

In this paper we explore some simple and relatively efficient crypto-
graphic privacy techniques that allow spatial (group-wide) aggregation
of smart meter measurements. We also consider temporal aggregation
of multiple measurements for a single smart meter. While our work is
certainly not the first to tackle this topic, we believe that proposed tech-
niques are appealing due to their simplicity, few assumptions and peer-
based nature, i.e., no need for any on-line aggregators or trusted third
parties.

1 Introduction

Growing energy needs motivate both governments and industry to look for al-
ternative energy resources and, more importantly, provide better management
of existing power grids. However, improving efficiency of existing power grids
and smart load-balancing are challenging tasks. One approach to smart load-
balancing currently pursued by many developed countries is the deployment of
so-called “smart meters” that measure and report power consumption on a reg-
ular basis, thus allowing for real-time management of the grid.

While smart meters offer some clear benefits, accurate and fine-grained mea-
surements of household energy consumption trigger serious privacy concerns [2].
A plethora of sensitive information can be gleaned or derived from such mea-
surements, e.g., types of electrical devices being used as well as presence (and
number of ) inhabitants. For example, due to privacy considerations, deployment
of smart meters in the Netherlands has been cancelled by the Parliament. How-
ever, it is well under way in other European countries, the USA and Canada.
It is anticipated that 80% of EU consumers will be using smart meters by year
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2020. Since their usage is essential to better grid management, it is important to
develop technologies that reconcile privacy with desired utility and functionality
of smart meters.

In this paper, we consider three privacy smart meter scenarios:

— Spatial aggregation: a local grid corresponding to a group of households
each equipped with a smart meter, where owners are interested in aggregate
(total) consumption in order to either adjust their own consumption accord-
ing to the average or check whether there is enough energy in the grid to
power an extra electrical device. This scenario is especially very important
for self-sufficient, remote places, particularly, in developing countries, where
renewable resources (such as wind turbines and solar panels) have become
more affordable for local energy production, as an alternative to traditional
carbon-based fuels.

— Temporal aggregation: a single household equipped with a smart meter
that reports its power consumption on a regular basis, for billing purposes.
In this scenario, the energy supplier charges the households for a certain
time period.

— Spatio-temporal data aggregation: a hybrid setting that combines both
of the above scenarios. In it, each node disseminates a single value for its mea-
surement and this value is used for computing spatial aggregate consumption
for the neighborhood, in that interval. At the same time, a number of such
values per household allows computation of temporal aggregate consumption
for each smart meter, for billing purposes.

In all aforementioned scenarios, individual smart meter measurements represent
sensitive information. Our goal is to keep them private without impacting either
utility or functionality of smart meters. We plan to achieve it by blending cryp-
tographic secret sharing coupled with additively homomorphic encryption. To
this end, the main contribution of this paper is an encryption scheme, wherein
each smart meter encrypts its fine-grained power consumption measurement.
However, no one can decrypt this individual encryption. Decryption only be-
comes possible when a fixed, predefined number of encryptions is aggregated.
This scheme allows us to compute spatial consumption in a local grid with a
fixed number of households (for one period) and/or temporal consumption of a
single household (for a fixed number of periods).

Although this paper is framed in terms of smart meters and power consump-
tion, our proposed scheme is quite general. It can be used in any scenario where
there is a need to additively aggregate plaintexts and keep individual plain-
text secret. In particular, clustering and collaborative filtering algorithms, used
e.g. in social networks and e-commerce applications, rely on privacy-sensitive
data of users like preferences, profiles and ratings. While there is a potential
privacy risk for users since the service provider can process the private data for
other purposes, re-sell them to third parties or fail to provide adequate physical
security, the provided services is still very appealing for many users. In such
situations, the ideas in this paper can be used to re-design the algorithms in a
privacy-preserving way.
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Moreover, the cost of our scheme is quite low and its security is not based
on any non-standard cryptographic or adversarial assumptions. As shown in the
complexity analysis, the computation performed by each smart meter is minimal
compared to the existing works in the literature.

