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Abstract

One-time signature (OTS) offer a viable alternative to public key-based digital signatures. OTS security is typically

based only on the strength of the underlying one-way function and does not depend on the conjectured difficulty of

some mathematical problem. Although many OTS methods have been proposed in the past, no solid foundation exists

for judging their efficiency or optimality. This paper develops a methodology for evaluating OTS methods and presents

optimal OTS techniques for a single OTS or a tree with many OTS�s. These techniques can be used in a seesaw mode to

obtain the desired tradeoff between various parameters such as the cost of signature generation and its subsequent

verification.
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1. Introduction

Modern networks and Internetworks are more

open than ever before, in an attempt to make in-

formation available on a ubiquitous basis. Net-

works are also faster than before, with available

bandwidths measured in Gb/s. However, instead

of alleviating congestion on the information

highway, this has only encouraged the transmis-
sion of greater numbers of large data objects, es-

pecially with the recent popularity of multimedia
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presentations, voice- and video-conferencing, and
large-scale scientific computing. The composition

of network traffic has changed from yesterday�s
text files to today�s enormous datasets produced by

sophisticated remote visualization and rendering

tools.

These developments make it important to

maintain data integrity and privacy in a manner

that is both highly secure and efficient. Traditional
digital signature methods based on public key

cryptography are simply untenable from a per-

formance perspective. Furthermore, the security of

public key cryptosystems (e.g., RSA or DSS [1,2])

is based on complex mathematical problems, such

as factoring or discrete logarithms. The mathe-

matical basis is both a blessing and a curse: the

former because it lends itself to simple and elegant
ed.
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design, and the latter because there is no assurance

that there are no efficient algorithms for solving

the underlying mathematical problems.

One-time signature (OTS) provide an attractive

alternative to public key-based signatures. Unlike

signatures based on public key cryptography, OTS
is based on nothing more than a one-way func-

tions (OWFs). 1 Consequently, OTSs are claimed

to be more efficient since no complex arithmetic is

typically involved in either OTS generation or

verification. In practice, security of traditional

public key-based digital signatures is based on two

factors: conjectured-hard mathematical problems

and the message digest function used to produce a
fixed-size digest from arbitrarily long input data.

(A secure message digest function suitable for this

purpose must be both one-way and collision-

resistant.) Using OTSs essentially allows us to

eliminate the first factor altogether.

The OTS concept has been known for over two

decades. It was initially developed by Lamport [6]

and subsequently enhanced by Merkle [7] and
Winternitz [8]. Bleichenbacher et al. [9–11] for-

malized the concept of OTS using directed acyclic

graphs (DAGs).

In the simplest case, a message signer prepares

an OTS by first generating a random number r
which serves as a one-time private key. The signer

then securely distributes a one-time public key

hðrÞ, where hð�Þ is a suitable collision-resistant
OWF. This public key, sometimes also referred to

as an anchor value, is later used by the signature

verifier(s) to verify the signature.

A signature is constructed by revealing the one-

time private key r. A receiver (verifier) that obtains

r0 (which may or may not be the same as r) checks
that it could only be have been generated by the

claimed signer by computing hðr0Þ. If this value
matches the one-time public key hðrÞ, the OTS is

considered valid. This, in effect, allows the signing

of a predictable 1-bit value and provides one-time

origin authentication. In order to sign any 1-bit

value, two random numbers fr0; r1g are needed.
1 Examples of conjectured OWFs include DES [3], MD5 [4],

and SHA [5]. There is strong (albeit, folkloric) evidence as to

the existence of true OWFs.
This way, both hðr0Þ and hðr1Þ are pre-distributed

but at most one of fr0; r1g is revealed as part of a

signature. The pair ðr0; hðr0ÞÞ represents an OTS of

message ‘‘0’’, whereas ðr1; hðr1ÞÞ is an OTS of ‘‘1’’.

Merkle extended this method to allow the

signing of an arbitrary message. It begins by re-
ducing the message to a fixed-length quantity using

a collision-resistant message digest function, as is

customary with traditional public key signatures.

