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Abstract

Remote attestation is the process of securely verifying
internal state of a remote hardware platform. It can be
achieved either statically (at boot time) or dynamically,
at run-time in order to establish a dynamic root of trust.
The latter allows full isolation of a code region from pre-
existing software (including the operating system) and
guarantees untampered execution of this code. Despite
the untrusted state of the overall platform, a dynamic
root of trust facilitates execution of critical code. Prior
software-based techniques lack concrete security guaran-
tees, while hardware-based approaches involve security
co-processors that are too costly for low-end embedded
devices.

In this paper, we develop a new primitive (called
SMART) based on hardware-software co-design.
SMART is a simple, efficient and secure approach for
establishing a dynamic root of trust in a remote embedded
device. We focus on low-end micro-controller units
(MCU) that lack specialized memory management or
protection features. SMART requires minimal changes
to existing MCUs (while providing concrete security
guarantees) and assumes few restrictions on adversarial
capabilities. We demonstrate both practicality and
feasibility of SMART by implementing it – via hardware
modifications – on two common MCU platforms: AVR
and MSP430. Results show that SMART implementa-
tions require only a few changes to memory bus access
logic. We also synthesize both implementations to an
180nm ASIC process to confirm its small impact on
MCU size and overall cost.

1 Introduction

Verifying internal state of a remote embedded device is an
important task in many scenarios and application settings,
e.g., smart meters, implantable medical devices (IMDs)

and actuators in industrial control systems that perform
critical functions and operate unattended for long periods
of time. In addition, increasing adoption of wireless net-
working prompts concerns about remote exploits of such
devices. The recent Stuxnet worm [15] demonstrated the
magnitude of damage from attacks on embedded devices.
Stuxnet infected Programmable Logic Controllers (PLC)
used in industrial control systems and caused consider-
able physical damage by modifying their control software.
Embedded devices are also sometimes placed in physi-
cally inaccessible locations, e.g., IMDs, military or indus-
trial sensors and actuators. In such settings, it is hard to
physically connect to an external interface to verify the
state of a target device.

The discussion above motivates the need for attestation
techniques to detect, and possibly disable, malicious code
prior to performing critical operations. Current attestation
methods fall somewhat short of meeting requirements for
a wide range of embedded devices. They generally fall
into two extremes on the design spectrum: hardware- and
software-based techniques. The former rely on special-
ized hardware (e.g., a TPM [6]) or on the availability of
special CPU instructions [24] to perform attestation, ei-
ther statically (at boot time) or dynamically, during nor-
mal run-time operation. These techniques have attracted a
lot of attention from both the research community and in-
dustry. They are best-suited for higher-end devices, such
as laptops and smart-phones. Experimental devices that
include a full TPM as a separate chip have been con-
structed [23]. However, this approach cannot provide a
dynamic root of trust and is expensive 1 for low-end de-
vices.

Several software-based attestation methods have been
proposed for commodity [37] and embedded devices [38,
36, 25, 35, 47]. However, they generally offer uncertain
security guarantees [41] and some have been subject to
attacks [8]. Furthermore, all current software-based tech-

1The cost of a TPM chip is close to that of a low-end MCU.



niques involve restrictive assumptions on adversarial ca-
pabilities that make them unsuitable for many realistic
applications. In particular, they typically assume “adver-
sarial silence”, meaning that, during each attestation pro-
cess, only the intended prover (device being attested) is
communicating with the verifier (entity that performs at-
testation). In other words, even though the prover might
have malware installed, it is not aided – or impersonated
– by any external party during attestation. The same as-
sumption is sometimes referred to as “no collusion”. Any
attestation technique that makes this assumption is lim-
ited to close-range (one-hop) communication between the
prover and the verifier and its security often relies on strict
round-trip time measurements. It is easy to see that the
adversarial silence assumption is necessary as long as no
secret information can be maintained on the prover. Main-
taining secrets, however, requires secure storage, which,
in turn, prompts the need for hardware support.

Software-based attestation also assumes that the adver-
sary impersonating (or colluding with) the prover must
use the same hardware as the genuine prover. While this
assumption might hold in a few specific settings, it is un-
realistic for many applications.

