
Beyond Secret Handshakes: Affiliation-Hiding

Authenticated Key Exchange

Stanis law Jarecki, Jihye Kim, and Gene Tsudik

Computer Science Department
University of California, Irvine

{stasio, jihyek, gts}@ics.uci.edu

Abstract. Public key based authentication and key exchange protocols are not
usually designed with privacy in mind and thus involve cleartext exchanges of
identities and certificates before actual authentication. In contrast, an Affiliation-
Hiding Authentication Protocol, also called a Secret Handshake, allows two parties
with certificates issued by the same organization to authenticate each other in a
private way. Namely, one party can prove to the other that it has a valid orga-
nizational certificate, yet this proof hides the identity of the issuing organization
unless the other party also has a valid certificate from the same organization.
We consider a very strong notion of Secret Handshakes, namely Affiliation-Hiding
Authenticated Key Exchange protocols (AH-AKE), which guarantee security un-
der arbitrary composition of protocol sessions, including man-in-the-middle at-
tacks. The contribution of our paper is three-fold: First, we extend existing no-
tions of AH-AKE security to Perfect Forward Secrecy (PFS), which guarantees
session security even if its participants are later corrupted or any other sessions
are compromised. Second, in parallel to PFS security, we specify the exact level
of privacy protection, which we call Linkable Affiliation-Hiding (LAH), that an
AH-AKE protocol can provide in the face of player corruptions and session com-
promises. Third, we show an AH-AKE protocol that achieves both PFS and LAH
properties, under the RSA assumption in ROM, at minimal costs of 3 communi-
cation rounds and two (multi)exponentiations per player.

Keywords: secret handshakes, authenticated key exchange, privacy, privacy-
preserving authentication.

1 Introduction

Affiliation-Hiding Authentication protocols, also known as Secret Handshakes (SH) [BDS+03],
allow two members of the same group to authenticate each other in a way that hides
their affiliation from all others. For example, two FBI agents, Alice and Bob, want to dis-
cover and communicate with other agents, but they don’t want to reveal their affiliations
to non-agents. Since the environment is potentially hostile, Alice wants to authenticate
herself to Bob only if Bob is another FBI agent, and vice versa for Bob. Affiliation-hiding
authentication scheme ensures that if only one of the two is a genuine agent, the other
(the impostor) learns nothing about the counterpart’s affiliation. More generally, a non-
member adversary who stages an active attack against group members (even playing a
man in the middle) should not determine whether any of the parties he interacts with is
a member of the targeted group.

Prior Work on Secret Handshakes. Affiliation-hiding authentication schemes were intro-
duced as Secret Handshakes by Balfanz et al. [BDS+03], together with a construction
based on the security of the Bilinear Diffie-Hellman (BDH) problem in a group with
a bilinear map. Subsequently, Castelluccia, et al. [CJT04] constructed a more efficient
scheme secure under the Computational Diffie Hellman (CDH) assumption. (Recently
[D.V05] proposed an RSA-based SH scheme, but the scheme fails to provide affiliation-
hiding.1) However, the schemes of [BDS+03] and [CJT04] are only entity authentication
schemes, and not authenticated key agreements (AKE). Secondly, both these papers con-
sider only a weak notion of (affiliation-hiding) authentication scheme, which looks only
at security of isolated protocol instances. In particular, their model excludes man in the
middle attacks, and indeed their schemes are insecure against them.

This restricted notion of affiliation-hiding authentication schemes was strengthened
to Affiliation-Hiding Authenticated Key Exchange protocols (AH-AKE) in [JKT07] and
[JL07]. In [JKT07] this notion was defined for group key agreement protocols, which
generalize two-party AKE’s. In [JL07] the notion was strengthened to AKE’s which are
both affiliation-hiding and unlinkable (see a more on unlinkability below), but this in
particular implies a two-party affiliation-hiding AKE protocol. The notion of affiliation-
hiding authenticated key exchange strengthens the notion of (affiliation-hiding) entity
authentication considered in [BDS+03,CJT04] in two ways: First, an authenticated key
agreement is a more useful protocol tool because it outputs an authenticated key which
can be used for any secure communication task, including entity authentication. Second,
the AH-AKE notion of [JKT07,JL07] satisfies the standard requirements demanded of
AKE protocols, as formalized by Bellare, Canetti, Krawczyk [MRH01,CK01] and Shoup
[V.S99] (but without perfect forward secrecy). Essentially, each protocol session remains
secure even if all protocol sessions are arbitrarily scheduled by the adversary, and even
if the adversary compromises the key on any other protocol session. In particular, this
implies security against a man in the middle attack. However, both [JKT07] and [JL07]
consider only a simplified notion of privacy for AH-AKE protocols, where the adver-
sary can arbitrarily interleave protocol sessions, but it cannot compromise any of them.
Consequently, it is unclear how any information about the agreed session keys affects
the privacy protection offered by such schemes. Note that in most applications even a
passive adversary learns whether two sessions have succeeded, and produced the same

1 Providing affiliation-privacy in RSA-based protocols requires extra care, because one must
prevent any correlation of protocol messages with the RSA modulus n which is a part of
the public key of a given group. The proposal for an RSA-based secret handshake scheme,
[D.V05], based on the OSBE scheme of [LDB03], fails to achieve affiliation-hiding because it
tries to prevent such correlation by obfuscating only the size of the protocol messages (and
hence, in their intention, the RSA modulus), leaving intact other possibilities of correlation.
In fact, instances of the protocol of [D.V05] can be correlated with the group public key
by computing the Jacobian symbol of several protocol messages: If the protocol instance
involves the given modulus n, the corresponding Jacobian symbols are related in predictable
ways, thus providing a test whether the protocol session involves players affiliated with a
group whose public key is the given modulus n. Our RSA-based protocol fixes that problem
by requiring a safe RSA modulus n, and making sure that all the exchanges messages are
random elements in the group Z∗

n, before applying a simple method that masks the modulus
size.

session key, and indeed this information reveals something about the affiliations of the
two interacting parties, namely that they are the same.

Efficiency-wise, the 2-party AH-AKE protocols implied by the (affiliation-hiding)
group key agreement protocols of [JKT07] take three rounds, involve three exponentia-
tions, and work under either RSA or CDH assumptions in ROM. The 2-party AH-AKE
protocol implied by the affiliation-hiding and unlinkable AKE scheme of [JL07] works only
assuming that the revocation lists of the two interacting players are no farther than some
constant ∆ apart, moreover the protocol requires O(∆ ∗ log n) exponentiations where n
is the upper bound on the number of players affiliated with a single organization.

Several other papers appeared on secret handshakes [TX06,XY04], but they do not
address security and privacy of affiliation-hiding AKE protocols under arbitrary protocol
composition.