The rest of the paper is organized as follows. We discuss related work in
SectionPland summarize notation and adverserial model in Section[3 We present
our protocol for computing spatial consumption in a neighborhood in Section [4]
and temporal consumption of a single household in Section Bl We explain the
protocol for computing both spatial and temporal consumptions in Section [
We provide an informal discussion on the security of the proposed protocols in
Section [l We discuss complexity and how to adopt our protocols for different
types of measurements in Section [8l We finally conclude the paper in Section [@l

2 Related Work

A number of research results tackled privacy issues in smart meters, including
privacy-preserving billing [I9/14] and aggregation of private data. Examples of
techniques that compute the sum of multiple private inputs include [7[5], where
encryption is done by modular addition (each player simply adds its key to
the plaintext) and aggregation is very efficient, also performed via addition.
However, this approach assumes a semi-trusted aggregator who knows the sum
of all keys (for each reporting interval) and can thus decrypt the aggregated
value by subtraction. This operation is not easily extensible to settings without
the aggregator or where the latter is simply not trusted with any secrets.

Peter et al. [I8] consider three methods of aggregating data in a wireless
networks based on homomorphic encryption [I1]. The first protocol uses the
Domingo-Ferrer (DF) encryption scheme [§] that is allegedly both additively and
multiplicatively homomorphic. However, there is no evidence that the underlying
DF cryptosystem is secure. The second protocol is a minor modification of [7] and
the third protocol is based on Elliptic Curve ElGamal, which is quite inefficient
because of expensive algebraic operations.

Kursawe et al. [I5] present cryptographic protocols for computing aggregated
consumptions using Diffie-Hellman key exchange protocol and bilinear mapping,
which also requires expensive elliptic curve operations. Kohlweiss and Danezis
[14] propose a mechanism for privacy-preserving billing in a smart grid by us-
ing homomorphic encryption, secure multi-party computation (MPC) techniques
and cryptographic commitment schemes [13]. It requires the use of certificates to
obtain accountability. Since it involves heavy-weight cryptographic tools — such
as MPC — the cost of this scheme is very high.

In a recent result, Shi et al. [20] introduce an interesting technique for aggre-
gating private data using distributed differential privacy. Similar to our work,
it blends secret sharing with homomorphic encryption. However, it also requires
the aggregator to solve an instance of the discrete log problem (albeit, with
limited range) to obtain plaintext.

Garcia and Jacobs [12] propose a scheme to compute aggregate consumption
without revealing individual measurements using homomorphic encryption and
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secret sharing. For this purpose, every smart meter splits its measurement into
random shares and encrypt each of them using the public key of another smart
meter but keeps one share for itself. A substation collects all the encryptions
and multiplies the ones which are encrypted with the same public key. Later,
the substation sends the encrypted sums to the smart meters. Upon receiving the
encrypted sum, smart meters decrypt and add their shares in plaintext. Finally,
the substation collects the plain text sums and aggregate them all to obtain the
total consumption. While this apporach is privacy preserving, the number of
homomorphic encryptions per user is linear and the amount of data transferred
is quadratic in the number of smart meters, which is clearly inefficient.

Another approach offering differential privacy in the context of smart meters is
given by Arc and Castelluccia [1]. In addition to smart meters, the authors intro-
duce two other parties: a supplier and an aggregator. Individual measurements
are protected by adding Laplacian noise. This scheme uses efficient symmetric
encryption. To prevent the aggregator from learning individual measurements,
each encryption is masked with a random number, composed of dummy keys
collectively generated by a (fixed) group of smart meters. Similar to [6], each en-
cryptor also uses another key — shared by the aggregator and each smart meter
— such that only the aggregator (or the supplier) can obtain the noise-altered
sum of all measurements.

3 Preliminaries

In this section, we provide some background information on the envisaged op-
erating environment, cryptographic schemes, the adversarial model and other
assumptions.

3.1 Amnticipated Setting

We assume an environment (e.g., a residential neighborhood) composed of a
fixed (static) group of N tamper-resistant smart meters, one per household. (We
use the terms household and smart meter interchangeably from here on.) Every
smart meter — denoted by sm;, 0 < ¢ < N —is programmed to report its current
measurement (power consumption) with certain fixed periodicity common to all
other smart meters. All smart meters are loosely time-synchronized, i.e., report
their current measurements at more-or-less the same time. Furthermore, a smart
meter is assumed capable of performing simple public key operations and of
generating high-quality (cryptographically strong) random numbers.