Finally, there are some proprietary techniques for em-
bedded processors currently on the market. For example,
ARM TrustZone [3] provides an additional – secure – pro-
cessor mode of execution. It includes a new set of shadow
registers, a few KBytes of on-chip SRAM 2, and allows
controlling access to peripherals by the operating system.
Though TrustZone inherently relies on secure boot, it can
be used to provide a dynamic root of trust [26, 12]. How-
ever, it targets more powerful devices than those consid-
ered in this paper3.

The problem with the static root of trust is that, in gen-
eral, it does not offer any guarantees about the current
state of a device, since adversarial exploits can occur post-
boot. Even worse, a static root of trust (e.g., TPM v1.1 or
Secure Boot) is unsuitable for detecting a powerful attack
class based on Return-Oriented Programming (ROP) [39].
ROP allows execution of an arbitrary return-oriented pro-
gram by merely manipulating the return addresses on the
stack, i.e., without changing code. In order to detect such
attacks, techniques that do not rely on the code isolation
provided by a dynamic root of trust have to check areas of

2In contrast with our target MCUs, most devices with TrustZone do
not all include RAM and Flash on chip.

3 TrustZone is available on the high-end ARM processors (ARM11
and Cortex-AX series). However, to the best of our knowledge, it is un-
available for low-end ARM devices that correspond to MCU-s we focus
on, e.g., ARM Cortex-M1. Low-end ARM cores with security exten-
sions are known as SecureCore. However, no detailed information is
publicly available about them [4].

memory that are highly volatile, e.g., stack and heap.

1.1 Roadmap
In this paper, we stay clear of both efficient-but-limited
software-based techniques and heavy-weight TPM-based
approaches to attestation. We focus on the design space
area that has not been previously explored by utilizing
a software/hardware co-design approach to architect an
attestation mechanism with minimal hardware require-
ments.

Our main design guideline is to carefully justify each
component necessary to achieve secure establishment of
a dynamic root of trust in a remote embedded device. Fol-
lowing this guideline leads us to an approach – called:
SMART: Secure and Minimal Architecture for (Estab-
lishing a Dynamic) Root of Trust – that entails mini-
mal hardware modifications to current embedded MCU-
s. To the best of our knowledge, this represents the first
minimal hardware solution for establishing a dynamic
root of trust in low-end embedded devices. We imple-
mented it on two widely available low-cost MCU plat-
forms: Atmel AVR and Texas Instruments MSP430, by
modifying open-source implementations of these MCU-s
in VHDL and Verilog. (Both obtained from the Open-
Cores Project [31]).
Organization: Section 2 discusses our goals and build-
ing blocks. Then, Section 3 presents SMART details
and features. Security issues are addressed in Section 4.
Next, Section 5 presents several concrete protocols utiliz-
ing SMART as a primitive. Implementation details are
discussed in Section 6 and related work in Section 7.

2 Goals and Design Elements
The main result of this paper is the development of
a new primitive called: SMART: Secure and Minimal
Architecture for (Establishing a Dynamic) Root of Trust.
SMART is executed by the prover, PRV , and, in do-
ing so, attests a region of code and jumps to it. A proof
of execution is computed and sent to the verifier, VRF .
SMART guarantees that attested code is executed even if
the entire prover system is compromised (except SMART
ROM code). In the rest of this section, we describe our se-
curity objectives, adversarial assumptions and SMART’s
main building blocks.

2.1 Security Objectives
SMART has three security objectives based upon success-
ful completion of the attestation protocol:



• Prover Authentication: VRF obtains entity authen-
tication of PRV .

• External Verification: VRF is assured that memory
segment [a, b] on PRV contains the expected con-
tent.

• Guaranteed Execution: VRF is assured that code at
location x was executed by PRV .

2.2 Adversarial Assumptions
We assume that the adversary,ADV , has complete control
over the software state, code and data of PRV before and
after SMART execution. In particular, ADV can modify
any writable code on PRV and learn any secret that is not
explicitly protected by the MCU on PRV . Furthermore,
ADV has complete control over the communication chan-
nel and – during the protocol – can use multiple colluding
devices in order to pass or subvert attestation.

We also assume that ADV does not perform hardware
attacks onPRV . Specifically, it does not alter code stored
in ROM, induce hardware faults or retrieveK using exter-
nal side-channels. Likewise, ADV has no means of inter-
rupting execution of ROM-resident code on PRV .