Our Contributions: First, We strengthen the AH-AKE security notion of [JKT07,JL07]
to include Perfect Forward Secrecy (PFS), which ensures that each session remains secure
even if its participants are eventually corrupted, revealing all their long-term secrets to
the adversary. Note that since the adversary in the AH-AKE models of [JKT07,JL07]
is not allowed to compromise any group members future corruption of the long-term
secrets of any of them may endanger the secrecy of previous protocol sessions in which
this group member was a participant. We upgrade the AH-AKE security definition to a
more rubust and useful notion by modelling corruptions in the security model.

Second, in parallel to PFS security, we formalize the exact level of privacy protec-
tion, which we call Linkable Affiliation-Hiding (LAH), that an AH-AKE protocol might
provide in the face of player corruptions and session compromises. Intuitively, a linkable
affiliation-hiding AKE protocol can reveal only as much information about affiliations
of the participating parties as is revealed in the following idealized process: The pro-
cess assigns a random “pseudonym” value to each certificate in the system. Denote a
value assigned to certificate certi

(j) which user Pi holds for group Gj as idi,j . Every
time player Pi runs an AH-AKE protocol using the public key of Gj , the session reveals
the pseudonym idi,j . Every time an adversary compromises a session, it learns only if
this session failed or succeeded, and consequently it learns whether the pseudonyms idi,j

and idi′,j′ of the two players participating in this session correspond to the same group
(and thus it learns whether Pi and Pj have a shared affiliation), because otherwise these
sessions are not supposed to succeed. Finally, whenever some player Pi is corrupted, the
process reveals, for each pseudonym idi,j of player Pi, which group Gj this pseudonym
corresponds to. We stress that the AH-AKE privacy models of [JKT07,JL07] modelled
only the information which the adversary learns from protocol sessions themselves, and
not the information learned from subsequent compromises of session keys and/or cor-
ruptions of their participants.

Third, we show an optimal-cost AH-AKE protocol, which satisfies our strengthened
security definitions, PFS and LAH, in the Random Oracle Model (ROM) under the RSA
assumption. The protocol takes 3 rounds, and it is implicitly authenticated versions of
the Diffie-Hellman Key Exchange protocol. The cost of the protocol appears minimal
because its computation costs are very similar to the cost of the unauthenticated Diffie-
Hellman key exchange, namely one (off-line) exponentiation and one (on-line) multi-

exponentiation per participant. Moreover, three rounds of interaction again matches the
round complexity of non-private PFS AKE protocols.

Linkability Disclaimer. As the name suggests, the privacy guaranteed by our notion of
linkable affiliation-hiding does not include unlinkability, and in this aspect the new notion
is similar to the (weaker) notions of affiliation-hiding considered in [BDS+03,CJT04,JKT07].
Indeed, since the ideal process we use to define the LAH privacy property reveals the
same pseudonym every time a player uses the same certificate in an AH-AKE session,
the adversary can potentially link two instances of the same player. Note, however, that
that these pseudonyms do not leak the affiliation of this player, except if a player is
corrupted (which can reveal a link between a pseudonym and a group) or when a session
is compromised (which can reveal that two pseudonyms correspond to the same group).
We stress that even though unlinkable and affiliation-hiding schemes exist [TX06,JL07],
they have severe limitations (synchronization in revocation lists, expensive operation),
while affiliation-hiding protocols, as we show here, can be achieved at seemingly minimal
expense, and thus it is important to understand the exact privacy guarantees offered by
the “merely” affiliation-hiding (but linkable) authentication protocols.

Moreover, it is worth pointing out that while our security and privacy models assume
that every user has only a single certificate from any group, in which case any two
instances involving the same group member are linkable, there are various heuristics
which can ameliorate this issue in practice. For example, heuristic unlinkability can be
achieved by users rotating through a small set of certificates, by setting strict time limits
on usage of each certificate, or by associating different certificates with different locations
or aspects of user’s activity.

Organization. In Section 2 we define AH-AKE protocols with perfect-forward secrecy
(PFS) and linkable affiliation-hiding (LAH), and show that linkable affiliation-hiding
implies perfect forward secrecy. In section 3 we show an AH-AKE which satisfies the
LAH property (and hence the PFS property), based on the RSA assumption and the
proof of security of the protocol is given in detail.

2 Affiliation-Hiding Authenticated Key Exchange Protocols

Entities. Our AH-AKE model is based on the existing models for standard (i.e. non
affiliation-hiding) authenticated key exchange protocols, e.g. [BPR00,CK01]. The main
difference is that the standard model assumes a global PKI where each entity has a
private/public key-pair and a certificate issued by a CA which is part of the PKI. The PKI
involves a certification hierarchy, where the integrity of the association between entities
and their public keys is vouched by a chain of certificates all leading to some commonly
trusted CA-s. In this model, it is assumed that certificates (which in many applications
contain information about owners’ affiliation) are publicly available. In contrast, AH-
AKE protocols aim to protect affiliation privacy of the participants and certificates are
kept private. Another distinctive feature of our model is its “flat” certification structure,
i.e., certification hierarchies and chains are not allowed. There are only CA-s and entities
certified by CA-s; there are no intermediate CA-s and no delegation of certificates.

An AH-AKE scheme operates in an environment that includes a set of users U and a
set of groups G. Each group is administered by a CA responsible for creating the group,
admitting entities as members and revoking membership. We assume upper bounds m
and n, respectively, on the total number of groups and the number of members in any
given group, i.e., |G| ≤ m and |U| ≤ n. We assume that each user can be a member of
many groups. We denote the fact that user U ∈ U is a member of group G ∈ G as U≺ G.

AH-AKE Protocol. The main part of an AH-AKE scheme is an AH-AKE protocol,
which is executed by any pair of users. Player Ui, participating in an instance of the AH-
AKE protocol executes the protocol instructions on inputs a public key of some group
G ∈ G s.t. Ui≺ G, and Ui’s certificate of membership in G. The purpose of the AH-AKE
protocol is for a pair of players to establish an authenticated shared secret key as long as
(1) both run the protocol on the public key of the same group G, and (2) it holds that
Ui≺ G and Uj≺ G.

To avoid any misunderstanding, we stress that such protocol does not in general
imply an efficient solution for an (affiliation-hiding) group discovery problem, where two
each player start a protocol on a set of its certificates, and the protocol succeeds, for
example, as long as the sets contributed by the two players have a non-empty union.
In contrast, our AH-AKE schemes are most practical in scenarios where each user is a
member of at most one group. However, we stress that if a user is a member of many
groups, this would affect execution efficiency, but it would not affect the security and
the affiliation-hiding of our schemes. While the protocols we give are efficient only if each
player is always a member of at most a few groups, the security definitions stated below
without loss of generality assume that each user is a member of every group.