However, instead of transforming this quantity

with a private key, each bit has an associated OTS

and the signature for the entire message is repre-

sented as the concatenation of the OTS for each

‘‘1’’ bit in the message digest, along with some
extra values to ensure that this per-bit signature

is not itself modified.

As stated, this algorithm requires the one-time

public keys for the OTSs to be distributed in a

secure fashion. Since this is typically done using

public key methods, the benefit of using efficient

OTSs is apparently lost. However in [7], Merkle

also introduced a scheme where these signatures
are embedded in a tree structure, allowing the cost

of a single public key signature (to sign the initial

anchor values) to be amortized over many OTSs.

In this formulation, signatures are longer, by at

most an order of magnitude. However, the extra

length (which was a concern two decades ago) is

negligible today owing to the high speed of mod-

ern networks.
Despite their performance advantage and in-

creased security, OTSs have remained on the pe-

riphery of security research since their inception.

In particular, no practical evaluation of OTS ca-

pabilities has been done. This open issue is pre-

cisely the topic of the present paper. In order to

obtain better understanding of OTS optimality, we

first address a more general issue of how to max-
imize the message size (of a message to be signed)

while minimizing the number of random quantities

to be used in OTS generation (and, hence, the

number of OWF operations). Our result leads us

towards an optimal OTS construction where effi-

ciency corresponds to the smallest number of

OWF operations used in both generation and

verification of an OTS. We then amend this defi-
nition of efficiency to take into account situations

where multiple verifications are necessary, e.g.,
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with multi-destination e-mail or, more generally,

secure multicast. This leads us to consider a

slightly different notion of optimality.

The outline of the paper is as follows. After

introducing Merkle�s signature algorithm in Sec-

tion 2, we generalize the OTS constructions and
present our optimal technique in Section 3. We

evaluate the performance of our OTS construction

in directed acyclic computation graph notation in

Section 4. Section 5 is for describing how to en-

code a message for the signature using our tech-

nique. We make the cost analysis of a single OTS

or a tree with many OTSs in Sections 6 and 7,

respectively. In Section 8, we present a method to
construct the optimal tree, more precisely we show

how to choose the optimal depth of this tree.

Section 9 discusses practical implementation as-

pects and possibilities for future work and Section

10 concludes this paper.
2. Merkles one-time signature construction

One notable and efficient OTS construction

is due to Merkle [12]. (Others can be found in

[13,14].) Assuming input messages of size b, let
s ¼ ðblog bc þ 1Þ and let n ¼ bþ s. The signer

generates a secret key vector of size (bþ 2s) of

random numbers:

R ¼ fR1; . . . ;Rb; L1;0; L1;1; . . . ; Ls;0; Ls;1g:
The signer then applies the OWF to each element

of the secret key vector and distributes the result-

ing public key vector to the intended verifier(s):

HðRÞ ¼ hHðR1Þ; . . . ;HðRbÞ;HðL1;0Þ;
HðL1;1Þ; . . . ;HðLs;0Þ;HðLs;1Þi:

Subsequently, to sign a b-bit message m, the signer
counts the number of ‘‘1’’ bits in m, encodes the

count as an s-bit string and appends it to m. The
result is an n-bit message m0. The actual signature

SIGðmÞ is constructed as follows:

for i ¼ 1 to b do begin

if (m½i� ¼¼ 1) then /* ith bit of m0 is ‘‘1’’ */
release HðRiÞ

end /* for */

for i ¼ ðbþ 1Þ to n do begin
if (m½i� ¼¼ 1Þ
release HðLi;1Þ

else

release HðLi;0Þ
end /* for */

For example, if b ¼ 4 (thus, n ¼ 7) and

m ¼ 0101, then m0 ¼ 0101010 and SIGðmÞ ¼
fR2;R4; L1;0; L2;1; L3;0g. The verifier checks the sig-

nature by applying H to each element of SIGðmÞ
and checking it against the public key vector HðRÞ.

To summarize the cost of Merkle�s OTS con-

struction, the signer generates ðbþ 2sÞ random
numbers and performs as many OWF computa-

tions. Each verifier performs, on the average,

ðb=2þ sÞ OWF computations. For example, for a

160-bit message (e.g., an SHA1 digest), 176 and 88

OWF operations are needed to sign and verify,

respectively.

