
Forward-Secure Sequential Aggregate Authentication (Short Paper)

Di Ma, Gene Tsudik
University of California, Irvine
{dma1, gts}@ics.uci.edu

Abstract

Wireless sensors are employed in a wide range of appli-
cations. One common feature of most sensor settings is the
need to communicate sensed data to some collection point
or sink. This communication can be direct (to a mobile col-
lector) or indirect – via other sensors towards a remote sink.
In either case, a sensor might not be able to communicate
to a sink at will. Instead it collects data and waits (for a
potentially long time) for a signal to upload accumulated
data directly.

In a hostile setting, a sensor may be compromised and
its post-compromise data can be manipulated. One im-
portant issue isforward security– how to ensure that pre-
compromise data cannot be manipulated? Since a typical
sensor is limited in storage and communication facilities,
another issue is how to minimize resource consumption due
to accumulated data. It turns out that current techniques
are insufficient to address both challenges. To this end, we
explore the notion ofForward-Secure Sequential Aggregate
(FssAgg) authentication Schemes. We considerFssAggau-
thentication schemes in the contexts of both conventional
and public key cryptography and construct aFssAggMAC
scheme and aFssAggsignature scheme, each suitable un-
der different assumptions. This work represents the initial
investigation of Forward-Secure Aggregation and, although
the proposed schemes are not optimal, it opens a new direc-
tion for follow-on research.
KEYWORDS: sensors, signature schemes, authentication
schemes, key compromise, forward security, aggregate sig-
natures.

1 Introduction

Wireless sensors can enable large-scale data collection
in many different settings, scenarios and applications. Ex-
amples abound in all kinds of tracking and monitoring ap-
plications in both civilian and military domains. A Wireless
Sensor Network (WSN) might contain hundreds or thou-
sands of low-cost sensors and one or more sinks or data col-

lectors. Individual sensors obtain measurements from the
environment and (periodically or upon request) forward the
accumulated data to the sink. A sink might be a gateway to
another network, a powerful data processing or storage cen-
ter, or an access point for human interface. (Some WSNs
support user-driven data queries and commands through the
sink.)

In this paper, we are motivated by two types of envisaged
sensor scenarios:

A Sensors do not communicate with each other, i.e., there
is no sensor networkas such. Instead, a mobile device
that we call acollector.1 A collector might not be fully
trusted; it might be nothing more than an intermediary
between sensors and an off-line (trusted) sink.

B Sensors communicate but they do not actually “net-
work”, i.e., communication is restricted to mere for-
warding of information from other sensors towards a
sink or sinks. In this context, a sink is a fully trusted
entity.

In either case, a sensor might not be able to communicate
to a sink at will. Instead, it collects data and waits (poten-
tially, for a long while) either for a signal – or some pre-
determined time – to upload accumulated data to a collector
or a sink. Put another way, there is no real-time reporting
of sensed information between sensors and a collector or a
sink.

Data integrity and (sensor) authentication are essential
security services required in most sensor applications [20]
since sensors are often used in unattended and adversarial
environments. They interact closely with the physical en-
vironment and with people, thus being subject to a wide
range of security risks. An attacker may inject its own data
as well as modify and delete data produced by sensors. As a
result, sensor data must be authenticated before being pro-
cessed and used for whatever purposes. Particularly in criti-
cal settings (e.g., radiation, seismic or intrusion monitoring)
strong data integrity and authenticity guarantees are needed.

1We use the terms “collector” and “sink” to distinguish between entities
that gather data in the two scenarios.

Standard textbook techniques, such as MACs (Message Au-
thentication Codes) or digital signatures, can be used in
applications where data integrity/authenticity is required.
However, several obstacles hinder straight-forward usage of
these standard techniques.