Public Information and Network Assumptions. We assume that all groups G ∈
G are publicly known. Their CA public keys and certificate revocation lists (CRL-s)
maintained by CA-s are publicly accessible. Before any group can be created, a common
security parameter must be publicly chosen, and a public Setup procedure is executed on
that parameter. The Setup procedure creates common cryptographic parameters which
are used as inputs in all subsequent protocols. We stress that the Setup procedure does
not need to be executed by a trusted authority: It can be executed by anyone, for example
by one of the CAs, and everyone can verify the validity of its outputs.

We assume that communication between users and CA-s, i.e. the certificate issuance
process and the CRL retrieval, are conducted over anonymous and authenticated chan-
nels. In practice, a user might communicate with the CA, e.g., while retrieving the most
recent CRL for its group, over an anonymous channel such as TOR [DMS04]. Alter-
natively, the CRL-s of all groups can be combined and stored at some highly-available
site where they can be either retrieved in bulk (if small) or via a Private Information
Retrieval (PIR) protocol, e.g., [CKGS98].

We assume that all communication within the AH-AKE protocol takes place over an
unauthenticated channel. In our model, the adversary is assumed to have full control of
the underlying network: it sees the messages sent by each participant in a given round,
and decides which messages will be delivered to each participant in that round. The
adversary can delete, modify or substitute any message and it can choose to deliver
different messages to different participants.

AH-AKE Syntax. We define an AH-AKE scheme as a collection of the following
algorithms:

– Setup: on input of security parameter κ, it generates public parameters params.
– KGen: executed by the group CA, on input params, it outputs the group public key
PK and the corresponding secret key SK for this group, and an empty certificate
revocation list CRL. We denote the group corresponding to the public key PK as
Group(PK).

– Add: executed by the CA of group G, on input SK and U ∈ U , it adds U to G by
generating a certificate for U , denoted cert. If cert is issued under a public key PK,
we say that cert ∈ Certs(PK).

– Revoke: executed by the group CA, on input U ∈ U , it retrieves the corresponding
certificate cert issued for U , and revokes it by adding a new entry which uniquely
identifies this certificate to the group CRL. If cert is revoked in list CRL, we say that
cert ∈ RevokedCerts(CRL).

– Handshake: This is an interactive protocol executed by two users, e.g. Ui and Uj . The
inputs of user Ui is a tuple (certi,PKi, CRLi, rolei), where PKi is the public key of
the group with which Ui wants to establish an authenticated connection, CRLi is
Ui’s current CRL for this group, certi is Ui’s certificate in that group, assumed to be
globally unique (see the exact assumption below), and rolei ∈ {init, resp}. The inputs
of user Uj is the corresponding tuple (certj ,PKj , CRLj , sj , rolej). Each party either
rejects, or outputs an authenticated secret key, respectively, Ki or Kj .

Instances and Session IDs. In line with prior work on AKE’s, e.g. [BPR00,CK01], our
model allows for multiple executions of the AH-AKE protocol scheduled in an arbitrary
way. Namely, a player Ui ∈ U can have many instances, involved in distinct concurrent
executions of AH-AKE protocol. We denote s-th instance of player Ui as Πs

i . Each
player instance can either reject or accept and output a key. We say that an instance Π s

U

runs a protocol session, and we use player instance and protocol session interchangeably,
denoting both as Πs

U . When referring to a specific user Ui we use Πs
i as a short-hand

for Πs
Ui

. Each instance Πs
i keeps a state variable, sids

i called session id, which is always
set in our protocols to a concatenation of all public inputs and all the messages sent and
received by instance Πs

i .

Matching Sessions, Partnered Sessions, and the Correctness Property of AH-

AKEs. The intended execution of the secret handshake scheme is to allow two players
running two matching instances to establish an authenticated (and secret) key K, where
two instances Πs

i and Πt
j care called matching if the respective inputs used on these

sessions satisfy the following conditions: PKs
i = PKt

j , certsi ∈ Group(PKs
i), certtj ∈

Group(PKt
j), certs

i 6∈ RevokedCerts(CRLs
j), certtj 6∈ RevokedCerts(CRLt

i), and roles
i 6=

rolet
j . We call two protocol instances partnered to denote instances which communicate

without adversary’s interference. Namely, we say that two instances Π s
i and Πs

j are

partnered if sids
i = sidt

j , because this condition implies a complete agreement among
these two instances with regard to the set of messages sent and delivered between them.

Finally, we say that an AH-AKE scheme is correct if, assuming that all keys, certifi-
cates and CRL-s are generated by following the Setup, KGen, Add and Revoke procedures,

the following holds that all matching and partnered pairs ofinstances Πs
i , Πt

j output the
same key Ks

i = Kt
j .

Security with Perfect Forward Secrecy. We model the security of an AH-AKE
scheme similarly to the way security has been defined for general AKE schemes (e.g.
[BPR00,CK01]). Namely, we define security via a game between a challenger C playing
the part of a network of m groups and n users, and an adversary A who starts any
number of sessions between these users, and who is in complete control of the network
over which they communicate, who is allowed to reveal any number of agreed-upon keys
and corrupt any number of players, and yet he cannot distinguish from random a key of
any un-revealed session of a currently uncorrupted player. This is modelled in a standard
way, by having an adversary test some session executed by a currently uncorrupted player,
which also has not been revealed before (also, the adversary is barred from revealing a
session which is partnered with the tested session), at which point a random coin-toss b
determines if the adversary sees a key computed on this session or a random value of the
same length. The attacker can continue starting and revealing sessions and corrupting
players (including the players on the tested session), and finally he outputs his guess b′

as to bit b, i.e. as to whether the tested key was real or random.

Formally, security is defined via an interaction of an adversarial algorithm A and
a challenger C on common inputs (κ, n, m). The interaction starts with C generating
params via Setup(κ), and initializing m groups G1, ..., Gm, by running the KGen(params)
algorithm m times. C initializes all members in these groups, by running the Add(SKj)
algorithm, for each SKj , j = 1, ..., m, for n times. This way, C generates m certificates
for every U ∈ U , thus making every user a member of every group. The adversary A gets
all generated public keys PK1, ...,PKm. It then chooses any subset Rev ⊆ U of initially
corrupted players and gets the set of their certificates {certi(j) | Ui ∈ Rev, j ∈ {1, ..., m}}.
For each group G in G, the challenger runs the Revoke algorithm to revoke all corrupted
members U ∈ Rev, and outputs the resulting CRL-s for each group, i.e., CRL1, ..., CRLm.

After this initialization, A schedules any number of Handshake protocols, arbitrarily
manipulates their messages, requests the keys on any number of the (accepting) sessions,
and corrupts any number of additional players, all of which can be modelled by A issuing
any number of the commands listed below. Finally, A stops and outputs a single bit b′.
The commands the adversary can issue, and the way the challenger C responds to them,
are listed below. In all commands we assume that U ∈ U \ Rev.

