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ABSTRACT
We propose a new biometric based on the human body’s
response to an electric square pulse signal, called pulse-
response. We explore how this biometric can be used to
enhance security in the context of two example applications:
(1) an additional authentication mechanism in PIN entry
systems, and (2) a means of continuous authentication on
a secure terminal. The pulse-response biometric is effective
because each human body exhibits a unique response to a
signal pulse applied at the palm of one hand, and measured at
the palm of the other. Using a prototype setup, we show that
users can be correctly identified, with high probability, in a
matter of seconds. This identification mechanism integrates
well with other established methods and offers a reliable
additional layer of security, either on a continuous basis or
at login time. We build a proof-of-concept prototype and
perform experiments to assess the feasibility of pulse-response
as a practical biometric. The results are very encouraging,
achieving accuracies of 100% over a static data set, and 88%
over a data set with samples taken over several weeks.

1. INTRODUCTION
Many modern access control systems augment the tradi-

tional two-factor authentication procedure (something you
know and something you have) with a third factor: “some-
thing you are”, i.e., some form of biometric authentication.
This additional layer of security comes in many flavors: from
fingerprint readers on laptops used to facilitate easy login
with a single finger swipe, to iris scanners used as auxiliary
authentication for accessing secure facilities. In the latter
case, the authorized user typically presents a smart card, then
types in a PIN, and finally performs an iris (or fingerprint)
scan.

In this paper, we propose a new biometric based on the
human body’s response to a square pulse signal. We consider
two motivating scenarios:

The first is the traditional access control setting described
above where the biometric is used as an additional layer of
security when a user enters a PIN, e.g., into a bank ATM.
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The pulse-response biometric facilitates unification of PIN
entry and biometric capture. We use PIN entry as a running
example for this scenario throughout the paper. This is
because PIN pads are often made of metal, which makes
capturing pulse-response biometric straightforward: a user
would place one hand on a metal pad adjacent to the key-pad,
while using the other hand to enter a PIN. This conductive
pad would transmit the pulse and a sensor in the PIN pad
would capture the measurement.

The second scenario corresponds to continuous authenti-
cation, e.g., verifying that the user, who securely logged in
earlier, is the same person currently present at the keyboard.
For this scenario, we need a mechanism that periodically
samples one or more biometric. However, for obvious usabil-
ity reasons, ideally this would be done unobtrusively. The
pulse-response biometric is particularly well-suited for this
setting. Assuming that it can be made from – or coated
by – a conductive material, the keyboard would generate
the pulse signal and measure response, while the user (re-
maining oblivious) is typing. The main idea is that the
user’s pulse-response is captured at login time and the iden-
tity of the person currently at the keyboard can be verified
transparently, at the desired frequency.

To assess the efficacy and feasibility of the pulse-response
biometric, we built a prototype platform that enables gather-
ing pulse-response data. Its main purpose is to assess whether
we can identify users from a population of test subjects. The
same platform can test the distinguishing ability and stability
of this biometric over time. We also explored two systems
that apply the pulse-response biometric to the two sample
scenarios discussed above: one to unobtrusively capture the
biometric as an additional layer of security when entering a
PIN, and the other to implement continuous authentication.

2. BACKGROUND
This section provides background on biometrics, summa-

rizes the terminology and introduces our design goals.

2.1 Biometrics
The meaning of biometric varies depending on context.

Throughout this paper we use it to denote a measurable
biological (anatomical and physiological) or behavioral char-
acteristic that can be used for automated recognition of
individuals.

Usually, biometric measurements are divided into two cat-
egories, physiological and behavioural [7]. The former relies
on the physiology of a person, such as fingerprints, facial
features or DNA. Behavioral biometrics are based on user



behavior, such as keystroke timings, speech patterns, hand-
writing characteristics, gait and many others.

Physiological biometrics can help identify an individual
among large pool of candidates. However, there are some
caveats. In general, physiological biometrics are considered
moderately difficult to circumvent. For example, although
hand geometry is very stable over the course of one’s adult
life, it does not provide enough distinguishing power to be
used as the only means for identification [3]. Also, some facial
recognition systems can be fooled by an appropriately-sized
photo of a legitimate user.