We do not assume any other active entities, such as aggregators, suppliers or
trusted third parties. One of our goals is for any smart meter to be able to act
as an aggregator, for the purpose of computing total (group-wide) consumption.
On the other hand, we do not preclude the presence of passive entities, e.g.,
an aggregator that learns total consumption by overhearing messages, while not
taking part in any protocol.
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Moreover, we assume that all underlying communication channels are secure:
both integrity and authentication of all messages are obtained via standard
means, e.g., IPSec or SSL/TLS [9].

3.2 Notation

Our notation is summarized in Table [Tl

Table 1. Notation Summary

Symbol|Definition Symbol|Definition
N |number of smart meters M |number of measurement intervals
n|product of two large primes sm;|smart meter i
g|generator P, q|prime numbers
Zn |set of integers from 0 ton — 1 Zy, |set of integers co-prime to n
p|time interval K |shared key of sm;
Epk () |encryption function Dyy, (+)|decryption function
PRF(-) |pseudo random function H(-)|cryptographic hash function, e.g, SHA-2
h;i|hash of the sm; using K; Pr(F), a|probability of a malfunction at time interval F’
C(i,p) |measurement of sm; in time in- Cp|total consumption of N smart meters for time in-
terval p terval p
R p)|composite random number of F|time interval when a smart meter malfunctions
sm; for time interval p
T(i—j,p)[random number sent from sm; h(ipy|hash of the sm; using the p™" period identifier
to sm; in time interval p (time stamp)
k|bit length of each measurement T'|Number of colluding smart meters

3.3 Adversarial Model

We assume the semi-honest (also known as “Honest-but-Curious”) adversarial
model. Consequently, all smart meters faithfully follow all prescribed protocol
steps. However, they may attempt to learn as much as possible information
beyond what they are entitled to have. We claim that this is realistic, since we
also assume that smart meters are (somewhat) tamper-resistant and interfering
with measurements is not trivial.

We also allow adversarial smart meters to collude as long as their number
does not exceed some fixed threshold T' < N — 1. (This ensures the existence of
at least two honest smart meters for which only their combined consumption is
learned by the coalition of dishonest peers).

Although participants are assumed to follow all protocol steps and provide real
measurements, we do not rule out so-called data pollution (or other DoS) attacks
that can result in meaningless or incorrect measurement results. Since smart
meters are assumed to be tamper-resistant, we do not consider such attacks.
However, we note that they are more relevant to security rather than privacy.
Also, some pollution attacks can be addressed by incorporating zero-knowledge
proofs to show that measurements are within a certain sensible range [4].
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3.4 Homomorphic Encryption

The Paillier cryptosystem presented in [I7] is additively homomorphic. This
means that there exists an operation over the ciphertexts &y (m1) and Epi (m2)
such that the result of that operation corresponds to a new ciphertext whose
decryption yields the sum of the plaintext messages m; and ma:

Dy (Epk: (M) X Epi (M2)) = my +ma . (1)

As a consequence of additive homomorphism, exponentiation of any ciphertext
yields the encrypted product of the original plaintext and the exponent:

Epre (m)" = Epr (m - €) (2)
Given message m € Z,, Paillier encryption is defined as:
Epr (m,7) = g™ - ™ mod n? , (3)

where n is a product of two large primes p and ¢, g is a generator of order n and
r is a random number in Z. The tuple (g,n) is the public key. For decryption,
we refer readers to [17].

The Paillier cryptosystem is semantically secure. This is particularly impor-
tant for encryption of plaintext within a small range.

4 Aggregating Spatial Consumption

In this section, we describe a peer-based scheme for privately computing (spatial)
aggregate consumption.

Total consumption of sm; is defined as: C, = 21]\;1 C(i,p)s Where c(; ;) is the
measurement of sm; in time interval p. The measurement interval p can take
any value — from seconds to days — depending on the specific application re-
quirements. Each smart meter stores only one Paillier public key, common to all
N smart meters in the group.

One of the distinguishing features of our scheme is that the (normally private)
Paillier decryption key is actually public. In other words, it is assumed to be
known at least by all smart meters in the group. In fact, it can be known by
any other party that is authorized to learn the total consumption. This feature
is clearly unusual. However, the justification is very simple: we use homomor-
phic (Paillier) scheme not because of encryption but only for its homomorphic

property.