Protection against hardware-based attacks could be
added by encasing the MCU in tamper-resistant coat-
ing and employing standard techniques to prevent side-
channel key leakage. Since our approach is confined to the
MCU, employing such techniques is quite natural. Fur-
thermore, hardware attacks could be mitigated using well-
known tamper-resistance techniques, such as anomaly de-
tection, internal power regulators and additional metal
layers or meshes for tamper detection.

Some processor peripherals might be capable of mod-
ifying memory without interaction with the MCU core,
e.g., a DMA engine. We assume that such peripherals can
be disabled during SMART execution.

Finally, we assume that PRV and VRF share a secret
key K. This key can be pre-loaded onto PRV at produc-
tion time or later. We do not address the details of this
procedure.

2.3 Building Blocks
Our design relies on four main components that reside on
PRV:

• Attestation Read-Only Memory: Memory region in
ROM inside the MCU. The key K can only be ac-
cessed from this region.

• Secure Key Storage: Memory region inside the CPU;
it can be accessed only from SMART code in ROM.

• MCU Access Controls: Controls access toK and pre-
vents non-SMART code from accessing it.

• Reset and Memory Erasure: If any error is reported
by the above components, a hardware reset of the
MCU is performed. Upon reset, hardware enforces a
memory cleanup.

We argue that these four components are both necessary
and sufficient for building a dynamic root of trust in a low-
end embedded system. We detail their purpose in the next
section.

2.4 SMART Overview

As discussed above, the central goal of SMART is guar-
anteed execution of a piece of code on the prover (PRV)
to an external verifier (VRF), even when the prover is
fully compromised. SMART relies on a challenge-based
protocol – initiated by VRF – that leverages special hard-
ware features of PRV . At the start of SMART (Figure 1),
VRF sends several parameters to PRV: attestation re-
gion boundaries a and b; address xwherePRV optionally
passes control after attestation if xflag is set; and nonce n
to prevent replay attacks. A ROM-resident code segment
on PRV computes a cryptographic checksum C of a re-
gion [a, b] in PRV’s memory (using nonce n) and then
passes control to x. After execution of code starting at x,
PRV returns C to VRF . The latter verifies correctness
ofC by re-computing it using the same parameters andK.
We refer to ROM-resident code asRC and code optionally
executed thereafter – as HC. The sequence of operations
of SMART is shown in Figure 1 and the corresponding
pseudo-code ofRC is illustrated in Algorithm 1.

We note that a non-keyed function, such as a crypto-
graphic hash (e.g., SHA-256), is unsuitable for attestation.
This is because, without a secret key, anyone can compute
a hash of any input and fake a reply by PRV . In particu-
lar, malware that infected PRV can do so. Therefore, our
cryptographic checksum is implemented as HMAC keyed
with K that resides in secure storage on PRV’s MCU 4.
Usage of, and access to, K is restricted by the MCU such
that only (trusted and immutable) RC is allowed to use
it. For its part, RC only uses K to compute HMAC and
then passes control toHC. RC is instrumented using both
static and dynamic analysis tools to prevent accidental
leakage of K.

In addition, when xflag is set, interrupts remain dis-
abled after execution of RC. This is to ensure that HC

4If minimality was not a primary goal, public key cryptography could
be used to improve key management.



Verifier VRF
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if C is correct then 
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else
    Reject
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C = SMART(n, a, b, x, xflag , −, −)
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C

Figure 1: Overview of Protocol Using SMART.
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Figure 2: SMART Operation Overview.

is subsequently executed, and to prevent Time-of-check-
to-time-of-use (TOCTTOU) attacks. A TOCTTOU attack
could entail installing a malicious interrupt handler and
scheduling an interrupt (e.g., a timer) to occur during the
first instructions of HC. Such an interrupt handler could
allow reading or writing memory between executions of
RC and HC. Furthermore, hardware modifications to the
MCU are added to avoid code reuse attacks.

3 SMART in Detail

This section describes, in detail, features and components
of SMART.