Behavioral biometrics measure user actions over time, i.e.,
for each action, there must be a beginning, an end, and a
duration. Consequently, behavioural biometrics indirectly
measure characteristics of the human body. Behavioral bio-
metrics are learned and, therefore, can be also re-learned.
However, the consensus in the literature seems to be that
after reaching a certain age, changes in behaviour become
more difficult to achieve, even with specific and sustained ef-
fort [10]. Behavioural biometrics can therefore be regarded as
valid means of identification, even though they are neither as
unique nor as permanent as their physiological counterparts.
In most cases, behavioural biometrics are used to discern a
user from a small(er) pool of candidates. One advantage is
that they are less invasive and therefore more user-friendly.
For example, a system that analyses keystroke timings or
speech patterns can usually do so in the background. In
contrast, an iris or fingerprint scan requires specific user
actions.

2.2 Biometric Authentication vs. Identification
Authentication refers to identify confirmation or verifica-

tion. When a user claims a certain identity (e.g., by inserting
a card into an ATM or entering a user ID into a terminal
and then typing in a PIN or a password) authentication
entails deciding whether the claim is correct. The goal of
the biometric classifier is to compare the current sample to
the known template for that user. The classifier returns the
likelihood of a match. We refer to this as a 1 : 1 comparison.

Authentication differs from identification, where the cur-
rent sample comes from an unknown user, and the job of
the biometric classifier is to match it to a known sample.
We refer to this a 1 : n comparison. Identification is further
divided into two types: open-set and closed-set. We say that
an identification is closed-set, if it is known a priori that
the user is in the classifier database, i.e., the classifier must
choose the best match from a pool of candidates. Otherwise,
identification is considered open-set.

2.3 Design Goals
When designing a new biometric system it is important

to take into account lessons learned from past and current
systems. Design goals for biometric systems can be found
in the literature, e.g., [4]. Our goals include, but are not
limited to:

Universal: Must be universally applicable, to the extent
required by the application. It is important for the biometric
to apply to everyone who is intended to use the system.

Unique: Must be unique within the target population. For
example, measuring someone’s height would not work as an
identification mechanism on a large scale. At the same time,
(adult) height alone can usually identify individual family
members.

Permanent: Must remain consistent over the period of use.
Very few biometrics will stay constant over a lifetime, e.g.,
face geometry, voice, gait and writing. However, as long as
the biometric is consistent over the lifetime of the system,
these biometrics work well.

Unobtrusive: If the user can be identified passively, without
interference, the biometric is much more likely to be accepted.

Difficult to circumvent: Ideally, a user should be unable
to change the biometric at all. At a minimum, a user must
not be able to modify his biometric to match that of another
user.

3. PULSE-RESPONSE BIOMETRIC
The pulse-response biometric works by applying a low

voltage pulse signal to the palm of one hand and measuring
the body’s response in the palm of the other hand. The
signal travels up through the user’s arm, across the torso,
and down the other arm. The biometric is captured by
measuring the response in the user’s hand. This response
is then transformed to the frequency domain via the Fast
Fourier Transform (FFT). This transformation yields the
individual frequency components (bins) of the response signal,
which form raw data that is then fed to a classifier. Working
in the frequency domain eliminates any need for aligning the
pulses when they are measured.

The main reason for the ability of this biometric to dis-
tinguish between users is due to subtle differences in body
conductivity, at different frequencies, among different people.
When a signal pulse is applied to one palm and measured
in the other, the current travels through various types of
body tissues – blood vessels, muscle, fat tissue, cartilage
and bones – to reach the other hand. Differences in bone
structure, muscle density, fat content and layout (and size)
of blood vessels result in slight differences in the attenuation
of the signal at different frequencies. These differences show
up as differences in the magnitude of the frequency bins
after the FFT. This is what facilitates distinguishing among
individuals.

Pulse-response is a physiological biometric since it mea-
sures body conductivity – a physiological characteristic dis-
tinct from behavioral aspects. However, it has an attractive
property normally associated with behavioral biometrics: it
can be captured in a completely passive fashion. Although
other physiological biometrics also have this feature, e.g.,
face recognition, pulse-response is not easily circumventable.
This combination of unobtrusiveness and difficulty to circ-
ument makes it a very attractive identification mechanism.
Essentially, it offers the best properties of both physiological
and behavioral biometrics.