Note: Although both Paillier encryption and decryption keys are “public” in
our protocol, a secure instance Paillier scheme still needs to be set up correctly
and securely. For this reason, we assume the existence of a trusted party (e.g.,
a CA) that bootstraps an instance of Paillier scheme, i.e., generates appropriate
parameters, including primes, modulii and keys. This third party is no longer
required after the set up phase.
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The proposed scheme works as follows:
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1. For each measurement interval p, sm; generates a set of random numbers,
one for every other smart meter. It then sends these numbers to all its peers
using the underlying (secure) communication channel(s).

2. Upon receiving these random values, each smart meter encrypts its measure-
ment using the Pailler scheme. (Recall that the main idea is to prevent smart
meters from decrypting individual measurements.) All encryptions are then

diseminated to the entire group.

3. Next, each smart meter combines all encryptions, including its own, to ob-
tain the encrypted sum (using the homomorphic property), and decrypts it
using the common private key. The resulting plaintext represents the total
consumption for the p-th measurement interval.

The protocol is shown in more detail in Figure [1I

Epk (C(l»p))

s1 Q—

Epk (C(QJJ))

Eni (c(np))

Dsr. (gpk (Zf\le C(i,p)))

Aggregator
(any smart meter)

Fig. 1. Spatial Consumption

4.1 Generating and Exchanging Random Numbers

To compute total consumption for interval p, all smart meters initially exchange
random values to be used for masking individual consumption measurements.
For this purpose, each sm; generates a random number 7(;_,;,) and sends it
to a peer sm;. We assume that all smart meters participate in the protocol by
identifying themselves via valid certificates. At the end of this step, each sm;
receives N — 1 random values from its peers.

Note: Exchanging random numbers between smart meter pairs in each interval
introduces unnecessary communication overhead. Instead, smart meters can ex-
change the seed of their pseudo-random number generators when they initially

become active.
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Next, each sm; computes R(; ) based on all collected randomness:

N N
Ripy=n+ Y. Tisip) — D TGosip) - (4)
j=1i#j J=1,i#j

where n is the Paillier modulus. R(; ;) is used later to encrypt sm;’s measurement
for the p'" interval.

4.2 Encrypting Measurements

Recall that we want to disseminate individual measurements such that, only
when all of them are aggregated, the total can be retrieved. We achieve this by
encrypting measurements, c(; ) using a modified version of the Paillier cryp-
tosystem. First, for each time interval p, each smart meter computes a hash:
h(;py = H(p), where H(-) is a secure hash function such as SHA-2. It is re-
quired for h(; ,) to be in Zj,, for the encryption scheme to work. This holds when
ged(hipy,n) = 101
Next, sm; encrypts its measurement, c(; ,), as follows
Enr (c(ip) = g5 by (5)
’ (i,p)

using the common Paillier public key. Finally, each smart meter disseminates its
encryption.

Encrypting measurements in this fashion has the following features. First, no
one in the smart grid can decrypt individual encryptions due to hg(p)p )
though everyone has the decryption key. Second, encryption remains semanti-
cally secure since h; ) € Zy, and R(; p) is a random number in Z,, which is in
accordance with the original scheme. Third, by using A; ), computation of total
power consumption is bound to interval p.

even

4.3 Aggregation of Encrypted Measurements

To obtain total power consumption C,, any sm,; multiplies all encrypted mea-
surements, including its own:

N N R..
H Enk (C(ip)) = H g - h(z’,(;’)p)
i=1 i=1

N
Zﬁvzl C(i,p) . hz_izl Rip)

=9 () ) (6)
where,
N N N N N
D Rap =D 0+ D Tasim =D, D, TGoin) - (7)
i=1 i=1 i=1 j=1,i#j i=1 j=1,i#j

! The number of values in Z}, is (&(n))?, which is close to n” for large p and q.
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. N N N N .
Since 7,7, Zj:u#j T(imj,p) €Quals ) 57, ijly#j T(j—i,p), the terms in (@) can-
cel each other out and the summation results in:

N N
ZR(i)p):Zn:N'n. (8)
i=1 i=1

Replacing the above sum in Eq. (@), we obtain:

N .
gzﬁ\le C(i,p) . h%;;l Bip) = 92?; CGp) . hé\zf’;l) y (9)
which is the encryption of Zfil C(i,p) with a random value hf\i]’p):
. N
gZi:l C(i,p) . (hé\;p))n = Epk (Z c(i,p)) = Cpk (Cp) . (10)
i=1

This result decrypted to obtain the total power consumption.