3.1 Attestation ROM
ROM is a standard feature in many commodity MCUs.
Generally, it incurs very little overhead in the design and
construction of the MCU, since it constitutes a cheap form
of storage. Typically, ROM is hardwired during manufac-
turing, rendering it immutable. What makes our attesta-
tion ROM special is its exclusive hardware-enforced abil-
ity to access K.
ROM Code. RC must guarantee the following properties:

1. Key Isolation: K must not be leaked from ROM.

2. Memory Safety: Software bugs should not allow tem-
porary memory exposure or K leakage.

3. Atomic Execution: ROM code must be executed
atomically and cannot be invoked partially.

Property (3) is guaranteed by the MCU, as discussed in
Section 3.3 below. Properties (1) and (2) are guaranteed
by using two code instrumentation tools: CQUAL [19] and
Deputy [11].

As shown in Algorithm 1, SMART computes an
HMAC of a particular memory segment and then jumps –
without being interrupted – to a verifier-specified address
within that segment. The implementation consists of ap-
proximately 500 lines of C code, which makes checking
its correctness both feasible and relatively easy.
Key Secrecy. Upon termination, SMART passes con-
trol to the untrusted portion of PRV , where malicious
code can sift through memory and search for traces of K
or intermediate states used in HMAC computation. This
could lead to disclosure of K. For this reason, we in-
strumented SMART code with CQUAL – a tool that de-
tects information leakage in C programs. Specifically, K
is marked with a SECRET type. CQUAL propagates this
type to each variable that is computed with any involve-
ment of any other variable of type SECRET. Each func-
tion is equipped with a check for leakage of any SECRET



Algorithm 1: SMART code in ROM.
input : a, b start/end addresses for attestation

x address to jump to after attestation
xflag jump or not?
n nonce sent by verifier
out output address where to store checksum
in (optional) input parameter

output: HMAC output
begin

/* Disable interrupts during SMART code
execution */
DisableIRQ();
/* Attestation key K is unlocked automatically
by the MCU */
InitHmac(K);
/* Attest all parameters */
HmacProcess(a||b||x||xflag||n||in||out);
/* Attest memory region [a, b] */
for i ∈ [a, b] do

HmacProcess(Mem[i]);
end
C ←− FinishHmac();
/* Store HMAC result in global variable */
Copy(∗out, C);
/* Erase temporary variables */
ResetMemory();
if xflag = True then

/* If execute flag set, exec function at address
x */
Call(x, in);

else
/* Restore interrupts status as before SMART
exec*/
RestoreIRQ();

end
end

variable. CQUAL instrumentation is performed off-line; it
does not incur any overhead during operation of SMART.
The end-result is simple: each variable marked SECRET
by CQUAL is zeroed out at the end of each function. The
only variables not erased are the outputs of each function.
Also, the memory location of K is no longer accessible
upon completion of SMART.
Memory Safety. Key isolation alone does not prevent
key leakage, since our code could contain vulnerabilities
that allow ADV to retrieve K by running SMART on
malicious (or malformed) inputs. Fortunately, SMART
involves only around 500 lines of code. This relatively
small size allows manual inspection for memory corrup-

tion bugs. We also enhance manual inspection using
Deputy – a C compiler based on GCC, that provides an
annotation language for describing memory boundaries in
C. For example, a C array can be augmented with infor-
mation about its size. The compiler adds instructions to
check all memory accesses to the array and detects mem-
ory corruptions. Once SMART code is reinforced with
Deputy, whenever a memory corruption is detected, a
special reset is performed by Deputy instrumentation
code. As for other error conditions that could cause a re-
set, we deal with them by making sure that, at each reset,
all memory (stack, heap, and registers) is erased.

Furthermore, the stack and out pointers might be con-
trolled by ADV when SMART code is called. If invalid
values are provided 5, memory corruption may occur dur-
ing SMART execution. This could be exploited by ADV
to abuse SMART, e.g., recover bits ofK or skip execution
of important code. Therefore, both stack pointer and out
pointers are checked at the beginning of SMART code.
Side-Channels. Another avenue for ADV to extract K
is via side-channel attacks. Since hardware side-channels
are out of scope of this work, we focus on software side-
channels, i.e., malware on PRV trying to learn K by
observing SMART execution. Low-end MCUs (such as
MSP430 or AVR) do not have caches that could be used
for timing attacks based on hits and misses. Also, differ-
ences in execution time due to bus contention are data-
independent and cannot leakK 6. Finally, a software-only
timing side-channel attack against HMAC-SHA used in
SMART is not viable. Code used for HMAC computa-
tion does not have conditional branching instructions, re-
sulting in constant execution time. Moreover, to the best
of our knowledge, no timing attacks have been reported
against HMAC-SHA.