4. LIVENESS AND REPLAY
A common problem with many biometric systems is live-

ness detection, i.e., determining whether the biometric sample
represents a “live” user or a replay. For example, a finger-
print reader would want to detect whether the purported
user’s fingerprint was produced by a real finger attached to
a human, as opposed to a fingerprint mold made of putty or
even a severed finger. Similarly, a face recognition system
would need to make sure that it is not being fooled by a
user’s photo or a 3-D replica.

In traditional biometric systems, liveness is usually ad-
dressed via some form of active authentication, e.g., a challenge-



response mechanism. In a face recognition system a user
might be asked to turn his head or look at a particular point
during the authentication process. Although this reduces
the chance of a photo passing for the real person, the user
is forced to take active part in the process, which can be
disruptive and annoying if authentication happens on a con-
tinuous basis. Also, a good 3-D model of a human head can
still fool such measures.

Fingerprint scanners often include some protection against
replay. This might be accomplished by detecting other charac-
teristics normally associated with a live finger, e.g., tempera-
ture, or presence of sweat or skin oils. Such counter-measures
make it more difficult to use skin-tight gloves or “cold dead
fingers” to fool the biometric system. Still, replay remains a
major challenge, especially for low-end fingerprint readers.

In the context of the pulse-response biometric, unlike fin-
gerprints or face recognition, it is difficult (yet not impossi-
ble) to separate the biometric from the individual to whom
it belongs. If the adversary manages to capture a user’s
pulse-response on some compromised hardware, replaying it
successfully would require specialized hardware that mimics
the exact conductivity of the original user. We believe that
this is feasible: the adversary can devise a contraption that
consists of flat adhesive-covered electrodes attached to each
finger-tip (five for each hand going into one terminal) with a
single wire connecting the two terminals. The pulse response
of the electrode-wire-electrode has to exactly replicate that of
the target user. Having attached electrodes to each finger-tip,
the adversary can type on the keyboard and the system could
thus be effectively fooled. However, the effort required is
significantly harder than in cases of facial recognition (where
a photo suffices) or fingerprints, which are routinely left –
and can be lifted from – numerous innocuous locations.

Finally, the real power of the pulse-response biometric is
evident when used for continuous authentication (see Sec-
tion 6). Here, the person physically uses a secure terminal
and constantly touches the keyboard as part of routine work.
Authentication happens on a continuous basis and it is not
feasible to use the terminal while at the same time providing
false input signals to the authentication system. Of course,
the adversary could use thick gloves, thereby escaping detec-
tion, but the authentication system will see input from the
keyboard without the expected pulse-response measurement
to accompany it, and will lock the session.

5. COMBINING PIN ENTRY WITH
BIOMETRIC CAPTURE

This section describes the envisaged use of pulse-response
to unobtrusively enhance the security of PIN entry systems.

5.1 System and Adversary Models
We use a running example of a metal PIN key-pad with

an adjacent metal pad for the user’s other hand. The key-
pad has the usual digit (0-9) buttons as well as an “enter”
button. It also has an embedded sensor that captures the
pulse-signal transmitted by the adjacent metal pad. This
setup corresponds to a bank ATM or a similar setting.

The adversary’s goal is to impersonate an authorized user
and withdraw cash. We assume that the adversary can not
fool the pulse-response classifier with probability higher than
that found in our experiments described later in this paper.

We also assume that the ATM is equipped with a modified
authentication module which, besides verifying the PIN,
captures the pulse-response biometric and determines the
likelihood of the measured response corresponding to the
user identified by the inserted ATM card and the just-entered
PIN. We assume that the ATM has access to a database of
valid users, either locally or over a network. Alternatively,
the user’s ATM card can contain data needed to perform
pulse-response verification. If stored on the card, this data
must be encrypted and authenticated using a key known to
the ATM; otherwise, the adversary (who can be assumed
to be in possession of the card) could replace it with data
matching its own pulse-response.

5.2 PIN Entry Scheme
The ATM has to determine whether data sampled from

the user while entering the PIN is consistent with that stored
in the database. This requires a classifier that yields the
likelihood of a sample coming from a known distribution. The
likelihood is used to determine whether the newly measured
samples are close enough to the samples in the database to
produce a match. Using our prototype, we can make such
decisions with high confidence; see Section 7.4.