Despite its relatively low cost and simplicity, the

above is basically an ad hoc construction. No ar-
gument for its optimality has been provided in

Merkle�s work. Moreover, it remains unclear what

optimality means in the context of an OTS system.
3. One-time signature generalization

More generally, a message sender prepares a
signature by generating an n-element random

number vector R ¼ ðr1; r2; . . . ; rnÞ. He then com-

putes HðRÞ ¼ hHðr1Þ;Hðr2Þ; . . . ;HðrnÞi where Hð�Þ
is a suitable OWF. The sender then securely dis-

tributes the one-time public key vector HðRÞ to

all intended verifiers.

Signature generation is the process of mapping

the input message into a subset S � R. S is then
attached to the message as its signature. To verify

S, each receiver computes a similar mapping from

the input message into a subset T of HðRÞ. The
signature is considered valid only if T ¼ HðSÞ.

The mapping function must satisfy a condition

which we refer to as incomparability: for any

message D1, an attacker must be unable to find

another message D2 such that F ðD2Þ � F ðD1Þ
where F ðDiÞ corresponds to signature subset Si for
the message Di. Otherwise, if the legitimate signer

distributes hD1; F ðD1Þi, the attacker could replace
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D1 with D2, reduce the set F ðD1Þ to F ðD2Þ, and
obtain a valid message–signature pair hD2; F ðD2Þi.

This leads us to ask the question: When R con-

tains n random numbers, how many distinct mes-

sages can be signed or in other words what would be

the maximum size of the message space?

For n ¼ 1, the answer is one, and the signature

is one random number. For n ¼ 2, the answer is

two: the signature can be either r1 or r2. If we were
to map a message onto the signature subset

fr1; r2g, that choice would eliminate any other

subset, allowing a single distinct message.

In general, we observe that, for any n, we can

obtain a valid message mapping by drawing from
all subsets containing p < n random numbers.

Clearly, no one such subset can be the subset

of another, allowing us Cðn; pÞ ¼ n!=p!ðn� pÞ!
distinct messages.

In [15], it is shown that for any n, the domain of

mapping M is greatest when p ¼ bn=2c. This al-

lows us to sign any one of

Bn ¼
n

bn=2c

� �
ð1Þ

distinct messages, i.e., we are able to sign an

arbitrary ðlogBnÞ-bit message. For example, if R
contains four elements 1, 2, 3, and 4, then the

largest valid message set of R is

V ¼ ff1; 2g; f1; 3g; f1; 4g; f2; 3g; f2; 4g; f3; 4gg

which contains B4 ¼ 6 elements.
By inverting this formula, and using Stirling�s

approximation, we can see that to represent 2b

distinct values, n must satisfy

Bn > 2b;

ffiffiffiffiffiffiffiffi
2pn

p
ðn=eÞn

½
ffiffiffiffiffiffi
pn

p
ðn=2eÞn=2�2

> 2b;

2n
ffiffiffiffiffiffiffiffiffiffi
2=pn

p
> 2b

or, after taking base 2 logarithm of both sides,

n� lg
ffiffiffiffiffiffiffiffiffiffi
pn=2

p
> b: ð2Þ

For b ¼ 128 (e.g., MD5), n must be at least 132,

and each subset can be as small as size 64, since

Cð132; 64Þ > 2128. For b ¼ 160 (e.g., SHA1), n
must be at least 165 (n ¼ 164 is just barely insuf-

ficient), with subsets of size 75.

Note that we can freely increase n and decrease

p, or similarly, decrease n and increase p, provided
Cðn; pÞ > 2b and the signer and verifier(s) decide
beforehand on the values of n and p. At one ex-

treme, as we have shown, there is the lowest n such

that there exists a p so that Cðn; pÞ > 2b. At the

other extreme, one could choose n ¼ 2b, and allow

p ¼ 1; this would correspond to the case where

there is a random number associated with each

possible message, and the sender simply picks the

appropriate one for each message to be signed!
(This is clearly an intractable storage problem.)