3.2 Secure Key Storage

The next question is where to store K used for computing
HMAC. Clearly, it cannot be stored in normal memory,
since malware could easily access it and pass attestation.
We use a special hardware-controlled memory location to
house a single symmetric key, K. This storage must be
immune to software attacks. Recall that hardware attacks
are out of scope of this work. We also note that hardware

5For example, a stack pointer that points to an invalid memory re-
gion, such as I/O register space. Or, the out pointer pointing to the stack
itself, leading to corruption of the stack region used by SMART when
the HMAC result is written to it.

6There is no bus contention on AVR due to its Harvard architecture.
On MSP430, we manually verified rare cases of bus contention. On other
processors, wait cycles can be added to address this issue (only needed
when executing SMART code).



attacks require direct physical access or at least very close
physical proximity to the target device. This is improb-
able in many access-restricted settings, e.g., manufactur-
ing plants, utility stations, fabrication labs or implantable
medical devices (IMDs).

Although details of K initialization are not discussed
in this paper, there are at least two viable approaches.
In the first, K is hard-coded at production time and
never changed again, i.e., in addition to be being access-
restricted, K storage location is read-only. Alternatively,
there could be a secure means of modifying, but not read-
ing,K by an authorized party (e.g., the verifier) that would
rely on a special authenticated channel.7

3.3 MCU Access Controls

Simplicity and minimal cost are some of the primary ob-
jectives of SMART. Hardware modifications are limited
to memory access checking and availability of ROM. We
now describe the hardware modifications necessary to en-
force key protection and to restrict execution ofRC.

Key Access Controls. To enforce K secrecy we need
to ensure that it can be accessed only when the program
counter (PC) is in the RC memory region. One simple
method to enforce this is to connect the data bus to K
memory when the program counter is in ROM range and
the data address is pointing to K address range. The inter-
nal reset signal is triggered ifKmemory is accessed while
the program counter is not in ROM range. Figure 3 shows
how access to K is controlled in the MCU.

ROM Execution Control. Since RC is authorized to ac-
cessK, its usage must be controlled to prevent recovery by
malware. For example, ADV can attempt to selectively
execute portions of RC by using code reuse techniques
(e.g., return to libc [42], borrowed code chunks [27] or
Return-Oriented Programming [39, 7, 9]). To prevent
such attacks, we provide additional access controls upon
RC entry and exit. The program counter is only allowed to
move into ROM starting at SMART initial address. Sim-
ilarly, the program counter can leave ROM only from the
last SMART address. These controls ensure thatRC can-
not be invoked partially: once any attempt to do otherwise
is detected, the MCU is immediately reset. This necessi-
tates for RC to be compiled such that any valid termina-
tion of SMART execution is ended by a return from the
its last instruction address.

7This topic is deferred to future work.

3.4 Cleaning Memory on Reset
When an invalid operation takes place, such as an attempt
to violate SMART memory access controls, a hardware
exception occurs, leading to an immediate MCU reset.
However, if SMART code does not terminate properly,
it cannot clean up its working memory and keying mate-
rial could remain in memory after reset. (The situation is
similar if a power loss occurs.) This technique was used
in several attacks on MCUs to recover keying material or
store information across resets [20, 21]. Therefore, it is
mandatory to perform memory cleanup upon each reset.
In SMART, memory cleanup is performed by processor
logic triggered upon every boot or reset.

We note that the aforementioned phenomenon is similar
to cold boot attacks [22] whereby a computer is stopped
during execution and its memory is removed in order to
recover keying material. However, since a typical MCU
features processor and memory in a single “package”, the
latter cannot be accessed directly. If debugging interfaces
are permanently deactivated and memory is freed upon
each reset, only hardware attacks (that are out of scope of
SMART ) would allow recovery of parts of memory.