Before discussing security of the pulse-response PIN entry
system, we check whether it meets the design goals.

Universal. A person using the modified PIN entry system
must use both hands, one placed on the metal pad and one
to enter the pin. This requires the user to actually have
two hands. In contrast, a normal PIN entry system can be
operated with one hand. Thus, universality of our system
is somewhat lower. This is a limitation of the biometric,
although a remedy could be to store a flag on the user’s
ATM card indicating that disability, thus exempting this
person from the pulse-response check. This would allow
our approach to gracefully degrade to a generic PIN entry
system.

Unique and Permanent. In Section 7.4 we show that our
prototype can determine, with high probability, whether
a subject matches a specific pulse-response. Thus, it is
extremely unlikely for two people to exhibit exactly the same
pulse-response. We also show that an individual’s pulse-
response remains fairly consistent over time.

Unobtrusive. The proposed scheme is very unobtrusive,
since from the user’s perspective, the only thing that changes
from current operation is the added requirement to place the
free hand on a metal pad. There can even be two such pads
accommodating both left- and right-handed people. Also,
the ATM screen could display system usage instructions,
even pictorially to accommodate people who can not read.
Similarly, audio instructions could be given for the sake of
those who are vision-impaired.

Difficult to circumvent. Given that pulse-response is unique,
the only other way to circumvent it is to provide the sensor
(built into the PIN pad) with a signal that would correspond
to the legitimate user. Although this is very hard to test
precisely, assuming that the adversary is unaware of the
target user’s pulse-response measurements, the task seems
very difficult, if not impossible.

5.3 Security of PIN Entry Scheme
The additional layer of security provided by the pulse-

response biometric is completely independent from security
of the PIN entry system alone. Therefore, we model the



probability Pbreak that the proposed PIN entry system can
be subverted, as:

Pbreak = Pguess · Pforge

where Pguess is the probability of the adversary correctly
guessing the PIN and Pforge is the average probability that
the adversary can fool the classifier. We model this as the
false positive rate divided by the number of users. The false
positive rate, i.e., when an adversary is incorrectly classified
as an authorized user, is the complement of specificity [9].
In Section 7.4, we determine specificity to be 88% and thus
Pforge = (1− 0.88) on average.

If a PIN consists of n decimal digits and the adversary
has t guesses then Pguess = t

10n
. Together with Pforge this

yields the combined probability:

Pbreak =
(1− 0.88)t

10n

For example, if the adversary is allowed 3 guesses with a
4-digit pin, Pbreak = 3.6 · 10−5, whereas a 4-digit plain-PIN
system has a subversion probability of 3 · 10−4. Though
this improvement might not look very impressive on its own,
it is well known that most PIN attacks are performed by
“shoulder surfing” and do not involve the adversary guessing
the PIN. If we assume that the adversary already knows the
PIN, Pbreak = 12% with our system, as opposed to 100%
without it.

6. CONTINUOUS AUTHENTICATION
We now present a continuous authentication scheme. Its

goal is to verify that the same user who securely logged into
a secure terminal, continues to be physically present at the
keyboard. Here, the pulse response biometric is no longer
used as an additional layer of security at login time. Rather,
the user’s pulse-response biometric is captured at login time
and subsequent measurements are used to authenticate the
user using the initial reference.

6.1 System and Adversary Models
We continue using the example for continuous authenti-

cation introduced in Section 1. It entails a secure terminal
where authorized users can login and access sensitive data.

The system consists of a terminal with a special keyboard
that sends out pulse signals and captures the pulse-response
biometric. This requires the keyboard to be either made
from, or coated by, a conductive material. Alternatively, the
pulse signal transmitter could be located in a mouse that the
user operates with one hand and the keyboard captures the
pulse-response. Without loss of generality, we assume the
former option.

We assume that the adversary, with or without consent
of the authorized (at login time) user, physically accesses
the unattended terminal and attempts to proceed within an
already-open session. We assume that the adversary at the
keyboard has full access to the active session. The goal of
our system is to detect that the original user is no longer
present, and that the keyboard is operated by someone else.
If a different user is detected, the system consults a policy
database and takes appropriate actions, e.g., locks the session,
logs out the original user, raises alarms, or notifies system
administrators.