One important issue is the threat ofsensor compromise
and the consequent exposure of secret keys used for MACs
or signatures.2 Key exposure makes it easy for the adversary
to produce fraudulent data ostensibly sensed after the com-
promise. Moreover, it also allows the adversary to produce
fraudulent databefore the compromise, assuming it has not
been reported to a sink or a collector. This is clearly un-
desirable. Fortunately, there are so-calledforward-secure
cryptographic techniques that allow the signer (sensor, in
our case) to periodically evolve its secret key such that com-
promise of a current secret key cannot lead to compromise
of secret key(s) used in past periods. It is therefore possi-
ble to mitigate the effects of sensor compromise by using a
sense-and-sign approach. In other words, a sensor does not
wait to sign (or MAC) ALL sensed data until it has to send
it, since doing that would openall collected datato attack.
Instead, it signs data as soon as it is sensed and evolves the
signing key.

Another important issue isstorage and communication
overheads. Clearly, on-board storage is a limited commod-
ity in most sensor settings and it is natural to minimize
its size and consumption. In both scenarios A and B out-
lined above, a sensor gradually accumulates data (readings,
measurements), stores it locally and – at some later time
– sends it to a sink. We are not concerned in minimizing
storage consumed by the actual data; that is an interesting
topic in its own right. Instead, we are interested in min-
imizing storage due to authentication tags (i.e., MACs or
signatures) since they represent pure overhead. If key com-
promise and forward security were not an issue, minimizing
storage overhead would be trivial – a sensor simply signs or
MACs all accumulated data once, before forwarding it to
the sink. At the same time, forward security forces us to
compute authentication tags per sensed unit of data, which
we refer to as amessagefrom now on.3 Therefore, a sensor
accumulates as many authentication tags as messages while
it waits for a time or a signal to off-load the data. This is
problematic since even the size of a MAC (and certainly of
a signature) can easily exceed the size of actual data, i.e.,
messages. At the minimum, each 128 bits per MAC or 160
bits per signature would need to be allocated.

Communication overhead is a related, though perhaps
not as critical, matter. In scenario A, a sensor uploads accu-
mulated messages directly to the collector. Thus, the com-

2Building an inexpensive tamper-proof, or even tamper-resistant, sen-
sor is a much greater challenge.

3Note that the duration of the key evolvement period in a forward-
secure scheme does not have to match the time between successive sensor
readings; however, to simplify the discussion, we assume that it does.

munication overhead due to sending multiple authentication
tags is less problematic than in Scenario B where the same
overhead affects all sensors that forward information from
other sensors towards the sink. (We refer to the oft-cited
folklore in [3] which claims that wireless transmission of a
single bit can consume over1, 000 times of the energy of a
single 32-bit computation.)

Reconciling the need to minimize storage (and commu-
nication) overhead with the need to mitigate potential key
compromise (i.e., obtain forward security) is precisely the
topic of this paper.

Contributions: We explore Forward Secure Sequential
Aggregate (FssAgg) authentication schemes that simultane-
ously mitigate the threat of key compromise and achieve
optimal storage and communication efficiency. AnFssAgg
scheme allows a signer to combine multiple authentication
tags generated in different key/time periods into a single
constant-size tag. Compromise of the current key does not
allow the attacker to forge any aggregate authentication tag
containing elements pre-dating the compromise. Any inser-
tion of new messages, modification and deletion (including
truncation) of existing messages makes the aggregate tag
demonstrably invalid. We consider this topic in both con-
ventional and public key cryptographic settings and con-
struct two practical schemes: anFssAggMAC scheme as
well as anFssAggsignature scheme.

Organization:After a brief overview of related work in
Section 2, we introduce the model and security require-
ments in Section 3. Next, we present anFssAggMAC
scheme in Section 4 and anFssAggsignature scheme in
5. We give a brief performance evaluation of theFssAgg
signature scheme in 6. Section 7 concludes the paper.

2 Related Work

NOTE: this section is kept brief due to dire space limita-
tions.

