STORAGE AREA NETWORKING

Secure Group Key Management for
Storage Area Networks

Yongdae Kim, University of Minnesota — Twin Cities; Fabio Maino, Andiamo Systems;

Maithili Narasimha, University of California Irvine; Kyunghyun Rhee, Pukyung University;

Gene Tsudik, University of California Irvine

An earlier version of this
article was presented at

1]

This research was sup-
ported in part by DISC
(DTC Intelligent Storage
Consortium), at Universi-
ty of Minnesota — Twin
Cities

ABSTRACT

Storage area networks offer high availability,
reliability, and scalability, and are a promising
solution for large-scale storage needs of many
enterprises. As with any distributed storage sys-
tem, a major design challenge for SANs is to
provide secure storage, which implies data
integrity and data confidentiality. In this article
we propose a solution that addresses these core
security requirements. In particular, we focus on
mechanisms that enable efficient key manage-
ment for SAN entities and allow scalable data
sharing. We use strong cryptographic techniques
to achieve data security and integrity. Further,
we delegate the bulk of the cryptographic pro-
cessing to the SAN entities, thereby removing
bottlenecks at disks and causing minimal incon-
venience to hosts. By recognizing the peer nature
of the group of SAN entities, we propose a novel
security architecture for SAN that uses a secure
group communication protocol to provide effi-
cient group keying without involving any central-
ized servers. This fosters both scalability and
fault tolerance.

INTRODUCTION

Continued growth and popularity of the Internet
fuels increased reliance on e-business, which
often involves data-intensive applications. The
amount of information that needs to be stored
and managed can become quite intimidating.
Traditional centralized servers with SCSI inter-
faces to peripheral storage devices, which have
been the workhorses of the industry, are often
unable to meet the storage needs of large orga-
nizations. To this end, they are being replaced
by network attached disks and, more recently, by
storage area networks (SANs). SANs provide effi-
cient any-to-any connectivity between hosts and
storage devices, and represent a major step in
the evolution of network storage.

A critical requirement in any distributed (e.g.,
storage) system is the security of stored data,
which, for the most part, implies data integrity
and data privacy. Although, as discussed below,

this has been studied intensively in the past, cer-
tain unique features of the SAN setting result in
some new security challenges.

PRIOR WORK

Security of storage systems has been an area of
active research for well over a decade now. Sev-
eral systems have been proposed and analyzed
(e.g., CFS [2], Cepheus [3], and NASD [4]).
Prior results vary widely with respect to trust
assumptions and security primitives/services
offered. For example, one of the earliest sys-
tems, Cryptographic File System (CFS) [2], is
tailored toward single-user workstations and
relies on user-supplied passwords for data
encryption. In contrast, Network-Attached
Secure Disks (NASD) [4] proposes a distributed
system comprising intelligent disks and uses user
supplied keys as proofs of authorization.

We partition previously proposed secure stor-
age systems into:

* Those focusing on protecting data in transit
* Those attempting to safeguard data while it

is stored on disk
* Those providing end-to-end protection (on

both wire and disk)

Approaches where the underlying storage server
is trusted (e.g., NASD and SFS [5]) focus mainly
on securing network traffic and preventing out-
sider attacks. Other approaches like Cepheus
and SNAD [6] do not trust the storage servers
and therefore propose security measures to pro-
tect data in transit as well as on disk. We follow
the latter approach and aim to provide both on-
wire and on-disk data protection.

Many of these storage systems provide mech-
anisms for efficient group sharing of data. In
other words, identical data access permissions
are given to groups of users, and any user who
can prove group membership is authorized to
access data based on the group permissions.
Group sharing reduces the total number of keys
to be stored and distributed in the system. These
group keys are typically used to secure the sym-
metric keys used for data encryption (e.g., the
notion of a group lockbox in Cepheus). Systems
such as SNAD and NASD rely on centralized
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group servers to distribute these group keys.
Although a centralized server simplifies key dis-
tribution, it is a single point of failure and repre-
sents an enticing target for attacks. (In contrast,
our approach does not require any centralized
entities while providing efficient group key man-
agement.)