In addition to the peripherals required to capture the
pulse-response signal, the continuous authentication system
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Figure 1: Flowchart of the Continuous Authentica-
tion Process decision procedure.

consists of a software process that manages initial login
and frequency of periodic reacquisition of the biometric.
This process is also responsible for displaying user warnings
and reacting to suspected violations. We refer to it as the
continuous authentication process (CAP) and assume that
neither the legitimate user nor the adversary can disable it.

6.2 Continuous Authentication Scheme
At login time, CAP measures and records the initial pulse-

response biometric of the authorized user. Periodically, e.g.,
every few seconds, CAP reacquires the biometric by sending
and receiving a pulse signal through the keyboard. Each
newly acquired measurement is checked against the value
acquired at login. If the new measurement is sufficiently
distinct from that sampled from the original user, CAP
consults its policy database and takes appropriate actions,
as discussed above. Figure 1 shows a sample CAP decision
flowchart.

The envisaged continuous authentication system can be
useful for training (e.g., corporate) users to adopt security-
conscious behaviour. For example, users can be motivated
to behave securely whenever they leave a secure terminal,
e.g., by getting a warning every time they forget to log out.
and/or allow someone else to take over a secure session.

Before considering the security of the continuous authenti-
cation system, we look back at the design goals.

Universal. The users of the system must have two hands in
order for the pulse-response biometric to be captured. The
same arguments, as in the case of PIN entry, apply here.

Unique and Permanent. In Section 7.4, we show that our
prototype can match a pulse-response to previous samples
(taken immediately beforehand) with 100% accuracy. The
fact that the pulse-response reference is taken at the begin-
ning of the session and is used only during that session, makes
it easier to overcome consistency issues that can occur when
the reference and test samples are days or months apart.

Unobtrusive. Users do not need to modify their behaviour
at all when using the continuous authentication system. Thus,
user burden is minimal.

Difficult to Circumvent. With a true positive rate of 100%
it is unlikely that the adversary can manage to continuously
fool the classifier. Even if the adversary happens to have a
pulse-response biometric similar to the original user, it must
evade the classifier on a continuous basis. We explore this
further in the security analysis section below.
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Figure 2: Markov model of the continuous authenti-
cation detection probability. States are numbered 1
to 3 for easy reference in text.

6.3 Security
The adversary’s goal is to subvert the continuous authenti-

cation system by using the secure terminal after the original
user has logged in. In the analysis below, we assume that
the original user colludes with the adversary. This eliminates
any uncertainty that results from the original user “discover-
ing” that the adversary is using its terminal, which is hard
to model accurately. This results in a worst-case scenario
and the detection probability is a lower bound on security
provided by the continuous authentication system.

An important measure of security is the detection time—
the number of times biometric acquisition is performed be-
tween the adversary’s initial appearance and detection. Ob-
viously, longer inter-acquisition intervals imply slower collec-
tion of measurements and subsequent detection of adversarial
presence.

We model the probability of detecting an adversary using
two static probabilities derived from our experiments—an
initial probability α and a steady state probability β. A
more detailed model with several intermediate decreasing
probabilities could be constructed but this simple model fits
quite well with our experiments.

The probability α is the probability that the adversary is
detected immediately, i.e., the very first time when his pulse-
response is measured. However, if the adversary’s biometric
is very close to that of the original user, the adversary might
not be detected every time biometric capture is performed.
This is because the biometric is subject to measurement noise
and the measurements from an individual form a distribu-
tion around the “fingerprint” of that user. If the adversary
manages to fool the classifier once, it must be because its
biometric is close to that of the original user. Thus, the
adversary’s subsequent detection probability must be lower:

P [Xi = adv|Xi−1 = usr] ≤ P [Xi = adv]

We call this decreased probability β. The probabilities
α and β are approximations that model how similar two
individuals are, i.e., how well their probability distributions
overlap in about 100 dimensions. Using α and β we build
a Markov model, shown in Figure 2, with three states to
calculate the probability that the adversary is detected after
i rounds.

When the adversary first accesses the keyboard, it is either
detected with probability α or not detected, with probability
1−α. In the latter case, its pulse-response biometric must be
close the original user’s. Thus, β is used for the subsequent
rounds. In each later round, the adversary is either detected
with probability β or not detected, with probability 1− β.