The topic of this paper is quite distinct from data aggre-
gation in sensor networks [8, 11, 12, 21, 22]. In anFssAgg
authentication scheme, authentication objects are aggregate
while data records (messages) are kept intact. In a data ag-
gregation scheme, individual data information is lost and
the aggregate value is used to provide or derive statistical
information, such as mean, median or max/min. Data ag-
gregation schemes are very useful, but unsuitable for ap-
plications, where the availability of individual sensed data
records is required (e.g., temperature pattern sensing in a
nuclear reactor).

The notion of forward security was introduced in the
context of key-exchange protocols [10] and lagter adapted
to signature schemes. Forward-secure signatures were first
proposed by Anderson in [2] and subsequently formalized
by Bellare and Miner in [4]. The main challenge is effi-

ciency: an ideal scheme must have constant (public and se-
cret) key size, constant signature size as well as constant
signing, verification, and (public and secret) key update op-
erations. Several schemes proposed in the literature satisfy
some or most of these requirements [1, 4, 13–15]. Also,
in [5], Bellare and Yee examine forward security in the con-
text of conventional cryptography.

Several aggregate signature schemes have been proposed
in the literature, starting with the initial seminal result by
Boneh, et al. [6, 16, 17]. An aggregate signature scheme
combinesk signatures generated byn signers (k ≥ n) into
a single and compact aggregate signature that, if verified, si-
multaneously verifies every component signature. Interest-
ingly, our goal is to aggregate signatures by thesamesigner
(e.g., a sensor), however, these signatures are computed in
different periods, and with different keys. Thus, our goals
impose no additional restrictions on existing definitions of
aggregate signatures. Also, our envisaged schemes do not
require simultaneous aggregaqtion of multiple signatures as
in [6]; instead, we need sequential (incremental) aggrega-
tion as in [17] or [16].

3 Definitions and Properties

In this section we present some informal definitions and
properties.4 An FssAggsignature scheme is composed of
the following algorithms. They are quite similar to those
in sequential aggregated signature schemes, notably, the re-
cent scheme of Lu, et al. [16].

The key generation algorithmFssAgg.Kgis used to gen-
erate public/private key-pairs. Unlike the one used in [16],
it also takes as inputT – the maximum number of time pe-
riods (key evolvements).

The sign-and-aggregate algorithmFssAgg.Asigtakes as
input a private key, a message to be signed and a signature-
so-far (an aggregated signature computed up to this point).
It computes a new signature on the input message and com-
bines it with the signature-so-far to produce a new aggre-
gated signature. As the final step ofFssAgg.Asig, it runs a
key update subroutineFssAgg.Updwhich takes as input the
signing key for the current period and returns the new sign-
ing key for the next period (not exceedingT .) We make key
update part of the sign-and-aggregate algorithm in order to
obtain stronger security guarantees (see below).

The verify algorithmFssAgg.Aver, on input of a puta-
tive aggregate signature, a set of presumably signed distinct
messages and a public key, outputs whether the aggregate is
valid. (The distinction from non-forward-secure schemes is
that we use a single public key, as there is only one signer.)

The key update algorithmFssAgg.Updtakes as input the
signing key for the current period and returns the new sign-

4Our presentation is informal to conserve very limited space.

ing key for the next period (provided that the current period
does not exceedT − 1.)

A secureFssAggscheme must satisfy the following
properties:

1. Correctness:Any aggregated signature produced with
FssAgg.Asig must be accepted byFssAgg.Aver.

2. Unforgeability:Without the knowledge of any signing
keys (for any period), no adversary can compute an
aggregate signature on any message or set of messages.

3. Forward-security:No adversary who compromises the
signer’si-th signing key can generate a valid aggregate
signature containing a signed message – for any period
j < i – except the aggregate-so-far signature generated
by the signer before the compromise, i.e., the aggre-
gated signature the adversary finds upon compromise.

Note that the last property subsumes security against trun-
cation or deletion attacks. An adversary who compro-
mises a signer has two choices: either it includes the intact
aggregate-so-far signature in future aggregated signatures,
or it ignores the aggregate-so-far signature completely and
start a brand new aggregated signature. What it cannot do is
selectively delete components of an already-generated ag-
gregate signature.