5 Computing Temporal Consumption

We now consider privacy in the temporal dimension. In this setting, we envision
a single smart meter that periodically reports its consumption totals, e.g., for
the purpose of billing. However, as discussed earlier, such fine-grained reporting
might be detrimental to privacy. We consider two scenarios.

1. The smart meter reports its measurements for billing purposes and the total
is computed only when a pre-defined number of measurements is received by
the supplier. In the case of a smart meter malfunction, the supplier asks for
help from the manufacturer of that smart meter in order to obtain partial
consumption, i.e., until the time malfunction occurred.

2. The smart meter reports its accumulated measurement, i.e., the total con-

sumption: > _; ¢ p)-
Note that in this scenario, all incremental consumption measurements are
encrypted using the public key of the manufacturer. In the last interval, the
smart meter sends the total consumption to the supplier using the public
key of the latter. In the event of a malfunction (i.e., the smart meter cannot
report) the last consumption measurement encrypted with the public key of
the manufacturer will be sent to the manufacturer for decryption.

Each scenario has its advantages. While, in the first, the manufacturer is not
needed to encrypt any private data, the supplier has to store all encrypted mes-
sages sent by all smart meters. In the second scenario, however, the manufacturer
decrypts a single ciphertext for the supplier. The supplier stores only the last
message sent by each smart meter.

For these two scenarios, we define the following roles:

— Manufacturer M: the entity that produces the smart meters. It is not
involved in the billing process.
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— Supplier S: the authority that periodically bills the households for their
consumption. In this setting, we assume that invoices are sent for every M
intervals. The supplier also has a Paillier public key-pair. Its public key is
available to all smart meters in the grid.

— Smart meter: Household with a smart meter as defined before, capable
of reporting its consumption on a regular basis. Every smart meter has a
bi-directional communication channel with the supplier that uses a secure
and reliable transfer protocol.

We now present the first protocol. The second protocol is trivial to realize by
following a similar approach.

5.1 Encrypting Measurements

We use a similar construction to that in Section ] — a modified version of the
Paillier cryptosystem: sm; generates a random number, r(; ), using a PRF that
takes two inputs: (1) the secret key K; unique key to each sm; and shared
with the manufacturer, and (2) the unique interval identifier — p. In other
words: R(; ) = PRF(Kj,p). (Note that p can be viewed as a corsely granu-
lar timestamp.) As in Section d] sm; also generates h; := H(K;) € Z to be
used throughout all M intervals. The consumption c(; ;) is then encrypted as:
Enk (i) = g0 - B

With billing occurring every M measurement intervals, sm; generates R;
for the first M — 1 intervals as described above. The value to be used in time
interval M is computed as follows:

M-1
R(i,M) =n-—- Z R(i,p) . (11)

p=1

5.2 Obtaining Total Consumption

Upon receiving all encryptions for M time intervals from sm;, the supplier ag-
gregates them:

M M M

. M . :
| I 8])]@ (C(l p)) = | I gc(iyp) . h?(T'"p) = gzpzl C(i,p) . hizz:p G.p)
p=1 p=1

M
= gZph i T = &y (Z c@-,p)) . (12)

p=1

Since the sum of all R; ,)’s is n, the above encryption can be easily decrypted
by the supplier.
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5.3 Coping with Malfunctions

In the event of a malfunction, sm; can not send its measurements after interval
F. At the same time, with only encrypted measurements of the first F intervals,
the supplier can not decrypt and determine total consumption. To remedy the
situation, the supplier contacts the manufacturer, who has a unique secret key
K; pre-shared with sm;. The manufacturer can re-generate all random numbers
used for the first F' intervals: R(; ) := PRF(Kj, p) and h;. Having computed
these values, the manufacturer then encrypts:

F
R
(c/‘pk (O) = gO . hl (6 F+1) y where R(i,F-‘rl) =n— ZT(i7p) . (13)

p=1

Using the encryption sent by the manufacturer, the supplier can compute the
total consumption for the first F' intervals by multiplying the encryption received
from the manufacturer and decrypting the result using its private key.