To find the combined probability of detection after i rounds,
we construct the state transition matrix P of the Markov
model, as follows:

P =

 0 1− α α
0 1− β β
0 0 1


Each row and each column in P corresponds to a state.

The entry in row q and column r, pqr, is the probability of
transitioning from state q to state r. To find the probabilities
of each state we start with a row vector ρ that represents
the initial probability of being in state 1, 2 and 3. Clearly,
ρ = [1, 0, 0], indicating that we always start in state 1. The
probability of being in each state after one round (or one
transition) can be represented by the inner product ρP .
Probabilities for each subsequent round are determined via
another multiplication by P . The probabilities of being in
each state after i rounds (state transitions), is therefore:

[1, 0, 0] · P i = [0, (1− α)(1− β)i−1, 1− (1− α)(1− β)i−1]

As expected, the probability of being in state 1 (the initial
state) is 0, since the first state transition forces a transition
from the initial state and there is no way back (see Figure 2).
The probability of being in state 2, i.e., to escape detection for
i rounds, is given by the second element of ρ: (1−α)(1−β)i−1.
The probability of detection is thus: 1− (1− α)(1− β)i−1.
α roughly corresponds to the sensitivity of the classifier,

i.e., the true positive rate reported in Section 7. We use 99%
(rather than the 100% found in our experiments) in order to
model the possibility of making a classification mistake at
this point. We do not have enough data to say with absolute
certainty if this is valid for very large populations, but we
continue under the assumption that our data is representative.
β is harder to estimate but we set β = .3 based on numbers
from our experiments in Section 7.4. Using these values
there is a 99.96% chance of detecting the adversary after 10
rounds. This grows to 99.99999997% after 50 rounds. Thus,
not surprisingly, acquisition frequency determines the time
to detect the adversary.

What the very high 99.999+% detection probability is
really saying is that, if you just test enough times, the au-
thentication will eventually fail. It matches very well with
our experiments and it is true even for a legitimate user
(although much less frequently). For this reason we need a
way to handle false negatives.

6.4 Handling False Negatives
False negatives refer to incorrect detection of adversarial

presence. If the biometric is used as an additional layer of
security during the authentication procedure, this can be
managed simply by restarting the login procedure, if the
first attempt fails. However, in a continuous authentication
setting, where a single (and possibly incorrect) detection
might cause the system to lock up, false negatives have to
be handled more thoughtfully.

One approach is to specify a policy that allows a certain
number of detection events every n-th round, without taking
any action. For example, allowing one event every 100 rounds
corresponds to a false negative rate of 1%. Another option is
to integrate a less user-friendly (less transparent) biometric
to deal with ambiguous detection events. For example, after
a few detection events, the user might be asked to confirm
his identity by swiping a thumb on a fingerprint scanner.



Figure 3: Proof-of-concept measurement setup. The
test subject holds two brass electrode handles and
the pulse signal is generated by an Agilent 33220A
(20 MHz) arbitrary waveform generator. The re-
ceiver is an Agilent DSO3062A (60 MHz), 1 GSa/s
digital storage oscilloscope.

Yet another alternative is the gradual ramp up of the
severity of actions taken by the continuous authentication
process, for each successive detection event. For the first
time, displaying a warning might be the most appropriate
action. If detection re-occurs, more and more severe actions
can be taken. It is very unlikely, with a reasonably low
false negative rate, to have multiple consecutive adversary
detection events if the original user is still at the terminal.
Although the false positive rates we achieve are quite low,
they could certainly be improved with a more advanced bio-
metrics capture system. In conjunction with a sensible policy,
our continuous authentication system might be appropriate
for any organization with high security requirements.

7. EXPERIMENTS
Starting out with the hypothesis that the biometric mea-

surement varies depending on the frequency of the signal
transmitted through the human body, we rigorously exper-
imented with various frequencies, voltage levels and wave-
forms. We also assessed several classification algorithms.
Our experiments suggested the choice of 100ns long square
pulses at 1 volt as the input signal (see Figure 4) and Support
Vector Machines (SVM) for classifying samples. Hence, the
name pulse-response biometric. Complete analysis can be
found in the full version of this paper [?].