– Start(U, G, s, role): If U ∈ U \ Rev and G ∈ G and s was not used already in another
Start query on the same user, the challenger retrieves key PK for group G, certificate
cert issued to player U for group G, and the CRL corresponding to this group,
initiates instance Πs

U , and follows the the Handshake protocol on behalf of user U
on inputs (cert,PK, CRL, role), forwarding any message generated by U to A. The
challenger keeps the state of all initiated instances Πs

U . We denote the group upon
which Πs

U is initiated as Group(Πs
U). If Πs

U is triggered on G∗ then Group(Πs
U) = G∗.

– Send(U, s,M): If instance Πs
U has been initiated and is waiting for a message, C

delivers M on this instance, and forwards to A any message U generates in response.
If U outputs a key on this session, C stores it with the session state.

– Reveal(U, s): If instance Πs
U has been initiated and has output a session key K, C

delivers this key to A. If the session has either not completed yet or has rejected,
C sends a null value to A. The challenger does not respond if A queries Reveal on
instance Πs

U for which A previously issued a Test query (see below) or s.t. instance

Πs
U matches and is partnered with some instance Πs′

U ′ , s′ = s, for which A has issued
a Test query.

– Test(U, s): This query is allowed only once, at any time during the adversary’s execu-
tion. If Πs

U is fresh (see below) has output some key K, then C responds depending
on its private input bit b. If b = 1 then C sends to A key K established on this
session. If b = 0 then C sends to A a random κ-bit long value K ′ instead of K. If the
session does not exist, has failed, or is still active, the challenger ignores this Test

command.
– Corrupt(Ui): This query models adaptive corruptions and is essential for modelling

perfect forward secrecy of AH-AKEs. The challenger adds Ui to the revocation list

Rev, and replies with all long-term secrets cert
(1)
i , ..., cert

(m)
i of user. In particular, the

adversary can query Corrupt(U) even if it has previously issued Test(U, s) for some
s.2

Freshness. Following [BPR00], we define a notion of freshness appropriate for the goal
of forward secrecy. An instance Πs

U is fresh unless one the following is true, for any session
Πs

U ′ which matches and is partnered with Πs
U : (1) The adversary has queried Reveal(U, s)

or Reveal(U ′, s); or (2) The adversary has queried Corrupt(U) or Corrupt(U ′).

Definition 1. Denote A’s output in the above interaction with C on bit b and (κ, n, m)
as AC(b)(κ, n, m). Define the adversary’s advantage as follows (the probability goes over
the randomness of A and C):

|Adv
sec
A (κ, n, m) = |Pr[1← AC(1)(κ, n, m)]− Pr[1← AC(0)(κ, n, m)]|

We call an AH-AKE scheme secure with perfect forward secrecy, or PFS, if for any
efficient probabilistic adversary A, for parameters n an m polynomially related to κ,
Adv

sec
A (κ, n, m) is negligible in κ.

Linkable Affiliation-Hiding. We define the affiliation-hiding property, similarly as
in the security definition, using a game between an adversary and a challenger Cah.
However, the adversary’s goal in the affiliation-hiding game is not to violate semantic
security of some session key but to learn more about the participants’ affiliation by
corrupting players, and by learning whether certain sessions were successful. Note that
by revealing whether two partnered sessions were successful the adversary learns that
the two instances match, and hence that the two players must belong to the same group.
We model the property of the attacker’s inability to learn more than what he is entitled
to, by comparing two executions of the adversary: One where the challenger follows the

2 On the other hand, C does refuse the Test(U, s) query if U is corrupted. (Compare with the
notion of freshness.) This reflects the simple fact that we can protect security of a protocol
run even if one or both of the two players involved is corrupted in the future, but it makes
no sense to ask for security of sessions in which one of the participants is already corrupted.

protocols faithfully on behalf of all honest participants, and the other where the adversary
interacts with a simulator, instead of the real users. The simulator attempts to follow
adversary’s instructions, except that it is never told the groups for which the (scheduled
by the adversary) Handshake protocol instances are executed, i.e., if the adversary issues
a Start(U, G, s, role) query, the simulator gets only an identifier id which is uniquely but
arbitrarily assigned to the pair (U, G) ∈ U × G.

Consequently, these inputs are also the only thing that the adversary can possibly
learn from the messages produced by this simulator. In other words, the simulated pro-
tocol messages can reveal only whether or not two sessions involve the same (user,group)
pair. However, the adversary does not learn which group, nor can he decide if two in-
stances of two different users belong to the same group. Note that we allow the adversary
to be able to link instances which involve the same (user,group) pair because the sim-
ulator gets the same id for such instances. Indeed, all AH-AKE schemes we propose in
this paper are linkable in this sense.

Formally, we model the affiliation-hiding property using an interactive algorithm
SIM, function F indexed by the public parameters params of the scheme, and the
following game between adversary A and challenger Cah, on inputs κ, n, m: Cah runs
Setup(κ) → params, KGen(params) → (PKj ,SKj), for j ∈ [1..m], and Add(SKj) →
certi

(j), for (i, j) ∈ [1..n] × [1..m], and gives {PKj}j=1..m to A. After this initializa-
tion, A can issue any number of queries of the form Start(U, G, i, role), Send(U, s,M),
Reveal(U, s), and Corrupt(U) to Cah, as in the security game (except there’s no Test

query). The challenger Cah runs on an additional input of bit b, and it responds to A’s
commands depending on whether b = 0 or 1. If b = 1, Cah responds to all A’s commands
by following the corresponding protocol on behalf of the honest users. If b = 0 then Cah

replies to A’s commands using an ideal affiliation-hiding process and a simulator, an
interactive machine SIM running on input params, as follows:

– (1) On Start and Send, Cah replies with messages produced by the simulator SIM,
which instead of Start(Ui, Gj , s, role) and Send(Ui, s,M) gets inputsStart(idj

i , s, role)

and Send(idj
i , s,M), respectively, where idj

i = Fparams(certi
(j)).

– (2) On Corrupt(Ui), Cah gives toA all the long-term secrets of player Ui, i.e. {cert(j)i }j∈[1..m].

– (3) On Reveal(Ui, s), Cah returns value K̄s
i chosen as follows. If (a) Πs

i is matched
and partnered with some session Π t

j (note that Cah knows this), (b) Πs
i has received

all messages to complete the protocol, (c) all the messages between Π s
i and Πt

j up

to this point were correctly exchanged, and (d) K̄s
i is not yet set, then Cah picks K̄s

i

at random in {0, 1}κ, sets K̄t
j ← K̄s

i , and returns K̄s
i to A. If (a),(b),(c) holds but

not (d), i.e. if K̄s
i is already set then Cah returns this K̄s

i to A. In every other case
Cah returns K̄s

i =⊥.