Focus

In this work we concentrate on safeguarding
data (stored on a SAN) from various threats and
attacks with a further emphasis on efficient key
management. Specifically, we propose a security
architecture for preserving privacy and integrity
of SAN data. We use on-disk as well as on-wire
encryption to protect data from unauthorized
insiders and malicious outsiders. Only autho-
rized SAN entities and hosts (through these
authorized SAN entities) can gain access to the
unencrypted disk contents. We employ crypto-
graphically secure hashing and digital signatures
to provide data integrity. Our approach, in addi-
tion to providing strong security, offers good sys-
temwide performance since the bulk of the
cryptographic operations are relegated to SAN
entities, which are typically equipped with pow-
erful processors and/or hardware acceleration to
support wire-speed encryption.

Organization — The rest of this article is orga-
nized as follows. We describe the details of our
system model and trust assumptions, and specify
our design goals in the following section. We
then introduce the cryptographic primitives used
in the article. The actual architecture is
described next. The security and performance of
the proposed system are compared with those of
a popular variant, and we conclude in the final
section.

SYSTEM MODEL

A storage area network can be viewed as a collec-
tion of SAN entities (e.g., switches, routers, and
other network elements) connecting hosts to
remote disks. As seen from the perspective of a
host or a disk, a SAN is a network infrastructure
that forwards, in an efficient and reliable way,
both data blocks and commands required to
retrieve and store these data blocks on disks
(Fig. 1).

In most SAN frameworks the actual data
owner can control, fully or in part, the SAN
administration. This is the case in a typical
enterprise scenario as well as in the storage ser-
vice provider (SSP) model (where SSP compa-
nies sell storage as a service to their customers).

In fact, in an enterprise scenario, user data is
protected according to the security policy estab-
lished by the enterprise and enforced within the
enterprise SAN. As an example, data availability
is ensured by applying a backup policy that is
enforced in the SAN itself, without user inter-
vention (e.g., disks where user data are stored
are mirrored, replicated, or backed up under the
control of the SAN administrators, not of the
users). In the same way, data integrity and priva-
cy should also be ensured and enforced by the
SAN administrators, in accordance with the
security policy of the enterprise.

by the data owner
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M Figure 1. System architecture.

Even in the SSP model, the SAN is at least
partially under control of the data owner. The
SAN entities located on customer premises (that
provide connectivity with the provider’s part of
the SAN) are, in fact, managed and controlled
by the customer’s administrators.

The fact that the data owner controls the
SAN enables the powerful concept of virtualiza-
tion for data security: the SAN entities can
actively enforce data security policies by encrypt-
ing and decrypting on-the-fly blocks of data that
are written to, or read from, the storage subsys-
tem. In practice, the host sees the remote disk as
a secure virtual volume with security attributes
transparently provided by the SAN. The map-
ping between the secure virtual volume, the
physical disk(s) where data is actually stored,
and the security parameters/transforms applied
to the data is performed by the SAN entities
controlled by the data owner.

Since the SAN entities are responsible for
active enforcement of data security, there is a
need to effectively protect them from unautho-
rized access on their management interface. This
is a well-known problem addressed by manage-
ment architectures and beyond scope of this arti-
cle. We assume that management access to the
SAN entities is governed by a strong access con-
trol mechanism, ensuring that only authorized
storage administrators can modify the configura-
tion of parameters for a secure virtual volume.

SYSTEM EVENTS
Events that take place in our model are summa-
rized below.

Initialization: A storage administrator,
through a management action in one of the SAN
entities, creates a new secure virtual volume
mapped over one or more physical disks. The
initial encryption keys for the volume are cho-
sen.