7.1 Measurement Setup
In order to gather stable and accurate pulse-response mea-

surements we build a data acquisition platform consisting of:
(1) an arbitrary waveform generator, (2) an oscilloscope, (3)
a pair of brass electrode handles, and (4) a desktop computer
to control the apparatus. Figure 3 is a photo of our setup.
We use an Agilent arbitrary waveform generator as the source
of the pulse signal. Flexibility of the waveform generator is
useful during the initial design phase and allows us to gener-
ate the required pulse waveforms in the final classifier. To
measure the pulse waveform after the signal passes through
a test subject we used an Agilent digital storage oscilloscope
which allows storage of the waveform data for later analysis.
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Figure 4: Input and output waveforms. One mea-
surement consists of 4, 000 samples with the rate of
500 MSa/s.

The output of the waveform generator is connected to a brass
handle that the user holds in the left hand. The other brass
handle is connected to the oscilloscope signal input terminal.
When a test subject holds one electrode in each hand the
signal travels from the generator through the body and into
the oscilloscope. To ensure exact triggering, the oscilloscope
is connected to the synchronization output of the waveform
generator.

7.2 Ethics and User Safety
Our experimental prototype setup and its safety and method-

ology have been reviewed and authorized by the Central
University Research Ethics Committee of the University of
Oxford, under approval reference MSD-IDREC-C1-2014-156.

7.3 Biometric Capture Procedure
Each subject followed a specific procedure during the bio-

metric measurement process to ensure that only minimal
noise is introduced into the measured data. In the initial
design phase, each test subject was sampled ten times for
each of the different signal types, for each voltage level and
for various frequencies. Once we selected the pulse signal
with the best results, samples were acquired for two data sets.
The first consisted of 22 samples for each subject, taken in
one measuring session, i.e., at one point in time. The second
included 25 samples per test person, obtained in five different
sessions, over time. This was done to assess stability of the
biometric over time.

The subject population included both males and females
between the ages of 24 and 38. We sampled all test subjects
at different times during the day over the course of several
weeks. We tried to sample subjects in order to end up with
sampling conditions as diverse as possible, for each subject.
The interval between measurement sessions for the same
subject was varied between several hours and several weeks.
This was done in order to try to eliminate any effects of
sampling at a specific time of the day.

Data extracted from the measurement setup is in the form
of a 4, 000 sample time-series describing voltage variation as
seen by the oscilloscope. Figure 4 shows the input pulse sent
by the waveform generator and the pulse measured by the
oscilloscope.

Time series measurements are converted to the frequency
domain using the FFT and the first 100 frequency bins of
the FFT data are used for classification. Operating in the
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Figure 5: True positive rate for each test subject for
the authentication classifier fed with the data sam-
pled over time. Error bars show 95% confidence in-
terval. The x-axis reflects the discrimination thresh-
old for assigning the classifier’s prediction output to
a positive or a negative.

frequency domain has several advantages. First, there is no
need to worry about alignment of the measured data pulses
when computing metrics, such as the euclidean distance
between pulses. Second, it quickly became apparent that
only lower frequency bins carry any distinguishing power.
Higher frequency bins were mainly noise, meaning that the
FFT can be used to perform dimensionality reduction of the
original 4, 000 sample time-series to the vector of 100 FFT
bins.

7.4 Results
We present two different classifiers: one for authentication

and one for identification. The former is based on support
vector machines (SVM) and verifies a 1 : 1 match between
a sample from an unknown person and that of a requested
person. The identification classifier, also based on SVM,
verifies a 1 : n match between a sample of a known person
against all samples in a database. The identification classifier
is of a closed-set variety. Section 2 provides a more detailed
description of open- and closed-set classifiers.

We sub-divide results into: (1) those from a single test-set,
which show the distinguishing power of pulse-response, and
(2) those based on data sampled over time, which assess
stability (permanence) of pulse-response.

7.4.1 Authentication Classifier
Figure 5 shows the distinguishing potential of the authen-

tication classifier applied to a data set collected over several
weeks. Each bar shows the classifier’s performance for dif-
ferent threshold levels, for each of the test subjects. The
threshold is a measure of assurance of correct identification.
If a low false positive rate is acceptable, better sensitivity
can be achieved. The classifier’s performance is measured
using 5-fold cross-validation to ensure statistical robustness.
The figure shows that all subjects are recognized with a very
high probability, as the true positive rate confirms.