F
Dek (5,,k (Z c(i,p)> - Epk (0)) - Zc(i,p) (14)

p=1 p=1

6 Computing Spatio-temporal Consumption

In prior sections, we focused on computing either spatial or temporal total
consumption in a smart neighborhood grid. In this section, we turn to spatio-
temporal total consumption.

The scheme involves three types of entities, as before: a manufacturer, a sup-
plier and smart meters.

6.1 Encrypting Measurements

As in Section @ each sm; comes up with a secret value R(; ) for interval p
such that Zfil R(;py is a multiple of n. Each such R, can be generated
jointly by contributions from all smart meters, as described in Section El In
cases where manufacturer’s involvement is possible, R; ,)-s can be provided by
the manufacturer, with the property of: Zfil R py = 0.

In interval p, sm; encrypts its consumption, c; )y with the common Paillier
public key:

Crs Rip
5pk (C(i,p)) =g (i,p) . hp( ) , (15)

where h, € Z}, is the hash of the current interval, e.g., h, = H(p). Each cipher-
text is then broadcasted to all peers.
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smai O 6(171)
sSmao O 6(271)

smy O e |eave |eavs | - feanan E|—’
Supplier
Aggregator

Fig. 2. Spatio-Temporal Consumption

6.2 Obtaining Spatial Consumption

Upon receiving N ciphertexts, sm; computes total consumption as before, by
multiplying all ciphertexts and decrypting the final value. Recall that individual
encryptions cannot be decrypted by anyone.

N N
H‘gpk (cip)) =Epk (Z c(w))
i=1

=1

N .
:gzﬁ\[:l Cli,p) . hpZiZI Rim) . (16)

Since R(; p)-s add up to a multiple of n (or sum up to 0 if the manufacturer
is involved), the above multiplication results in proper encryption of total con-
sumption, that can be decrypted using the common private key.

6.3 Obtaining Temporal Consumption

After each smart meter broadcasts the ciphertexts of its consumption for M
intervals, temporal consumption can be computed. However, each sm; uses a
different hash , h(; ), and R(; ), for encryption in each interval p. Even after
multiplying all M ciphertexts from the same sm;, it is impossible to decrypt the
resulting ciphertext:

M o M
[T & (cimy) = g=r=2m - [T by, (17)
p=1 p=1
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since it does not represent a valid encryption. To decrypt it, an additional random
value, R(; pr41), must be provided by sm; such that the following condition is
satisfied:

,r,n

Riyvyny = ——5—
3 M R i, ?

Hp:l hp( p)
where 7 is a random value in Z},. Note that, after multiplying the ciphertext in
in Eq. (I7) with R a41), we have:

(18)

M M M Ry
1 &k (cim) - Rionrsny =g - TT 0
p=1 p=1

,,,.TL

M 5 Ri,p)
Hp:l hp

:gZ,?il i) LT (19)

which can be decrypted properly.

6.4 Coping with Malfunctions

The scheme described above can be realized without any suppliers or manufac-
turers. However, in case of a malfunction, it becomes impossible to obtain the
total consumption. To recover data, collaboration between the manufacturer and
the supplier is necessary. In that case, the manufacturer should genrate and store
the random values, R(; ), and give them to the smart meters. When a malfunc-
tion occurs, supplier asks for the random value R(; a1y from the manufacturer,
that could compute it to be used for decryption as in previous section.

7 Security Considerations

There are two basic flavours of security that we consider in this paper: semantic
security of the modified Paillier cryptosystem and collisions. We give an informal
discussion on these issues in this section.

The security of our schemes mainly based on the semantic security of the
modified Paillier cryptosytem. Once a measurement is encrypted, ciphertext is
disseminated, meaning that the encryption is accessibly by all of the smart me-
ters in the grid. Assuming that the bit length of the measurements are small
compared to the message space of the cryptosysten, semantic security is crucial.

The consumption measurement of sm;, c(; ), is encrypted by following the
description of the Paillier scheme but randomized in a different way. Instead of
using a random number r € Z; and raising it to the power of n, we generate
a hash, by taking the hash of either the time interval h, = H(p) or the shared
key of the smart meter h; = H(K;), and raise this hash to the power of a
random number, R(; ). The way we generate the hash value guarantees that
it is in Z7, matching the requirements of the original cryptosystem. Therefore,
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the encrypted message is uniformly distributed to the ciphertext space of the
cryptosystem, satisfying the semantic security.