In Fig. 1, we show the number of random

numbers n versus the number of hashes required

for verification p, for two popular message (digest)

sizes.

We also observe that, for a valid ðn; pÞ pair

satisfying Cðn; pÞ > 2b, if the anchor values HðRÞ
are encrypted, the release of a subset in V con-
taining p numbers can be used to exchange b bits

of confidential information, since no one observing

the p numbers can distinguish them from any

others, or verify them, without being able to de-

crypt HðRÞ.
4. Efficiency assessment using directed acyclic
graphs

Bleichenbacher et al. [9–11] formalized the

concept of OTS using DAGs. They observed that

the structure of the OTS computation leading
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(z ¼ 2nþ 1 ¼ 9) where the public-key components are hashed in

a binary tree to result in a single public-key component. To

make the OTS verifiable, the signature contains the random

numbers released as well as the hashes of unreleased random

numbers.
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from the secret key components to the public key

can be represented as a DAG G ¼ ðV ;EÞ with

vertex set V and and edge set E, where the vertices
correspond to the secret key, the intermediate re-

sults, and the public key, and where a directed

edge ðvi; vjÞ in E indicates that vi is an input to the
OWF and computation resulting in vj.

In order to design a OTS based on a DAG,

there are two important requirements. First, every

OTS must be verifiable, i.e., the public key must be

computable from it. Second, in order to prevent

forgery, the set of signatures must satisfy the im-

comparability condition defined in previous sec-

tion.
If we assume that all the public-key components

are hashed in a binary tree to result in a single

public-key component, then an efficient OTS al-

gorithm can be formally defined as one in which

the size of the message space is maximized while

the size of the DAG is minimized. More precisely,

if lgðCÞ is the number of message bits that can be

signed, the efficiency of a one-time digital signature
scheme C for a DAG G with z ¼ jV j vertices is

given by

gðCÞ ¼ lgðCÞ
zþ 1

:

In [10], the authors also presented their best graph

construction, for which the efficiency is approxi-
mately equal to 0.473. We will now prove that our

methodology provides a better construction in

terms of their notion of efficiency.

In the previous section, we showed that the

number of bits that can be signed using n random

numbers is upper bounded by n� lg
ffiffiffiffiffiffiffiffiffiffi
pn=2

p
. In

Fig. 2, we demonstrate that when we assemble the

DAG of our construction with n random numbers,
the number of vertices is equal to 2nþ 1. Then the

efficiency is upper bounded by 0.5 as seen from Eq.

(3).

lim
n!1

gðCÞ ¼ n� lg
ffiffiffiffiffiffiffiffiffiffi
pn=2

p
2nþ 2

¼ 0:5: ð3Þ

For b ¼ 128 (e.g., MD5), this value is 0.4812 and
for b ¼ 160 (e.g., SHA1), it is 0.4819. We observe

that both of them is better than the best con-

struction in [10].
Other than the efficiency concerns, we claim

that our methodology is better than Bleichen-

bacher et. al.�s approach in two aspects:

• In practice, their proposed DAG construction is

very complex and hard to implement whereas

our combinatorial results are elementary and

easy to grasp.

• In [10], the authors did not discuss how to en-

code a specific message for the DAG they used.

In contrast, we provide an efficient method for

encoding a message for signature in the next
section.

5. Encoding a message for signature

Given a vector R of n random numbers, and a

valid message set V of subsets each containing p of

those numbers, we have shown that we can sign
any one of Cðn; pÞ distinct messages. In this sec-

tion, we describe the mappingM between messages

and the elements of V , and demonstrate how to

compute them efficiently.

Assume that the domain ofM is composed of 2b

messages, and we have a way of representing each

of the messages as a b-bit integer m. Let any subset

S in V be expressed as fRa1 ;Ra2 ; . . . ;Rapg. Arrange
the subsets in V in lexically ascending order. For

example, for n ¼ 4, p ¼ 2, the subsets are ordered

fR1;R2g; fR1;R3g; fR1;R4g; fR2;R3g;
fR2;R4g; fR3;R4g:
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Then the mapping m ¼ MðS; V Þ of each subset S is

defined as the integer position of S in this list

representation of V . For example, in the above

case, MðfR1;R3g; V Þ ¼ 2 and MðfR3;R4g; V Þ ¼ 6.