4 A Forward-Secure Sequential Aggregate
MAC Scheme

We now present a trivialFssAggMAC scheme. It can be
used to authenticate multiple messages when public (trans-
ferrable) verification is not required. As such, it is well-
suited for scenario B in Section 1 where a sensor communi-
cates (via other sensors) to the sink.

The scheme uses the following cryptographic primitives:

• H: a collision resistant one-way hash function with
domain restricted tok-bit strings: H : {0, 1}k →
{0, 1}k.

• Ha: a collision resistent one-way hash function with
arbitrary length input:Ha : {0, 1}∗ → {0, 1}k.

• h: a secure MAC schemeh : {0, 1}k × {0, 1}∗ →
{0, 1}t that, on input of ak-bit key x and an arbitrary
messagem outputs at-bit MAC hx(m).

FssAgg.Kg. Any symmetric key generation algorithm can
be used to generate an initialk-bit secret keys. We set
sk0 = vk = s.

FssAgg.Asig. At time periodi, the signer is given a mes-
sageMi to be signed and an aggregate-so-far MAC
σ1,i−1 on messagesM1, · · · ,Mi−1. The signer first

generates a MACσi on Mi with h usingski: σi =
hski

(Mi). It then computesσ1,i by folding σi onto
σ1,i−1 throughHa: σ1,i = Ha(σ1,i−1||σi). Ha acts
as the aggregation function. Alternatively we can com-
puteσ1,i as follows:5

σ1,i = Ha(Ha(· · ·Ha(Ha(σ1||σ2)||σ3))|| · · ·)||σi)

whereσj = hskj (Mj)∀j = 1, · · · , i. Finally, the
signer executes the key update subroutine defined as:

FssAgg.Upd. We define thei-th signing
key ski as the image underH of the pre-
vious keyski−1: ski = H(ski−1), i > 0.
(This part is the same as the forward-secure
MAC scheme in [20].)

FssAgg.Aver. To verify a candidateσ1,i over messages
M1, · · · , Mi, the verifier (who has the verifying key
vk which is the same as the initial signing keysk0)
computes keyssk1, · · · , ski through the public key
update function. It then mimics the signing process
and re-computesσc

1,i and compares it withσ1,i. If the
two values match, it outputsvalid. Otherwise it outputs
invalid.

5 A Forward-Secure Sequential Aggregate
Signature Scheme

If public (transferrable) verification is required we need
aFssAggsignature scheme to check the authenticity of data
records. Trivially, all aggregate signature schemes [6, 16,
17] can be used as aFssAggsignature scheme if we treat
the key of signeri as the key used (by the same signer) in
the time periodi. However a trivial construction is useless
for our purposes since a signer (e.g., a sensor) would need
O(T) storage to store its secret keys.

The overall efficiency of aFssAggsignature scheme de-
pends on the following metrics: 1) size of the aggregate
signature; 2) size of the signing key; 3) complexity of key
update; 4) complexity of aggregate signing; 5) size of veri-
fication key; 6) complexity of aggregate verifying. The first
four representsigner efficiencyand the last two represent
verifier efficiency; the size parameters (aggregate signature,

5Note that hash functions are generally designed as an iterative pro-
cess [19]. That is, a hash functionH : {0, 1}∗ → {0, 1}k with arbitrarily
long finite input is executed by iteratively invoking an internal (per block)
functionf : {0, 1}r+k → {0, 1}k (r > k as a hash function compresses
its input) with fixed-size input. A hash inputx of arbitrary finite length
is divided into fixed-lengthr-bit blocksxi. In each iteration,f takes on
the current input blockxi and the intermediate resultHi−1 produced by
f in the previous iteration. We can thus modify the aggregation function
as follows: form an input block with several MACs and then fold the block
into the aggregate in one round. This way,σ1,i can be represented as:
σ1,i = Ha(σ1||σ2|| · · · ||σi). Compared with 1, this aggregation func-
tion in is more efficient.

signing key and verification key) representspace efficiency
and the complexity parameters (sign, verify and key update)
representtime efficiency. In our envisaged sensor scenarios,
signer efficiency is much more important than verifier effi-
ciency and space efficiency more important than time effi-
ciency.