Disk access: A disk read or disk write event is
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We assume that
the storage
subsystem

(essentially, the

set of disk arrays)
is not intrinsically
trusted by the
data owner,
whereas, at least
some of the SAN
entities are. In
other words, the
data owner
controls the hosts
and part of the
SAN but not nec-
essarily the
physical disk array.

I We stress that key
update is an atomic oper-
ation. Consequently, any
failure of this operation
will cause the system to
revert back to a previously
known stable state.

2 A group key distribu-
tion [10] mechanism also
enables a group of users to
share a secret key. Howev-
er, it requires a centralized
server, which is a potential
single point of failure or
corruption.

triggered when a host accesses a secure virtual
disk through a SAN entity.

Key update: This occurs when the encryption
key must be changed.! This can be prompted by:
* Compromised key(s)

* A compromised SAN entity
* Periodic key refresh

We use the term compromised SAN entity to
describe an entity that has been removed from
the SAN for one of the following reasons:
changes in network topology, reallocation of
SAN resources for performance optimization or
administrative reasons, or because the SAN enti-
ty was subverted. We assume that it is possible
to detect subverted SAN entities (e.g., by using
an intrusion detection system) and propagate
this information to other SAN elements.

SAN entity join: This is triggered when a
secure virtual volume is instantiated for the first
time by a new SAN entity (e.g., because a host
connected to that SAN entity attempts to access
that volume).

Assumptions and Scope — We assume that
the storage subsystem (essentially the set of disk
arrays) is not intrinsically trusted by the data
owner, while at least some of the SAN entities
are. In other words, the data owner controls the
hosts and part of the SAN, but not necessarily
the physical disk array. There are many solutions
for authentication and authorization between the
host and the SAN (e.g., the iSCSI [7] architec-
ture proposes a password-based approach to
authentication); we do not address these issues
here.

We provide security at the SCSI block level.
File-level encryption and access control are not
dealt with here. Furthermore, we note that the
use of block-level encryption is independent of
the physical organization of the storage subsys-
tem. Thus, data redundancy and high availability
can be provided by the usual approach followed
on disk arrays (it may be structured with RAID
organization that better addresses the require-
ment in terms of resiliency to catastrophic fail-
ures of the disk drives). For example, a secure
virtual volume may be physically mapped over a
disk array organized as a RAID 5 storage sub-
system without compromising robustness. We
note that even the backup strategy is completely
unaffected by block-level encryption, since tradi-
tional backup strategies can be applied to the
physical disks over which a secure virtual volume
is mapped.

Other aspects beyond the scope of this article
pertain to the actual mechanisms used to pro-
vide block-level integrity and encryption for a
secure virtual volume. Many well-known block
encryption and data integrity protection algo-
rithms can be applied. Furthermore, any write
operation must be authenticated (e.g., key infor-
mation should not be modified by unauthorized
entities). This article will not address the details
of the authentication mechanisms between the
SAN and the storage subsystem.

CRYPTOGRAPHIC BUILDING BLOCKS

In order to support secure sharing of data among
a group of SAN entities without relying on any

centralized authority, public key cryptography is
a natural choice due to its simple key manage-
ment. At the same time, the use of public key
cryptography must be minimized because of its
relatively high cost. Therefore, a two-tiered
approach is often used: bulk data is encrypted
using a fast symmetric cipher, and the symmetric
encryption keys are themselves encrypted under
the public keys of all authorized SAN entities.
(We will compare this simple approach with our
approach later). One very viable alternative is to
encrypt symmetric (bulk data encryption) keys
under a single group key known only to all
authorized SAN entities. This can be achieved
through the use of a secure group key agreement
mechanism [8].

GRouUP KEY AGREEMENT

Group key agreement [9] is a process whereby a
shared secret key is jointly computed by a group
of users.2 Fundamental properties of group key
agreement include:

* A group key is computed using key contri-
butions randomly and uniformly chosen by
each group member.