In general, for any n and p, the mapping of any
subset S ¼ fRa1 ;Ra2 ; . . . ;Rapg, where a0 ¼ 0 and

a1 < a2 < � � � < ap is given by

MðS; V Þ ¼ 1þ
Xp

i¼1

Xn�ai�1�1

j¼n�aiþ1

j
p � i

� �
: ð4Þ

Note that in order to compute the mapping for

any subset, for a given n and p, we need only

compute the binomial coefficients Cðj; p � iÞ for i
from 1 to p, j from p þ 1� i to n� i. Thus, each
mapping requires n� p � ðn� apÞ ¼ ap � p addi-

tions.

Similarly, the mapping S ¼ M�1ðm; V Þ of a
message represented by the integer m can be

computed by subtracting binomial coefficients

until zero is reached. This requires ap � p additions
and comparisons. Pseudocode to do this conver-

sion is as follows:

m0 ¼ m /* copy message to temporary value */

q ¼ 1
for i ¼ 1 to p do begin

while m0 > Cðn� q; p � iÞ do begin

m0 :¼ m0 � Cðn� q; p � iÞ
q :¼ qþ 1

end /* while */

ai :¼ q
q :¼ qþ 1

end /* for */

To put things in perspective, consider that a

single MD5 hash computation requires approxi-

mately 500 arithmetic operations. Thus, our

mapping (in both directions) costs less than one

MD5 hash.
6. Cost analysis of a single one-time signature

6.1. All on-line case

In the preceding sections, we showed how to

sign an arbitrary b-bit message using p of n ran-
dom numbers. In this section, we will describe how

to choose n and p to minimize the total cost of a

OTS. Our initial assumption is that all of the

signing process is performed on-line, once the

message is presented.

The principal cost of generating a OTS (aside
from the cost of securely distributing the anchor

values HðRÞ) is the cost of computing HðRÞ; this
costs n hashes. The principal cost of verifying a

OTS (aside from the cost of verifying the anchor

values) is the cost of computing HðSÞ; this costs p
hashes. However, only a single sender generates a

OTS, while potentially many receivers verify it.

Thus, each hash involved in signature verification
incurs a greater cost than one involved in signature

generation.

In general, let each verification hash cost r
times as much as a generation hash. The total cost

of a single signature is then proportional to nþ rp;
this is the quantity that we shall try to minimize,

subject to the condition that Cðn; pÞ > 2b.

We want to find n and p such that
Cðn; pÞ¼: Cðnþ r; p � 1Þ. As a first approximation,

we have, from the definition of the binomial co-

efficient

n
n� p

� �r

¼: n� p
p

: ð5Þ

If we let a ¼ p=n, we have

ð1� aÞr ¼ a
1� a

; ð6Þ

a ¼ ð1� aÞrþ1
: ð7Þ

To find the optimal n and p, we find the p such that

Cðbapc; pÞ > 2b.

6.2. On-line/off-line case

In [14], the authors introduce the new concept

of on-line/off-line digital signature schemes. In
these schemes the signing of a message is broken

into two phases. The first phase is off-line. Though

it requires a moderate amount of computation, it

presents the advantage that it can be performed at

leisure, before the message to be signed is even

known. The second phase is on-line and it starts

after the message becomes known. Since it utilizes
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the precomputation of the first phase, it is much

faster.

We observe that the signer can generate the

vector R ¼ fR1; . . . ;Rng, and by applying the OWF

to each random number, he can generate the ha-

shes off-line. The on-line phase is just a mapping
and at the end of Section 5 we showed that it costs

less than one MD5 hash operation. So, in this case

we try to minimize the verification time. This is

also due to the fact that many times only a single

sender generates an OTS, but potentially many

receivers verify it.

It is improper to take the verification time as

only the time needed to make the mapping and
generate the hashes of the random numbers. One

of the disadvantages of OTS is its length; especially

if we have a low bandwidth channel, the time

needed to transmit the signature dominates the

time for verification and cannot be neglected. Also,

available bandwidth and computation power both

vary over a wide range. We may therefore optimize

n and p with respect to bandwidth and computa-
tion power.