Focusing on the signer and space efficiency, we pro-
pose aFssAggsignature scheme based on the BLS signature
scheme [6]. BLS signatures can be aggregated through EC
multiplication by anyone [7]. We first introduce the BLS
scheme and then show how to modify it to be aFssAggsig-
nature scheme.

The BLS scheme works in groups with bilinear maps. A
bilinear map is a mape : G1×G2 → GT , where: (a)G1 and
G2 are two (multiplicative) cyclic groups of prime orderq;
(b) |G1| = |G2| = |GT |; (c) g1 is a generator ofG1 andg2

is a generator ofG2. The bilinear mape : G1 ×G2 → GT

satisfies the following properties:

1. Bilinear: for all x ∈ G1, y ∈ G2 and a, b ∈ Z,
e(xa, yb) = e(x, y)ab;

2. Non-degenerate:e(g1, g2) 6= 1

The BLS scheme uses a full-domain hash functionH1(·):
{0, 1}∗ → G1. Key generation involves picking a random
x ∈ Zq for each signer, and computingv = gx

2 . The signer’s
public key isv ∈ G2 and her secret key isx. Signing a mes-
sageM involves computing the message hashh = H1(M)
and then the signatureσ = hx. To verify a signature one
computesh = H1(M) and checks thate(σ, g2) = e(h, v).
The verification costs amount to 2 bilinear mappings.

To aggregaten BLS signatures, one computes the prod-
uct of individual signatures as follows:

σ1,n =
nY

i=1

σi

whereσi corresponds to the signature on messageMi. The
aggregate signatureσ1,n is of the same size as an individual
BLS signature and aggregation can be performed incremen-
tally and by anyone.

Verification of an aggregate BLS signatureσ1,n includes
computing the product of all message hashes and verifying
the following match:

e(σ1,n)
?
=

nY

i=1

e(hi, vi)

wherevi is the public key of the signer who generatesσi on
messageMi.

FssAgg.KgThe signer picks a randomx0 ∈ Zp and com-
putes a pair(xi, vi) (i = 1, · · · , T) as:xi = H(xi−1),
vi = gxi

2 . The initial signing key isx0 and the public
key is: (v1, · · · , vT) = (gx1

2 , · · · , gxT
2).

Note that, in our sensor scenarios, a sensor (signer)
would not generate its own keys. Instead, the sink

(or some other trusted party) would generate all public
and secret keys for all sensors. The collector, however,
would be given the public keys only.

FssAgg.AsigWith inputs of messageMi to be signed,
an aggregate-so-far signatureσ1,i−1 over messages
M1, · · · , Mi−1 and the current signing keyxi, the
signer first computes a BLS signature onMi usingxi:
σi = Hxi(index||Mi) whereindex denotes the posi-
tion of Mi in the storage. The purpose of this index is
to provide message ordering, since the original BGLS
aggregation function does not impose any order on ag-
gregate elements. Next, the signer aggregatesσi onto
σ1,i−1 through multiplication:σ1,i = σ1,i−1 · σi. Fi-
nally, the signer updates the key.

FssAgg.Upd A signer evolves its secret
signing key through the hash functionH:
xi = H(xi−1).

FssAgg.AverThe verifier uses Equation 1 and the public
keypk to verify an aggregate signatureσ1,i

The security of ourFssAggsignature scheme is based on
the underlying BLS scheme and no other assumptions is
needed. The following theorem summarizes the security of
ourFssAggsignature scheme and is strait-forward to prove.
For a formal description of the security model and the proof
of the theorem, please refer to [18] .