* No information about the group key can be
obtained by observing the group key agree-
ment protocol without knowledge of at
least one of the key contributions.

* All key contributions are kept secret; if a
member is honest, even if all other parties
collude, they cannot extract any informa-
tion about the secret contribution of the
member from their combined view of the
protocol.

Many group key agreement protocols support
only secure group creation, that is, they enable a
static group of users to compute a shared key.
Recently, some of these protocols have been
extended to handle group membership changes
(GDH [8], STR [11] and TGDH [9]). We are
particularly interested in the following features:

* Condition 1: Provide efficient mechanisms
for member join and member evict events
(in order to add a new member or expel a
member).

* Condition 2: Do not require all current
group members’ contribution for join and
evict operations (since all members may not
be available/active at a given time).

We do not consider STR since it is quite inef-
ficient in handling group eviction events, requir-
ing, at worst, a number of exponentiations linear
to the total number of members. GDH is equally
expensive for both evict and join events. (Recent
results on the performance of practical group
key agreement protocols can be found in Amir et
al. [12].) Therefore, we focus on the TGDH pro-
tocol, which requires, on average, only a loga-
rithmic number of modular exponentiations to
handle any group event.

TGDH ProTOCOL

TGDH is a group key agreement technique com-
bining Diffie-Hellman key exchange [13] with
key trees. It implements fully distributed contrib-
utory group key agreement and handles key
adjustments due to group membership changes
and periodic rekeying needs. A group key is
derived from the individual contributions of all
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group members using a binary key tree. TGDH
assumes reliable communication among group
members for protocol correctness and fault tol-
erance (but not for security). In the SAN setting,
however, instead of counting on the presence of
a reliable group communication system, we use
shared storage to maintain the group key tree.
Below, we describe the protocol in detail. (A
detailed description of TGDH appears in Kim et
al. [9].)

A group key tree is organized in the following
manner: each node (/, v) is associated with a key
K(I, v) and a corresponding blinded key (bkey)
BK{l, v) = g&{I, v) mod p where g is a generator
of a subgroup of Z ,, and p is a large prime. Node
(L, vy’s left and right children are denoted by (/ +
1, 2v) and {/ + 1, 2v + I}, respectively. This
shared key-tree includes only blinded keys. Note
that it is computationally infeasible to derive a
key from a blinded key. All keys, including the
root key and the members’ individual contribu-
tions, are private to each member.

Figure 2 shows a key tree example. The key
at the root node is the secret group key shared
by all members, and a key at the leaf node is the
member’s contribution. (Each leaf node is asso-
ciated with a distinct member M;). Every mem-
ber knows its own contribution (i.e., key
associated with its leaf node) as well as all bkeys
on the key tree. Using this knowledge, a member
can compute all other keys on the path from its
leaf node to the root. Each key K{(/, v) is comput-
ed recursively as follows:

1+1,2v)

K,
(BK<I+1,2V+1>) < mod p
K 1+1,2v+1
K(1) =(BK 1112, " mod p
gK<t+1,zV> K<l+l,2v+l> modp

Clearly, computing a key at (I, v) requires
knowledge of the key for one of the two children
and the bkey of the other. For example, in Fig.
2, M5 can compute K3 o), K10, and the group
key Ko,y (in that order) using its own contribu-
tion K(31y and the blinded keys BK(3 0y, BK(2,1),
and BK(L}? as: K<2y0> = BK<3’0>K<3,1> mod D K(l’og
= BK(3,1y*(2.0) mod p, and K(g,0) = BK<1’1>K<150
mod p. Following each group membership
change, a particular member (called a sponsor)
recomputes all affected keys and bkeys and
updates the shared key tree file.3 Note that the
role of a sponsor is unique to each membership
event.

In general, the insertion point for a join event
is the shallowest rightmost node, where the join
would not increase the height of the key tree.
Otherwise, if the key tree is fully balanced, the
new member node is joined to the root. The
sponsor is the rightmost leaf node in the subtree
rooted at the insertion node. Figure 3 depicts
the join protocol.