Remark. Note that if an adversary A exchanges all messages between Π s
i and Πt

j , and
then reveals whether or not Πs

i established a key, then A learns whether or not sessions
Πs

i and Πt
i are matching, and hence learns that these sessions relate to the same group.

This is unavoidable, since a session is supposed to be successful only if it is partnered with
a matching one, but this interaction implies that this is the only information divulged
by revealing a session key. In particular, the adversary does not learn which group these
two protocol instances share.

Definition 2. Denote the output of adversary A in the above interaction with Cah on
inputs (κ, n, m), Cah’s private input b, and Cah’s access to procedure SIM and function

F , as AC
ah(b),SIM,F (κ, n, m). Define A’s advantage as follows (where the probabilities

are taken over the randomness of A Cah, and SIM):

Adv
ah

A,SIM,F (κ, n, m) = |Pr[1← AC
ah(1),SIM,F (κ, n, m)−Pr[1← AC

ah(0),SIM,F (κ, n, m)|

We call an AH-AKE scheme linkable affiliation-hiding, or LAH, if there exists a
family of functions F and an efficient probabilistic algorithm SIM s.t.

1. For any efficient probabilistic algorithm A and any parameters n an m polynomially
related to κ, the adversarial advantage Adv

ah
A,SIM,F (κ, n, m) is a negligible function

of κ.
2. There is a negligible function ε s.t. for any params output by Setup(κ), and any

two keys pairs (PK0,SK0) and (PK1,SK1) output by KGen(params), the statis-
tical distance between distribution D0 and D1 is bounded by ε(κ), where Db =
{F (cert) | cert← Add(SKb)}.

Remark. Intuitively, requirement (2) implies that F (certi
(j)) reveals no information

about the group Gj that issued certi
(j). Therefore, by requirement (1), the only informa-

tion that A learns when attacking a LAH scheme, is a “pseudonym” idi,j = F (certi
(j))

which corresponds to user Ui and group Gj , but which does not leak what group this
pseudonym corresponds to.

By a simple hybrid argument we can show that LAH implies PFS. Intuitively, this
is because the affiliation-hiding game compares the view of the real execution with a
“fully-random” view, where all messages and keys are chosen by the challenger and a
simulator, whereas the security game compares the real view with a view modified so
that only the key of the tested session is chosen at random. It’s not difficult to see that a
significant difference between the views in the second pair implies a significant difference
between the views in the first pair. The exact security in this reduction decreases by a
small constant factor.

Lemma 1. If AH-AKE scheme is linkable affiliation-hiding then it is secure with perfect
forward secrecy.

Proof. Let A be an (adaptive) adversary which attacks the security game. Denote by
p-scA,b the probability that A outputs 1 on the interaction defined as in the security
game with the challenger C running on but b. The construction of an adaptive adversary
A′ which attacks the (PFS-enabled) affiliation-hiding game is trivial: A′ forwards the
messages from its challenger Cah to A, and it similarly forwards all the commands from
A to Cah, except the Test(U, s) command for which A′ issues Reveal(U, s) to Cah, and
returns Cah’s response to A. When A stops and outputs a bit b′, A′ returns the same bit.

Let p-scb denote the probability that A outputs 1 on the interaction defined as in
the security game with the challenger C(b), and p-ahb be the probability that A′ outputs
1 when interacting with Cah(b). Note that p-ah1 = p-sc1 because in both cases this
is the interaction of A with the real protocol. Let p ≈ p′ denote that |p − p′| is a
negligible function of the security parameter. Then by the assumption that the scheme

is linkable affiliation-hiding, p-ah0 ≈ p-ah1 = p-sc1. We will argue that p-sc0 ≈ p-sc1

as well. Let p(b1, b2, b3) denote the probability A outputs 1 on interaction with the
challenger which computes all messages and keys as in the real protocol, except that
(1) if b1 = 0 then all players’ messages are computed as Cah on b = 0, i.e. via the
simulator SIM, and (2) if b2 = 0 then all the revealed keys are chosen independently
at random for every session (unless Πs

i matches some partnered session Πs′

i′ , in which

case Ks
i = Ks′

i′), again as in the procedure for Cah on b = 0, and (3) if b3 = 0 then
also the key of the tested session is chosen at random. Using this notation we have
p-ah0 = p(0, 0, 0), p-sc0 = p(1, 1, 0), p-ah1 = p-sc1 = p(1, 1, 1). Our assumption is that
p-ah0 = p(0, 0, 0) ≈ p(1, 1, 1) = p-ah1, and so if we show that p(0, 0, 0) ≈ p(1, 1, 0), this
will imply that p-sc0 = p(1, 1, 0) ≈ p(1, 1, 1) = p-sc1.

Now, if p(0, 0, 0) 6≈ p(1, 0, 0) then by a trivial reduction which substitutes the revealed
and tested session keys with independently chosen random keys (except for partnered
matching sessions, as above), it would follow that p(0, 0, 0) 6≈ p(1, 1, 1). By contradiction,
we get p(0, 0, 0) ≈ p(1, 0, 0). By a similar argument on just the revealed keys, if p(0, 0, 0) 6≈
p(1, 1, 0) then we’d have p(0, 0, 0) 6≈ p(1, 0, 0), and hence it follows that p(0, 0, 0) ≈
p(1, 1, 0) as needed.

3 Authenticated Key Agreement with PFS and LAH based on

the RSA Assumption

– Setup: Given security parameter κ, the Set-up defines another security parameter
κ′ (polynomial in κ), s.t. the RSA assumption holds on (2κ′)-long composites with
security parameter κ. The setup also defines hash function H1 : {0, 1}∗ → {0, 1}κ.

– KGen: Generate a 2κ′-bit safe RSA modulus n = pq, where p = 2p′ + 1, q = 2q′ + 1,
and p, q, p′, q′ are primes. Pick a random element g s.t. g generates a maximum
subgroup in Z∗

n, i.e. ord(g) = 2p′q′, and s.t. −1 /∈ 〈g〉. (This holds for about half of
the elements in Z∗

n, and it is easily tested.) Note that in this case Z∗
n ≡ 〈−1〉 × 〈g〉.

Therefore, in particular, if x ← Z2p′q′ and b ← {0, 1} then (−1)bgx is distributed
uniformly in Z∗

n. RSA exponents (e, d) are chosen in the standard way, as a small
prime e and d = e−1 (mod φ(n)). The secret key is (p, q, d) and public key is (n, g, e).
Key generation also fixes a hash function Hn : {0, 1}∗ → Zn, specific to the group
modulus n.3

– Add: To add user U to the group, the manager picks a random string id ← {0, 1}κ
and computes a (full-domain hash) RSA signature on id, σ = hd (mod n), where
h = Hn(id). U ’s certificate is cert = (id, σ).