Theorem 5.1 If BLS is a (t′, qH , q′S , ε)-secure signature
scheme, our construction above is a(t, qH , qS , T, ε)-secure
FssAggsignature scheme wheret′ = t + O(qH + qS),
ε′ = ε/T , andq′S = qS/T .

A proof sketch for this theorem is presented in [18] which
also contains the security model.

6 Performance

In this section, we evaluate the performance of the pro-
posed BLS-basedFssAggsignature scheme. We begin by
accessing the cost in terms of basic cryptographic opera-
tions(e.g, multiplications, exponentiation, etc). Then we
show the actual overhead incurred through experiment.

We use the notation in Table 1. We consider the gener-
ation and verification of aFssAggsignatureσ1,k∗t wheret
denotes the number of periods occupied byσ1,k∗t andk de-
notes the number of signatures generated per time period.
Table 2 illustrates the overhead (computation, storage and
bandwidth) associated with the scheme in terms of crypto-
graphic operations.

We used a fieldFp where|p| = 512 and we choose the
size of group order as|q| = 160. We test our scheme on a
Pentium 1.86GHz machine with 512M memory in a Linux

Table 1. Notations.
MtP t(H1(·)) t map-to-point operations
SclMultt

m(l) t scalar multiplications with modulus
of sizem and exponent of sizel

SclAddt
m t scalar additions with modulus of sizem

BM(t) t bilinear mappings
Hasht(l)(H(·)) t hash operations with input size ofl

Table 2. Operation Cost in Terms of Crypto-
graphic Operations.

Parameters Cost Complexity

Signature Size |p| O(1)
Secret Key Size |q| O(1)

Key Update Time Hash(|q|) O(1)
Agg. Sign Time MtP 1 + Exp1

|p|(|q|) O(1)
+Mult1(|p|)

Public Key Size T ∗ |q| O(T)
Agg Ver. Time BM(t + 1)+ O(t)

+Multk∗t−1(|p|)

environment. The experiment result is listed in Table 3. Sig-
nature generation is quite efficient and it costs an average
7.64ms to generate a BLS signature (1.5ms on the map-to-
point operation and 6.14ms on the scalar multiplication op-
eration) and another 0.05ms to fold it into the aggregate.
Aggregation imposes little overhead on the overall time for
Asig. Verification cost is quite expensive because of the in-
volvement of pairing operations. When the number of time
periods increases to 100, it takes the verifier more than 2
seconds to verify. The verification cost might impose an
upper ceiling on the total number of time periodsT .

7 Summary and Future Work

In this paper we motivated the need for Forward-Secure
Sequential Authentication to address both key exposure and
storage efficiency issues. We constructed two sampleFs-
sAggschemes (one MAC-based and one signature-based).
While our trivial MAC-based scheme is near-optimal in
terms of efficiency, the signature-based scheme is not. Al-
though it is both signer- and space-efficient, it is not verifier-
friendly as the verifier needsO(T) space to store the public
key and the verification is fairly expensive because of bilin-
ear map operations. Constructing a more efficient scheme
– with either (or both) compact public keys or lower verifi-
cation complexity – is a challenge for future work. And, a
more careful formal treatment of Forward-Secure Sequen-
tial Authentication is certainly needed.

Table 3. Operation Cost in msecs.
BLS Sign Aggregation

Asig 1 signature MtP 1 SclMul1p(q) SclAdd1
p

1.5 6.14 0.05

1 signature 53.62
Aver k=1000,t=1 54.40

k=100,t=10 295.71
k=10,t=100 2708.79

References

[1] M. Abdalla, and L. Reyzin. “A new forward-secure
digital signature scheme.” InASIACRYPT 2000, pp.
116-129, 2000.

[2] R. Anderson. “Two remarks on public-key cryptology
- Invited Lecture”.Fourth ACM Conference on Com-
puter and Communications Security, Apr. 1997.