Figure 4 shows an example where M, joins a
group and the sponsor (M3) performs the follow-
ing actions:

1 Renames node (1,1) to (2,2)

2 Creates new intermediate node (1,1) and
new leaf node (2,3)

3 Promotes (1,1) as parent node of (2,2) and

M Figure 2. TGDH key tree notation.

23)

Since BK( 3y and BK(1 o) are publicly known,
M; can compute the new group key K ). Final-
ly, M5 saves the updated tree Ty, only with the
bkeys, on the shared storage. (Note that since
the updated tree is saved on the shared storage,
other members can subsequently compute the
new group key.)

Member eviction is similar to a join. The key
tree is updated by deleting the leaf correspond-
ing to the evicted member (M;). The former sib-
ling of M, is promoted to replace M,’s parent
node. The member performing the update (spon-
sor) computes all [key, bkey] pairs on the path up
to the root, and reveals the updated key tree
(containing a new set of bkeys) to the rest of the
group. Thereafter, only current members can
compute the new group key; equivalently, out-
siders (including evicted former members) can-
not compute subsequent group keys. The
sponsor is always determined as the rightmost
leaf of the subtree rooted at the evicted mem-
ber’s sibling.

TGDH protocol is proven secure under the
well-known Decision Diffie-Hellman (DDH)
assumption [14]. For more details of the proof
and the actual protocol, please refer to Kim et
al. [15].

TGDH PROTOCOL FOR THE
SAN ENVIRONMENT

To the best of our knowledge, this is the first
effort aimed at applying a group key agreement
protocol in the SAN setting. In order to achieve
this goal, however, we need to adapt the TGDH
protocol for the SAN environment. In its origi-
nal form, TGDH relies on the presence of a reli-
able group communication system to notify the
group of all membership changes, and to provide
reliable and sequenced protocol message deliv-
ery. However, in the present environment, two

(related) issues arise:

* Reliable group communication requires
constant online presence of all current
members.

* Network partitions and congestion may
cause membership changes; that is, group

3 We stress, once again,
that the shared file con-
tains only bkeys.
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Step 1: New member chooses a random contribution K, 1 and broadcasts request for join along with its bkey.
Mhp 11 BK(O,O):gKn-‘—‘I - {My,..Mp}

Step 2: Sponsor member
* updates key-tree by adding a new member node and a new intermideate node,
* computes all [bkey, key] pairs on the path from node associated with it to the root,
* saves the update tree T only with bkeys on the shared file.

M Figure 3. Join protocol.

P
Tree T

New intermediate

New
member

M Figure 4. Tree update: join.

4 This will require storing
additional meta-data cor-
responding to each EDU
(a pointer holding the
beginning address and a
length field denoting the
size of the EDU) on the
disk.

membership is dependent on the state of

the network.

In a SAN, membership in a group of SAN enti-
ties is a long-term concept and should not be
influenced by short-term network perturbations.
Therefore, group membership changes should
not be triggered by the instantaneous reachabili-
ty or availability of members, but instead by
explicit and infrequent events such as a new
member being introduced into the group (join)
or a current member being expelled (eviction)
from the group.

In light of the above, some TGDH heuristics
need to be amended. In particular, sponsor
selection needs to change since constant online
presence of sponsors (as defined above) cannot
be assumed. Details of these changes can be
found in [1].

ARCHITECTURE

A trivial solution to safeguard data is to encrypt
all data in a virtual disk with a single key and
ensure that only authorized SAN entities know
this key. Additionally, in order to maintain data
integrity, digital signatures can be used. This
solution is simple to implement, and the associ-
ated storage overhead is minimal. However, it is
clearly impractical, since changing the key would
require re-encryption of the entire virtual disk
data, which can be very expensive.