Applying the authentication classifier to the single-session
data set yields even better performance figures (see the full
version of this paper [?]). For example, 10% false positives
allow us to achieve sensitivity of almost 100%.

Over time Single data set
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Figure 6: Identification classifier results. The true
positive rate for each test subject is obtained by ap-
plying 5 times stratified 5-fold cross-validation. Er-
ror bars show 95% confidence interval.

in [%]

TP FP TN FN Sensitivity Specificity Accuracy

Authentication

– Single set 2.0 0.0 18.0 0.0 100 100 100

– Over time 4.4 2.4 17.6 0.6 88 88 88

Identification

– Single set 2.0 0.0 18.0 0.0 100 100 100

– Over time 3.4 1.6 18.4 1.6 68 92 87.2

Table 1: Summary of results for authentication and
identification classifiers, averaged over all users. All
performance figures have been assessed on the ba-
sis of test data not involved in any development or
training phase of the classifiers. Values for true/false
positives/negatives are at the equal error rate of
EER = 0.00 for the single data set and EER = 1.12
over time.

7.4.2 Identification Classifier
Identification is a multi-class classification problem. Our

classifier consists of multiple SVMs and follows a one-against-
one approach (aggregation by voting). Due to this increased
complexity a slight drop in performance is expected, in com-
parison to authentication, which is a binary classification
task.

Results obtained from the identification classifier over the
two data sets are shown in Figure 6. Even with increased
complexity, the identification classifier performs very well
on both data sets. The single-session data set contains
ten people and the goal of the classifier is to identify each
person as accurately as possible. There is a slight decrease
in performance for the data set containing samples taken
several weeks apart. The reason for this decrease is that
samples taken far apart are influenced by very different
conditions. There might be physiological changes, such as
weight loss or gain, or there might be differences in the
ambient temperature, humidity, clothing, and a number of
other factors.

Table 1 summarizes results for the two classifiers. Both
classifiers can be tuned by selecting a specific false positive
rate. For example, in a continuous authentication application,
where false negatives are of greater concern, classifiers can



be tuned to a lower false negative rate, by accepting a higher
false positive rate.

8. RELATED WORK
The full version of this paper has a detailed survey of

related work [?]. In this version we provide a brief overview.
Biometrics, as a means of recognizing an individual us-

ing physiological or behavioural traits, has been an active
research area for many years. A comprehensive survey of con-
ventional physiological biometrics can be found in [5]. While
physiological biometrics tend to be relatively stable over time,
they are sensitive to deception attacks, e.g., mock fingers
[1]. In contrast, behavioural biometrics are much harder to
circumvent. However, the performance of behavioral biomet-
ric systems is usually worse and can require re-calibration
due to normal variations in human behaviour. Initial results
on behavioral biometrics were focused on typing and mouse
movements, e.g., [8]. Keystroke dynamics became quite pop-
ular [6], as a means to augment password authentication in
manner similar to our PIN-entry scenario.

The result most closely related to our work is [2], where
bioimpedance is used as a biometric: a wearable wrist sensor
passively recognizes its wearers based on the body’s unique
response to the alternating current of different frequencies.
Experiments in [2] were conducted in a family-sized setting
and show a recognition rate of 90% when measurements
are augmented with hand geometry. The pulse-response
biometric proposed in this paper solves a different problem
but it also uses the body’s response to a signal. It achieves
a recognition rate of 100% when samples are taken in one
session and 88% when samples are taken weeks apart (no
augmentation is required in both cases).

9. CONCLUSION
We proposed a new biometric based on the human body’s

response to an electric square pulse signal. This biometric
can serve an additional authentication mechanism in a PIN
entry system, enhancing security of PIN entry with mini-
mal extra user burden. The same biometric is applicable
to continuous authentication. To this end, we designed a
continuous authentication mechanism on a secure terminal,
which ensures user continuity, i.e., the user who started the
session is the same one who is physically at the terminal
keyboard throughout the session.

Through experiments with a proof-of-concept prototype
we demonstrated that each human body exhibits a unique
response to a signal pulse applied at the palm of one hand,
and measured at the palm of the other. Using the prototype
we could identify users – with high probability – in a matter
of seconds. This identification mechanism integrates well
with other established methods, e.g., PIN entry, to produce
a reliable added security layer, either on a continuous basis
or at login time.
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