– Revoke: To remove user U from the group, the manager appends string id to the
group CRL, where (σ, id) is U ’s certificate in this group.

– Handshake: This is an AKE protocol for users UA and UB of the honest players, where
player UA’s inputs a tuple (certA,PKA = (nA, eA, gA), CRLA, init) and UB ’s inputs
(certB ,PKB = (nB , eB, gB), CRLB , resp) s.t. certA = (idA, σA) is UA’s certificate for

3 Selecting separate hash function Hn for every group is done purely for notational convenience.
A family of hash functions Hn : {0, 1}∗ → Zn s.t. each Hn is statistically close to a random
function with range Zn, can be easily implemented in the random oracle model with a single
hash function with range 22κ′+κ. E.g., Hn(m) = H(n, m) mod n.

the public key PKA = (nA, eA, gA), i.e. certA ∈ Certs(PKA), CRLA is the (hopefully
recent) CRL for group Group(nA, eA, gA), and similarly certB = (idB , σB), PKB =
(nB , eB , gB), and CRLB are defined for UB . In the protocol, player UA picks bA ←
{0, 1} and xA ← ZnA

, and computes θ′A = (−1)bAσAgxA modnA and θA = θ′A +

kAnA where kA ∈ [0, ..., b22κ′+κ/nAc]. 4 UB follows the same process to compute θB

with random bB and xB . The protocol runs as in Figure 1 below.

UA on inputs UB on inputs
(certA = (idA, σA), (certB = (idB, σB),
PKA = (nA, gA, eA), PKB = (nB , gB, eB),
CRLA, init) CRLB, resp)

bA
$
← {0, 1}, xA

$
← ZnA bB

$
← {0, 1}, xB

$
← ZnB

θ′

A = (−1)bAσA(gA)xA modnA θ′

B = (−1)bB σB(gB)xB modnB

kA
$
← [0, ..., b22κ′+κ/nAc] kB

$
← [0, ..., b22κ′+κ/nBc]

θA = θ′

A + nAkA θB = θ′

B + nBkB

MA=(θA,idA)
//

MB=(θB ,idB)
oo

If idB is not on CRLA If idA is not on CRLB

then set vA = H1(rA, sidA, init) then set vB = H1(rB, sidB, resp)
where rA = (zB)xA mod nA, where rB = (zA)xB mod nB ,

zB = (θe
Bh−1

B)2 mod nA, zA = (θe
Ah−1

A)2 mod nB ,
hB = H(idB), hA = H(idA),
sidA = [(nA, gA, eA)||MA||MB]. sidB = [(nB , gB, eB)||MA||MB].

Otherwise, pick vA
$
← {0, 1}2κ′+κ Otherwise, pick vB

$
← {0, 1}2κ′+κ

and set reject = T . and set reject = T .
vB=H1(rB ,sidB ,resp)

oo

vA=H1(rA,sidA,init)
//

If vB = H1(rA, sidA, resp) If vA = H1(rB , sidB , init)
then output KA = H1(rA, sidA). then output KB = H1(rB, sidB).

Otherwise set reject = T . Otherwise set reject = T .

Fig. 1. AH-AKE protocol with LAH and PFS based on RSA assumption

To check that this scheme is correct, observe that because zA = ((θA)e(hA)−1)2 =
g2exA and zB = ((θB)e(hB)−1)2 = g2exB . Therefore both rA = (zB)xA = g2exAxB and

4 Note that if θ′

A is uniform in ZnA then the distribution of θA = θ′

A +kAnA, where kA is picked
as above, is statistically close to U22κ′+κ . There’s an alternative way to hide the range of θA,

which does not take the κ bandwidth overhead, is to repeat picking θ′

A until θ′

A ∈ {0, 1}2κ′
−1.

However, the expected running time of such procedure is at most twice that of our procedure,
and this alternative procedure could also be subject to timing attacks. Note that the overhead
of κ bits we incur is small compared to |θ′

A| = |nA| = 2κ′.

rB = (zA)xB = g2exAxB . We show that the scheme is linkable affiliation hiding (LAH),
and, hence, it is also secure with perfect forward secrecy (PFS). Note that the exact
security shown by the reduction below is tight, and the exact bounds can be easily
derived from the proof.

Definition 3. Let S-RSA-IG(κ) be an algorithm that outputs so-called safe RSA in-
stances, i.e. pairs (n, e) where n = pq, e is a small prime that satisfies gcd(e, φ(n)) = 1,
and p, q are randomly generated κ-bit primes subject to the constraint that p = 2p′ + 1,
q = 2q′ + 1 for prime p′, q′, p′ 6= q′.

We say that the RSA problem is (ε, t)-hard on 2κ-bit safe RSA moduli, if for every
algorithm A that runs in time t we have

Pr[(n, e)← S-RSA-IG(κ), g ← Z
∗
n : A(n, e, g) = z s.t. ze = g (mod n)] ≤ ε.

Theorem 1. Under the RSA assumption on safe RSA moduli, the above AH-AKE
scheme is secure with Perfect Forward Secrecy and with Linkable Affiliation-Hiding, in
the Random Oracle Model.

Proof. By lemma 1, we only need to argue LAH, i.e. we need to show that A’s view of the
interaction with the challenger Cah on bit b = 1 is indistinguishable from the view of the
interaction with Cah on bit b = 0. Let Game0 represent a real execution, i.e., interaction of
A with challenger Cah on bit b = 1, while Game2 represents a simulation, i.e., interaction
of A with challenger Cah on bit b = 0. Thus, our goal is to demonstrate that A’s view
in Game0 is indistinguishable from A’s view in Game2. Consider Game1, which is like
Game0, except that it stops if there is ever a collision in sid values of any two instances.
Since θi sent by Ui is indistinguishable from (2κ′ + κ)-bit string (see below), probability
that there is a collision in polynomially many executions is negligible. Therefore Game0
and Game1 are indistinguishable.

Simulation. To describe Game2, i.e. the simulation, we need to define the simulator
SIM and a function family F . Note that params = (κ, κ′) and that certificates cert are
pairs of the form (id, σ) where id ∈ {0, 1}κ. We will set F(κ,κ′)(cert) = id. Note that
this function satisfies requirement (2) in the LAH definition because the id part of any
certificate cert is a random κ-bit string independent of the group’s key. Now we describe
the simulator SIM, and at the same time we recall how Cah interacts with A using this
simulator and function F . Note that the simulator is only involved in the Start and Send

queries. Since the protocols of the initiator and the responder are symmetric, below we
only describe the initiator’s part.

– First Cah initializes all the groups and all the users in these groups using Setup, KGen,
and Add algorithms as in the real protocol, and gives all the group public keys to A.