One straightforward performance enhance-
ment is to divide a virtual disk into multiple logi-
cal segments or encrypted data units (EDUs).4
Data in each EDU can be encrypted with a sep-
arate key, and a key change operation would
cause only the data in the relevant EDU(s) to be
re-encrypted. The size of individual EDUs and
therefore the total number of EDUs on a disk
can be either fixed or variable. To simplify
things, we assume that EDU size is a global
parameter that is fixed and enforced by SAN
administrators. Clearly, the choice of EDU size

affects encryption granularity. In other words,
the number of data encryption keys per virtual
volume is determined by the number of EDUs.
While we acknowledge that choosing the optimal
EDU size is an important issue that affects the
overall performance of the system, we do not
address the details in this work.

In essence, this approach of encrypting data
in each EDU with a separate key results in sev-
eral data encryption keys for a given virtual disk.
These keys need to be shared among the group
of SAN entities authorized to virtualize that
disk. Additionally, any authorized SAN entity
should be allowed to unilaterally change an
EDU-specific key. To avoid explicit communica-
tion of key updates, all EDU keys for a particu-
lar virtual disk should be stored on that disk. Of
course, these keys are themselves encrypted to
enable seamless retrieval by the authorized SAN
entities.

Our approach is to use a single master key to
encrypt individual EDU keys. All SAN entities
authorized to virtualize a volume can be viewed
as a peer group, and the master key used to
encrypt individual EDU keys can be shared by
the members of this peer group. The EDU keys
are stored in a key lockbox (similar to the group
lock box concept suggested in Cepheus [3])
secured by the master key, and the master key
itself is securely shared by all group members.
However, unlike Cepheus, our approach involves
each authorized SAN entity taking part in the
generation of the master key, without requiring
any external key distribution server. (This is dis-
cussed in the next section.)

The key management problem is now essen-
tially reduced to sharing the master key between
the group members. Before going into the details
of our proposal, we describe the fundamental
components (building blocks) of a virtual volume
taking into account the security-related informa-
tion (EDU keys, lockboxes, and master keys)
that will be stored along with encrypted data.

SYSTEM COMPONENTS

Figure 5 depicts a encrypted virtual volume and
also shows the hierarchical key structure. A vir-
tual disk, as the figure illustrates, contains three
basic objects: EDUs, key lockbox, and master key
component.

EDUs — An EDU is a container for encrypted
data segment. A virtual disk includes one or
more EDUs. The EDU id uniquely identifies an
EDU on a virtual disk. Each EDU contains mul-
tiple 512-byte blocks of data encrypted under a
symmetric encryption algorithm with a single
key. Each EDU also stores a pointer to the loca-
tion inside the key lockbox where its encryption
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key is stored. Finally, every EDU contains a
secure checksum (i.e., a keyed hash of the clear-
text datad).

Key Lockbox — Every virtual volume has a key
lockbox (KLB) component that stores encrypted
EDU keys. (As stated above, a master key
unique to each virtual volume is used to encrypt
individual EDU keys.) The KLB also stores a
validity field for each EDU that denotes the
compromise status of the data in the EDU. In
other words, when the data has been read or
written by a potentially compromised SAN enti-
ty, the value of this field can be set to indicate
that the EDU needs rekeying. The validity field
is useful when we employ so-called lazy re-encryp-
tion discussed below. In order to protect the
integrity of its contents, the KLB stores the iden-
tity and digital signature of the SAN entity that
last modified this object.

Master Key Component — The master key
component (referred to as MKC_GK) contains
the information necessary to retrieve the master
key of a secure virtual volume. Specifically, this
object stores public information (blinded key
tree in TGDH) related to the group key derived
from the contributions of all members. Any cur-
rent member can compute the group key (master
key) by combining this public information with
its own secret contribution, as described earlier.
Once again, the signature of the SAN entity that
last modified this object is included.