Here, we will describe how to choose n and p to

minimize the total time T needed to verify one

OTS. Let�s take the hash length as b and random

number length as a. Assume a bandwidth of K
bits/s and L seconds as the time required to per-

form one hash operation. Then

T ¼ ap þ bn
K

þ ðp þ 1ÞLþ m: ð8Þ

In the above formula, we ignore other delays such

as queuing delays. The extra L is for generating the

hash of the message, and m is the time to compute

the mapping. The total time needed to verify one

OTS is then proportional to nþ rp where

r ¼ aþ LK
b

: ð9Þ

This optimization therefore reduces to the one

analyzed in the previous section.
7. Amortized cost of many signatures

Using the OTS only once is inefficient, since the

sender needs to sign the original hash image HðRÞ
using a conventional digital signature (e.g., DSS).

Using Merkle�s tree scheme [12] as illustrated in

Fig. 3, we can sign an arbitrarily large number of
messages with only one conventional signature.

However, the incremental cost of generating and

verifying an additional signature increases loga-

rithmically with the number of signatures.

In the tree scheme, one constructs a tree of

signature nodes. Each signature node has a vector

for signing each of its children as well as a single

message. The root node is signed by conventional
means––i.e., using a digital signature key.

One of the built-in features of Merkle�s OTS

tree construct is the ability to unambiguously or-

der signatures. This is a very useful service in many

application domains. For example, it is imperative

in a military environment to establish strict cau-

sality of commands (and signed orders in general).

Failure to do so can have disastrous consequences
since re-ordered messages can lead to devastating

mistakes on the battlefield. In the civilian realm,

signature ordering is very important in electronic

commerce, among other fields.

Consider a binary tree such that each node has

three vectors and suppose that we choose n and p
such that Cðn; pÞ > 2b. We would like to compute

the cost, in hashes, of generating and verifying a
signature at any given depth d.

To generate the signature, one needs to do a

OTS of the message (requiring n hashes). Assum-

ing the signer can cache the tree, no further com-

putation is required.
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Verification requires one to perform p hashes to

verify the current node�s signature of the message,

and an additional p hashes to verify the parent

node�s signature of the current node. If the receiver
has cached the tree, no further computation is re-

quired; otherwise, an additional ðd � 1Þp hashes
are required.

In contrast to the single signature case, then,

each of a sequence of signatures costs nþ 2p
hashes if receivers cache the signature tree, or

nþ ðd þ 1Þp hashes if they do not. How reason-

able is it to cache a signature tree? If we choose

SHA as our message digest, we need to sign 160

bits of message, for which we could choose
n ¼ 165 and p ¼ 82. Both signer and verifier

must cache, for each node, 3n 160-bit numbers

(the signer caches the random numbers R, the

verifier caches the anchor values HðRÞ); this

works out to 4950 bytes per node. This is easily

supported.

In fact, receivers who cache the tree need only

maintain the lowest layer of nodes, so that only
about half the nodes already traversed need be

kept at any time. They can prune additional in-

formation off the tree by removing the message

signature vectors after they are exhausted.
8. Constructing the optimal tree

In Section 4, we showed how to choose n and p
to minimize the total cost of an OTS. In this sec-

tion, we will describe how to choose the parame-

ters of a k-ary tree with a depth of d. Note in

particular that the tree structure does not need to

be binary. Also, we should stop somewhere in our

tree; at some point the cost of using our large tree

to verify an OTS is more than that of starting a
new tree in which we have signed the root node by

conventional means. In other words, we need to

optimize the value of d.
We will try to minimize the average verification

cost of one OTS. Suppose that the verifier only

caches the root node of the tree. This is a rea-

sonable assumption, especially when the signer

uses the tree to sign messages for different receiv-
ers. Suppose also that the cost of verifying a tra-
ditional signature is C times more than verifying

a OTS. In a k-ary tree with a depth of d, the

number of messages that can be signed is

N ¼
Xd

y¼1

ky�1 ¼ kd � 1

k � 1

and the number of OTS required

W ¼
Xd

y¼1

yky�1 ¼ dkkþ1 � ðd þ 1Þkd þ 1

ðk � 1Þ2
:

In a single tree, the cost per message is

C þ W
N

¼
C þ

Pd
y¼1 yk

y�1

Pd
y¼1 k

y�1
: ð10Þ

We try to find the smallest d such that the average

cost per message is smaller than it is for d þ 1.