– On Start(Ui, Gj , s, init) from A, Cah responds with the output of SIM(idi,j , s, init),
where idi,j = F(κ,κ′)(certi

(j)). On inputs SIM(idi,j , s, init), SIM returns (θs
i , idi,j)

where θs
i

$← {0, 1}2κ′+κ.
– On Send(Ui, s,M) from A, Cah responds with the output of SIM(idi,j , s) where

idi,j is the id corresponding to Πs
i . The simulator, regardless ofM, returns vs

i where

vs
i

$← {0, 1}2κ′+κ.

– On Corrupt(Ui), Cah gives toA all the long-term secrets of player Ui, i.e. set {cert(j)i }j∈[1..m].

– On Reveal(Ui, s), Cah returns value K̄s
i chosen as described in the LAH definition.

Briefly, it’s a random κ-bit string if the sessions are matched, partnered, and all
messages were exchanged up to this point, and otherwise it’s a ⊥ symbol. The only
exception is that K̄t

j = K̄s
i on the two matched sessions on which all messages were

exchanged properly.

Let HQuery be an event thatA ever queries H1 on arguments (rs
i , sid

s
i), or (rs

i , sid
s
i , init),

or (rs
i , sid

s
i , resp), for any Πs

i that A starts, where rs
i is defined via the combination of the

message (θs
i , idi, s) which instance Πs

i of an honest player Ui sent on that session, and

message M = (θ̂, îd, s) which A sent to Πs
i in his Send(Ui, s, M) command, as follows:

rs
i = (ẑ)xs

i mod n where ẑ = g2ex̂ = (θ̂)2e(ĥ)−2 and zs
i = g2exs

i = (θs
i)2e(hi)

−2 (1)

where ĥ = Hn(îd) and hi = Hn(idi). In other words, HQuery is an event that A computes
(and enters into hash function H1) the key-material rs

i for any instance Πs
i run by an

honest player.

Claim 1. Unless HQuery happens, A’s view of the interaction with the challenger in
Game1 is indistinguishable from the view of the interaction with the challenger in Game2.

Note that if HQuery does not happen then all the challenge/response values vs
i and

keys Ks
i that A gets in Game1 are distributed the same as in the real protocol, i.e. as

independently chosen random κ-bit strings. Moreover, all the messages (θs
i , idi) the ad-

versary sees are also statistically close to the corresponding values in the real execution.
The reason is that in both cases, the simulation and the execution, each value θs

i is dis-
tributed statistically close to a uniform bit-string of length 2κ′ +κ, and it is independent
of idi (and σi). Note that since Z∗

n ≡ 〈−1〉×〈g〉 value θ′ = (−1)bgxσ (mod n) is random
in Z∗

n if b is a random bit and if x is random in Z2p′q′ . Since n− (4p′q′) is on the order
of
√

n, which is negligible compared to n, the distribution of θ′ for x chosen in Zn is still
statistically close to uniform in Z∗

n. Similarly, since there are only O(
√

n) elements in
Zn/Z∗

n, this random variable is also statistically close to uniform in Zn. Finally, for any

s > n2κ, value θ = θ′ + k ∗ n (over integers) for random θ′ in Zn and k
$← [0, ..., bs/nc],

is statistically indistinguishable from a random value in Zs.

Claim 2. If event HQuery happens with non-negligible probability on input (rs
i , sid

s
i),

or (rs
i , sid

s
i , init), or (rs

i , sid
s
i , resp), for any Πs

i , then A can be used to break the RSA
assumption.

We divide the adversary into three types classes, depending on the message M =
(îd, θ̂) which is involved in computation of rs

i . Type I adversary makes HQuery s.t. the

related îd and θ̂ are rerouted from another honest player’s instance. Type II adversary
makes HQuery s.t. the related îd is created by the adversary. Type III adversary makes
HQuery s.t. the related îd is rerouted but θ̂j is created by the adversary.

We describe each reduction algorithm using a modified challenger algorithm called
F-Cah. Let G∗ be the group s.t. the probability that A queries H1 on rs

i corresponding
to Πs

i where Group(Πs
i) = G∗, is at least 1/m. For each type of adversaries, F-Cah takes

an RSA public key (n, e) of one of the groups denoted by G∗ as an input and picks the
private/public keys for all the remaining groups. The F-Cah issues users’ certificates for
all groups except of G∗ correctly as in the real execution. However, for users in G∗ the
modified challenger will need to simulate the signatures on each idi by setting Hn(idi)
as ae mod n for some random value a. This way F-Cah can present the certificate of
player idi in G∗ as a. (The exact way that values a are chosen is described in adversary
type I-III below.) The modified challenger can fail if A has made a query to Hn on the
randomly chosen idi value, for any i, but this happens with a negligible probability of
at most nqH/2κ, and otherwise the certificates are distributed as in the execution. In
each case, F-Cah responds to Send commands as in Simulation above, additionally storing
[j, Πs

i , sids
i] in table denoted TH1

, which is used by a reduction algorithm every time A
makes a query to H1 (see below).

Type I Adversary.

– Setup and Initialization. On the RSA challenge (n, e, z), F-Cah sets the public key

of G∗ as (n, e, g) where g = hαe2

for h
$← Z∗

n and α
$← Zn. Note that given a a safe

RSA modulus n, with probability about 1/2 we have that Z∗
n ≡ 〈−1〉× 〈g〉. The rest

part of initialization is the same as in the real protocol.

– Hash queries to Hn and H1. F-Cah sets Hn(idi) = (−1)di/gaie (mod n) for random
(di, ai) ∈ Z2×Zn for each Ui. For the queries to H1, F-Cah simply passes these queries
to H1. However, for each query (r, sid) and (r, sid, role) to H1, F-Cah also tries to solve
the RSA challenge as we describe below.

– Corrupt queries. F-Cah responds to Corrupt(Ui) with (idi, (−1)di/gai).

– Start queries. On Start(Ui, G
∗, s, init) from A, F-Cah responds with the output of

SIM(idi, s, init), where idi = F(κ,κ′)(certi
(∗)). On inputs SIM(idi, s, init), SIM

returns (θs
i , idi): SIM sets θs

i as either hgcs
i (−1)bs

i modn or zgcs
i (−1)bs

i modn, plus
the random kn shift, with probability 1/2 each, for random (cs

i , b
s
i) ∈ Zn×Z2. Notice

that all these values are distributed indistinguishably from the distribution produced
by the real execution.