DETAILS
In this section we discuss the secure SAN archi-
tecture. More concretely, we discuss the details
of the master key management scheme. As noted

above, introducing a higher-level master key
helps key management. Our approach for shar-
ing this master key among all group members is
based on group key agreement. Consequently,
instead of relying on any one SAN entity to
choose the master key, the SAN entities jointly
compute a group key that has contributions from
all members. All blinded (public) keys are stored
in the MKC GK component of that disk (Fig. 5).
Any authorized member can compute the group
key by using the blinded keys on the key tree
and its own secret contribution. The scheme is
briefly explained below.

Virtual Disk Initialization Event — In this
event, a new virtual disk is created by the stor-
age administrator with the help of a SAN entity.
This SAN entity randomly chooses its private
key contribution that is also the initial group key
(since the group currently has only one mem-
ber). The SAN entity computes the correspond-
ing public key (blinded value) and stores this
public information in MKC GK along with its
signature.

SAN Entity Join Event — When a new SAN
entity attempts to instantiate an existing secure
virtual volume, this event is triggered. The new
SAN entity initiates the process by sending out a
join_request to existing group members. One
of the members (sponsor) updates the group key
tree to include the blinded contribution of the
new member. This results in a new group key for
the virtual volume. The sponsor also updates the
KLB by encrypting all EDU keys with the new
group key. Finally, the sponsor recomputes the
signatures on KLLB and MKC GK.

Our approach for
sharing this
Master key

among all group

members is based
on group key
agreement.
Consequently,
instead of relying
on any one SAN
entity to choose
the Master key,
the SAN entities

jointly compute a

Group Key that
has contributions

from all members.

5 Note that this key is dif-

ferent from an encryption

key. In general, we can
derive two keys from the
same secret by applying
distinct one-way functions
to the secret.
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Our approach for
sharing this
Master key

among all group

members is based
on group key
agreement.
Consequently,
instead of relying
on any one SAN
entity to choose
the Master key,
the SAN entities

jointly compute a

Group Key that
has contributions

from all members.

6 The group key, like any
other key, is subject to
aging and prudent security
practices require that it
should be periodically
refreshed.

7 Refer to [1] for further
details of this approach.

Key Update Event — As mentioned earlier, a
key update event may be triggered because of a
compromised key, a compromised SAN entity or
periodically when the key needs to be refreshed.
These situations are dealt with differently as
explained below.

EDU key refresh event: To refresh an EDU
key, the SAN entity handling the event chooses
a new data encryption key; encrypts the EDU
data with the new key, and updates the KLB by
encrypting the EDU key with the group key.
Additionally, it sets the validity field correspond-
ing to that EDU in KLB to indicate that the
EDU key is valid. The SAN entity also generates
a new signature on KLB.

Group key refresh event: A SAN entity
refreshes the group key® by changing its secret
contribution and updating the blinded key tree
to reflect its new contribution, thereby changing
the group key (see above). It also re-encrypts all
the EDU keys in KLB with the new group key,
and generates new signatures for KLB and MKC
GK.

Key update due to key compromise: In the
event of a EDU key compromise, the key needs
to be changed, and the affected data needs to be
re-encrypted by the SAN entity handling that
event. This event handling is similar to a EDU
key refresh event as described above.

Key update due to SAN entity compromise:
When a group member is evicted, effectively the
group key is compromised. This implies that the
data on the entire virtual disk is compromised.
Handling this event requires the group key and
all individual EDU keys to be changed and the
entire disk data to be re-encrypted. Since this
can be a very expensive operation, we employ a
lazy re-encryption mechanism: the SAN entity
handling the event changes its private contribu-
tion; deletes the leaf node corresponding to the
evicted member from the group tree and recom-
putes the new group key (see above for the evict
protocol). Additionally, this SAN entity updates
the KLB by encrypting all EDU keys with the
new group key and sets the validity field value
for every EDU in KLB as compromised. The
EDU key is changed, and the data is re-encrypt-
ed subsequently during a disk access or a key
refresh event on that EDU.