At optimal d,

C þ
Pdþ1

y¼1 yk
y�1

Pdþ1

y¼1 k
y�1

¼:
C þ

Pd
y¼1 yk

y�1

Pd
y¼1 k

y�1

which is approximately equivalent to

C þ ðd þ 1Þkd þ W¼: kðC þ W Þ: ð11Þ
If we put W into its place and make necessary

manipulations, our formula becomes

kdþ1¼: ðk � 1Þ2C þ 1:

Then, we can give the optimal tree depth d as

d¼: log½ðk � 1Þ2C þ 1�
log k

� 1: ð12Þ

In Fig. 4, we show the depth of a binary tree versus

average normalized verification cost per message.

One should choose the depth d where the average

normalized cost per message is minimal.

Secondly, we would like to introduce a way to

decide on the value of k. Suppose the signer

caches the tree and S be the storage requirement

for one random vector and its corresponding
hash values. Then the storage cost per message is

ðk þ 1ÞS, which is independent of d. Suppose also

that the storage cost per message is at most M .

Then

k ¼ M
S
� 1: ð13Þ
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Fig. 4. Choosing the optimal depth for a binary tree.
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So after estimating k with this simple formula, we

can also find d by using the previous formula

above.
9. Implementation and future work

In practical implementations, OTS use closely

resembles that of public key signatures. For in-

stance, in OTS, the sender distributes a certifi-

cate, which contains a public value, signed by a

certification authority. The only difference is that
the public value here is a sequence of hash

function outputs (or a single output if these

components are hashed in a single hash value),

rather than a public key. Just as before, this

certificate can be distributed in advance of the

signed message, or it can accompany the signed

message. Finally, the signature represents a

transformation of a message digest of the overall
message; the only differences are in the details of

that transformation.
There is a clear analogy to traditional digital

signature algorithms, which is summarized by the

diagram below:

message digest () message digest

encryption with private key

() mapping to OTS random values

verification with public key

() verification via OTS anchors

Currently, we have implemented an OTS library

which utilizes the suggested mapping and the tree
structure. We will investigate the effect of changing

the parameters to make it more efficient.

Subsequently, we will integrate our OTS library

into specific applications that require fast digital

signatures. One of the anticipated application do-

mains is as an integrity mechanism in Active Net-

works. One of the basic tenets of the Active

Networks concept is the use of so-called ‘‘smart
packets,’’ packets that carry the means for their

own handling in routers and other network entities.
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This paradigm immediately raises a number of se-

curity issues, data integrity and origin authentica-

tion being chief among them. For this reason, we

maintain that ultra-fast digital signatures are an

absolute must for Active Networks to be practical.

The results of our research will also be of
interest to an intrusion detection system. Authen-

ticating the source and contents of a response

request is fundamental to the survivability of

the systems at hand. At the same time, responses

must also be executed in a timely fashion and not

be allowed to queue indefinitely. We expect that

OTS will provide a way for components of intru-

sion detection systems to quickly and efficiently
establish the integrity of the messages they ex-

change.
10. Conclusion

We have provided a theoretical foundation for

evaluating the efficiency and compactness of one-
time digital signatures. This work reveals the ab-

solute minimum complexity of computing a digital

signature over a space of b-bit messages, based on

the weighted costs of signature generation and

verification. We have shown how this theoretical

minimum can be achieved by using a simple and

efficient mapping between messages and subsets of

random numbers. We have demonstrated how this
family of OTS schemes fits into an elegant proto-

col for amortizing the cost of OTSs over many

messages. Finally, we have provided a theoretical

foundation for evaluating the efficiency of the OTS

tree structure based on the weighted costs of tra-

ditional and OTSs.
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