– Reduction algorithm from HQuery event. With probability of at least ε/16m, for
the Πs

i and Πt
j instances involved in A’s query on rs

i , we have θs
i = hgcs

i (−1)bs
i mod n

and θt
j = zgct

j (−1)bt
j mod n. We replace RSA challenge z by hk for some unknown

k. Then it’s easy to see that if (θ̂, îd) = (θt
j , idj) then in equation (1) we get zs

i =

g2exs
i = g2e(1+αe2(ai+cs

i))(αe2)−1

and ẑ = g2e(k+αe2(aj+ct
j))(αe2)−1

. Therefore,

rs
i = g2e[k(αe2)−1+aj+ct

j][(αe2)−1+ai+cs
i]

Since F-Cah knows α, e, aj , ct
j , ai and cs

i , F-Cah can extract g2k(α2e3)−1

, from which

F-Cah can compute z2dα−1

since g = hαe2

and z = hk. Thus, z2d can be extracted.
Since gcd(2, e) = 1, therefore, computing z2d leads to computing zd. This reduction
algorithm is executed whenever A makes a query (r, sid) (or (r, sid, role)) to H1 for
each entry [j, Πs

i , sids
i] in table TH1

s.t. sids
i = sid. F-Cah can verify which entry is

related to the given value r, since after computing w = z2d as above F-Cah can test
if we = z2.

Type II Adversary.

– Setup and Initialization. On the RSA challenge (n, e, z), F-Cah sets the public key
of G∗ as (n, e, g) where g = αe for α ← Z∗

n. (Note that a random g in Z∗
n matches

that chosen by a real key generation with probability about 1/2). The rest part of
initialization is the same as in the real protocol.

– Hash queries to Hn and H1. F-Cah answers a query to Hn on x depending on
the source of x. Namely, F-Cah responds with Hn(x) = ae

x/g mod n for a randomly
chosen ax ∈ Z∗

n if x corresponds to some id of an honest player generated by the
simulator. Let Hn(idi) = ae

i g
−1. If x does not match with any ids created by the

simulator, F-Cah replies with Hn(x) = ae
x/z mod n for a randomly chosen ax ∈ Z∗

n

. For the queries to H1, F-Cah simply passes these queries to H1. However, for each
query (r, sid) and (r, sid, role) to H1, F-Cah also tries to solve the RSA challenge as
we describe below.

– Corrupt queries. F-Cah responds to Corrupt(Ui) with (idi, ai/α).
– Start queries. On Start(Ui, G

∗, s, init) from A, F-Cah responds with the output of
SIM(idi, s, init), where idi = F(κ,κ′)(certi

(∗)). On inputs SIM(idi, s, init), SIM
returns (θs

i , idi) where θs
i = (−1)bs

i aig
γs

i plus the random kn shift, for random
(γs

i , bs
i) ∈ Zn × Z2.

– Reduction algorithm from HQuery event. With probability of (almost) at least

ε/4m, the query r corresponds to session Πs
i on which A sends îd 6= idj for any

honest Uj , i.e., r = rs
i = (ẑ)xs

i . Since θs
i = (−1)bs

i (H(idi))
dgd+γs

i and ẑ = (θ̂/a)2ez2

where Hn(îd) = aez−1, we get zs
i = g2exs

i = g2e(d+γs
i) from equation (1). Therefore

(ẑ)xs
i = (θ̂/a)2e(d+γi)z2(d+γi) = (θ̂/a)(2+2eγi)z2γiz2d and F-Cah can extract z2d. Since

gcd(2, e) = 1, F-Cah can compute zd from (ẑ)xτ
i .

Type III Adversary. In the last case, we assume that with probability at least ε/4m
the first such (ẑ)xs

i which makes event HQuery true corresponds to session Πs
i on which

A sends îd = idj for some session Π t
j matching Πs

i for some currently uncorrupted Uj ,

but θ̂ 6= θt
j . We show that F-Cah can solve the RSA problem in this case. The view that

it will present to A will match what A expects until the above query (ẑ)xs
i , i.e. HQuery,

is done, in which case F-Cah will solve the RSA problem. Note that it is unimportant
whether F-Cah can continue presenting A with the correct view afterwards. Let Uj be

a player s.t. the probability that this query is done and that it involves îd = idj is at
least ε/4mn. Since Setup, Start, and the reduction algorithm are the same as the ones
for Type II adversary, in the following we describe the rest algorithms only.

– Hash queries to Hn and H1. F-Cah responds with Hn(x) = ae/g for a randomly
chosen a ∈ Z∗

n if x corresponds to some id of an honest player Ui 6= Uj . If x match
with the id of Uj , F-Cah replies with Hn(x) = ae/z mod n for a randomly chosen
a ∈ Z∗

n. Let Hn(idi) = ae
i g

−1.
– Corrupt queries. F-Cah responds to Corrupt(Ui) with (idi, ai/α) if Ui 6= Uj . On

Corrupt(Uj), F-Cah stops. As we argued above, it does not matter that this reduction
cannot open the state of player Uj with a valid-looking signature on idj , since at the
time A makes the crucial rs

i query the player Uj must be still uncorrupted.

References

[BDS+03] D. Balfanz, G. Durfee, N. Shankar, D.K. Smetters, J. Staddon, and H.C. Wong. Secret
handshakes from pairing-based key agreements. In IEEE Symposium on Security and
Privacy, 2003.

[BPR00] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key exchange secure
against dictionary attacks. In proceedings of Eurocrypt, 2000.

[CJT04] C. Castelluccia, S. Jarecki, and G. Tsudik. Secret handshakes from CA-oblivious
encryption. In proceedings of Asiacrypt, 2004.

[CK01] R. Canetti and H. Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Proceedings of CRYPTO’2001, 2001.

[CKGS98] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan. Private information retrieval.
Journal of the ACM, 45:965–981, 1998.

[DMS04] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The second-generation onion
router. In 13th USENIX Security Symposium, 2004.

[D.V05] D.Vergnaud. Rsa-based secret handshakes. In International Workshop on Coding
and Cryptography, 2005.

[JKT07] S. Jarecki, J. Kim, and G. Tsudik. Group secret handshakes, or affiliation-hiding
authenticated group key agreement. In CT-RSA’07, 2007.

[JL07] S. Jarecki and X. Liu. Unlinkable secret handshakes and key-private group key
management schemes. In proceedings of ACNS, 2007.

[LDB03] N. Li, W. Du, and D. Boneh. Oblivious signature-based envelope. In Proceedings of
22nd ACM Symposium on Principles of Distributed Computing (PODC 2003), 2003.

[MRH01] M.Bellare, R.Canetti, and H.Krawczyk. A modular approach to the design and anal-
ysis of authentication and key-exchange protocols. In 30th STOC, 2001.

[TX06] G. Tsudik and S. Xu. A flexible framework for secret handshakes. In rivacy-Enhancing
Technologies Workshop (PET’06), 2006.

[V.S99] V.Shoup. On formal models for secure key exchange. In Theory of Cryptography
Library, 1999.

[XY04] S. Xu and M. Yung. k-anonymous secret handshakes with reusable credentials. In
CCS ’04: Proceedings of the 11th ACM conference on Computer and communications
security, pages 158–167, New York, NY, USA, 2004. ACM Press.