The security against the malicious coalition relies on the assumption that at
least two out of N smart meters are acting accordingly to the protocol spec-
ifications. It is trivial to see that any smart meter can obtain the encrypted
measurements of any other smart meter, assuming that these encryptions are
disseminated in the network, and cannot decrypt the ciphertext even though
every smart meter has the public decryption key. A coalition of N — 1 malicious,
or curious, smart meters can sum up the measurements of N — 1 smart meters
and obtain the measurement of the honest N** smart meter by subtracting that
sum from the total, which is computed by following the protocol steps. Only in
the case of having two honest smart meters in the neighbourhood, the rest of the
smart meters can not obtain the individual measurements of these two smart
meters.

8 Complexity and Data Packing

In this section, we present complexity analysis and a way to compute different
type of measurements using a single smart meter.

8.1 Complexity

We based our complexity analysis on the number of operations performed by
a smart meter, that include: en/de-cryptions, generation of random numbers,
PRF invocations and hashing. We denote the probability of malfunction for a
smart meter (e.g., quoted at 0.08% in [10]) by Pr(F) = «. The total number of
operations performed by each party for different cases is summarized in Table

Table 2. Numbers of cryptographic operations for: (1) smart meter (SM), (2) aggre-
gator (A), (3) supplier (S) and (4) manufacturer (M)

Spatial Temporal Spatio-Temporal
SM | A $M| S | M S/\/l| A | S | M
Encryption 1 - M - a-1| M - - -
Decryption - 1 - 1 - - 1 1 -
Multiplication| - |[N—-1| - |[M—-1| - - IN—-1|M —1|a(M — 1)
Hash 1 - M - |la-F| M - - a-F
PRF N-—-1| - M - |la-F| M - - a-F

As seen in Table 2] obtaining aggregated consumptions cost only 1 encryp-
tion and constant amount of hash and PRF functions per smart meter in each
time interval. The computation of R; ), which is necessary for the decryp-
tion of total consumption, requires M multiplications over n and computing
the inverse of that product. In practice, smart meters are supposed to report
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their consumptions as often as 5 minutes. Implementation results in [I6] show
that even more expensive cryptographic operations can be realized efficiently
on smart meters. It is our conclusion that the proposed cryptographic protocols
in this paper, which are only based on performing cryptographic primitives like
encryption, hash functions and random number generation, present a highly ef-
ficient way of computing aggregated consumptions without disclosing individual
measurements.

8.2 Multiple Utility Measurements

This paper focused on aggregating smart meter measurements, however, without
specifying explicitly what kind of measurements are possible. In practice, for
each type of basic utility — e.g., water, gas and electricity — there is a different
metering device and (usually) a different supplier. However, if the same smart
device is used for measuring multiple types of utilities, our approach can still be
used.

Assume that for a given sm; we have the following measurements: c(;;,,) for
j € [1,L] each k bits, where k¥ < n and n is the Paillier modulus. Then,
a number of such measurements can be packed into one plaintext: ¢; ) =

C(in) |C(i2,p) |C(i3,p)| e |C(iL,p) as follows:
L .
Cli) 1= D Cligy - 2 TN (20)
j=1

This construction is similar to [2I3]. It assumes that each measurement from N
smart meters is aggregated in subsequent steps. Therefore, each measurement
type has a reserved “compartment” of k + [log N bits. With N > M, com-
partments are sufficient for computing temporal measurements. However, the
number of measurements that can fit into one plaintext is m. Therefore,
more than one encryption might be needed in some cases where a vast number
of measurements are needed to be packed.

9 Conclusion

Fine granular reporting in smart metering systems causes serious privacy consid-
erations and thus creates resistance against wide-deployment of such systems.
In this paper, we have addressed computing total consumption in a privacy-
preserving way in three scenarios: spatial, temporal and spatio-temporal total
consumption computations, in which individual measurements of the households
are kept secret from any party but the total consumption in the neighbourhood
and/or of a particular smart meter is obtained accurately. The methods we have
presented rely only on the capability of performing public-key operations on the
smart metering device. The complexity analysis shows that with the currently
existing smart metering device configurations, deployment of the proposed meth-
ods is realistic.
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