[3] K. Barr, and K. Asanovic. “Energy aware lossless data
compression.” InProc. of MobiSys’03. San Francisco,
CA, May 2003.

[4] M. Bellare, and S. K. Miner. “A forward-secure digital
signature scheme”. InProc. of Adances in Cryptology
- Crypto 99, LNCS Vol 1666:431-448, Aug. 1999.

[5] M. Bellare, and B. Yee. “Forward-Security in Private-
Key Cryptography”. In Proceedings ofCT-RSA’03,
LNCS Vol. 2612, M. Joye ed, Springer-Verlag, 2003.

[6] D. Boneh, B. Lynn, and H. Shacham. “Short signa-
tures from the Weil pairing”.J. Cryptology, 17(4):297-
319, Sept. 2004. Extended abstract inProceedings of
Asiacrypt 2001.

[7] D. Boneh, C. Gentry, B. Lynn, and H. Shacham.
“Aggregate and verifiably encrypted signatures from
bilinear maps”. InProc. of Eurocrypt 2003, LNCS
2656:416-432, May 2003.

[8] C. Castelluccia, E. Mykletun, and G. Tsudik. “Effi-
cient aggregation of encrypted data in wireless net-
works”. In Mobile and Ubiquitous Systems: Network-
ing and Services MobiQuitous 2005. July 2005.

[9] Y. Frankel, P. Gemmell, P.D. MacKenzie, and M.
Yung. “Optimal resilience proactive public-key cryp-
tosystems”. InFOCS, 1997.

[10] C. G. Gunther. “An identity-based key-exchange pro-
tocol.” Advances in Cryptology EuroCrypt’89. LNCS
434, pp. 29-37, 1990.

[11] L. Hu, and D. Evans. “Secure aggregation for wireless
networks.” InWorkshop on Security and Assurance in
Ad Hoc Networks, 2003.

[12] C. Intanagonwiwat, D. Estrin, R. Govindan, and J.
Heidemann. “Impact of network density on data ag-
gregation in wireless sensor networks”. InICDCS’02,
pp. 457-458. 2002.

[13] G. Itkis, and L. Reyzin. “Forward-secure signatures
with optimal signing and verifying”. InProc. of Ad-
vances in Cryptology - Crypto’01, LNCS 2139:332-
354, Aug. 2001.

[14] A. Kozlov, and L. Reyzin. “Forward-secure signatures
with fast key update”. InProf. of the 3rd International
Conference on Security in Communication Networks
(SCN’02), 2002.

[15] H. Krawczyk. “Simple forwardsecure signatures from
any signature scheme”. InProc. 7th ACM Conference
on Computer and Communication Security (CCS), pp.
108-115, Nov. 2000.

[16] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and
B. Waters. “Sequential aggregate signatures and mul-
tisignatures without random oracles”. InProf. of Eu-
rocrypt 2006, May 2006.

[17] A. Lysyanskaya, S. Micali, L. Reyzin, and H.
Shacham. “Sequential aggregate signatures from trap-
door permutations.” InProc. of Eurocrypt 2004,
LNCS 3027, pp. 245-254, Nov. 2001.

[18] D. Ma, and G. Tsudik. “Forward-secure sequentical
aggregate authentication”.IACR ePrint 2007/052.

[19] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
“Handbook of applied cryptography”.CRC Press,
1997. ISBN 0-8493-8523-7.

[20] A. Perrig, J. Stankovic, and D. Wagner. “Security in
wireless sensor networks”.ACM Commun., 47(6):53-
57, 2004.

[21] D. Wagner. “Resilient aggregation in sensor net-
works”. In Workshops on Security of Ad Hoc and Sen-
sor Networks.2004.

[22] Y. Yang, X. Wang, S. Zhu, and G. Cao. “SDAP: a se-
cure hop-by-hop data aggregation protocol for sensor
networks”. InACM MOBIHOC’06. May 2006.