Disk Access Event — When an authorized
SAN entity (group member) wants to access an
EDU of a secure virtual volume: it first obtains
the blinded key tree information from MKC
GK; using this information and its own private
contribution computes the group key; using the
group key, unlocks the KLB to obtain the
encryption key for the EDU. The SAN entity
should change the encryption key during a disk
access event if the validity field corresponding to
that EDU is set as compromised. (Encryption
key can be changed by triggering an EDU key
refresh event).

DiSCusSION

In this section we compare the security and effi-
ciency of two key management approaches: ours
and another approach that achieves roughly the
same goals.” In the latter, the master key for a

virtual disk is simply chosen by one of the SAN
entities authorized to virtualize that volume. All
EDU keys are then encrypted with the master
key and stored in a KLB. The master key, in
turn, is encrypted individually for all other
authorized SAN entities using standard public
key encryption. This is referred to as the encrypt-
ed master key approach, while our proposal (as
described earlier) is referred to as the shared
group key approach.

SECURITY

One of the major differences in the two
approaches concerns the master key. In the
encrypted master key approach, the master key
is chosen by a single SAN entity, whereas in the
shared group key approach, the group key is
determined by contributions from all SAN enti-
ties that have currently instantiated that virtual
volume. Hence, in the shared group key
approach, the randomness of the master key
does not depend on the ability of a “single” SAN
entity to choose cryptographically strong random
keys. Additionally, in the encrypted master key
approach, the master key is encrypted using each
SAN entity’s public key, whereas in the Shared
group key approach, no such long term keys are
used (since the group key and the individual
contributions are periodically refreshed).

Another important distinction between the
two approaches, from a security perspective, per-
tains to the shared group key approach’s ability
to provide forward and backward secrecy (and
therefore key independence) (For details see [9]).
In order to get the same level of security in the
encrypted master key approach, an explicit mas-
ter key update event needs to be triggered every
time the group membership changes.

EFFICIENCY

Table 1 compares the two approaches discussed
in the previous section with respect to the num-
ber of modular exponentiations required to han-
dle the basic system events. The cost of each
modular exponentiation differs depending on the
public key encryption algorithm. Therefore, in
case of the encrypted master key approach
(called PK in the table), we counted the number
of public key operations (encryption or decryp-
tion). The cost of the shared group key approach
(called GKA) is more straightforward: only pure
modular exponentiations are considered. These
operations are performed by the SAN entity
handling an event. The count does not include
signature generation (since same number of digi-
tal signatures are used in both the approaches).
In Table 1, k denotes the total number of SAN
entities that have instantiated a given virtual vol-
ume. We assume that the average height of the
TGDH key tree is log k. Please refer to [1] for a
detailed description of the comparative cost
analysis.

CONCLUSIONS

In this article we propose a security architecture
for preserving privacy and integrity of SAN data
with an additional emphasis on secure and effi-
cient key management. In our approach, SAN
entities are responsible for active enforcement of
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PK GKA

Initialization event 1 1
Key Periodic refresh k 2 log k
update EDU key compromise 0 0
Modular event SAN entity compromise k-1 2 log k
exponentiations Disk Data read (normal) 1 log k
access Data read (cached key) 0 0
event Data write (normal) 1 log k
Data write (cached key) 0 0
SAN Entity join Event 1+k 2 log k

Memory requirement

M Table 1. Cost comparisons.

security. Our scheme utilizes the nascent com-
puting power of the SAN entities to carry out
computationally intensive cryptographic func-
tions. We specifically address the key manage-
ment problem. Exploiting the peer group nature
of the SAN entities virtualizing a secure disk, we
present a mechanism to enable key sharing that
does not require any centralized servers.
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In our approach,
SAN entities are
responsible for
active enforcement
of security. Our
scheme utilizes
the nascent
computing power
of the SAN
entities to carry out
computationally
intensive
cryptographic
functions.
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