4 Security Analysis
Our present security argument is informal. A more sub-
stantial argument (or a proof) would require formal anal-
ysis and verification of SMART code, which is planned
as part of future work. The security argument is based on
the following assertions:

A1 Cryptographic checksum C computed by PRV can-
not be forged. Since C is a result of secure HMAC
function (e.g., HMAC-SHA) we assume that, for any
ADV – external to PRV – that observes a polyno-
mial number of such checksums, finding HMAC col-
lisions and/or learning bits of the attestation key is
infeasible.

A2 Physical and hardware-based attacks on PRV are
beyond ADV’s capabilities.

A3 Attestation key K can be accessed only from within
ROM-resident SMART code. This is guaranteed by
MCU-based access controls.

A4 SMART code cannot be modified since it resides in
ROM.

A5 SMART code can be only invoked at its beginning.
The hardware checks that, except for the very first
instruction in RC, if the program counter is in RC
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range, then the previous executed instruction must
also be in ROM.

A6 RC execution can only terminate at the very last in-
struction address in RC. The hardware checks that,
except for the very last instruction inRC, if the pro-
gram counter is not in RC range, then the previous
instructions must also be outsideRC range.

A7 Upon each invocation of SMART, all interrupts are
disabled 8 and remain so if, upon completion of
SMART, control is passed toHC.

A8 K cannot be extracted by any software-based ADV
internal to PRV . Upon completion of SMART exe-
cution, K is no longer accessible. Also, all memory
used by SMART code is securely erased. The only
value based (statistically dependent) on K is the out-
put C.

A9 For each invocation, SMART computes C based on
the contents of the requested memory segment [a, b].
Although C is guaranteed to be computed correctly,
it may or may not result inPRV passing attestations,
since [a, b] might be previously corrupted by ADV .

8From the security perspective, executing SMART with interrupts
disabled is redundant with respect to assertions A5 and A6. However,
this (assertion A7) prevents a reset if an interrupt occurs during SMART
execution, thus improving reliability.

A10 Any erroneous state (e.g., violation of assertions A3,
A5, A6) leads to a hardware reset. Upon reset, all
data memory and registers are erased, which pre-
vents K leakage. This boot-time memory erasure
also guarantees that, if power loss occurs during
SMART execution, no information about K is re-
tained in memory.

A11 Observing normal execution of SMART should leak
no information about K. Therefore, SMART execu-
tion time and amount of memory used must not be
key-dependent.

Key Protection Guarantee. Assertion A3 implies that K
is not directly available to untrusted software. Assertions
A5 and A6 guarantee that code reuse attacks to recover
K are impossible. A10 implies that, when error condition
occurs, execution is stopped and no information about K
is leaked. A11 guaranties that side-channels cannot be
used to gather information about K by untrusted software
executing on the MCU. Other side-channels commonly
used in key recovery attacks rely on power consumption
analysis and electromagnetic emanations [34]. However,
these are hardware/physical attacks 9.

9We note that these side-channels might be exploitable in very spe-
cific cases by a local attacker, e.g., if hardware to perform such measure-
ments is available as a peripheral of the device, e.g., a coulomb counter
that measures remaining battery power. This could, in theory, provide
information on power consumption of SMART code. We assume that
such features are not available on the device.



Given the above assertions and the key protection guar-
antee and assuming that VRF receives and successfully
verifiesC, we argue that postulated security objectives are
satisfied:
Prover Authentication. If C is correctly computed and
n is a random nonce of sufficient bit-length, VRF con-
cludes that C was computed by PRV within the interval
of time between the initial request message and the receipt
of C. This yields fresh authentication of PRV .
External Verification. Assertions A1-A8 imply that C
was computed by SMART code on PRV . Therefore,
memory region [a, b] on PRV contained code or data ex-
pected by VRF .
Guaranteed Execution. Assertion A6 implies that, im-
mediately after computing C, PRV executes code at x, if
xflag is set. If C is deemed correct by VRF and x = a,
VRF is assured that the expected code at location a was
executed.

5 Other Uses of SMART

In this section we describe several techniques that can be
implemented using SMART as a building block.

Algorithm 2: SMART usage to attest a memory
range.

input : n nonce sent by VRF
a start address to attest
b end address to attest
H HMAC result (global variable)

output: HMAC output
begin

SMART(a, b, ∅, False,n,&H ,∅);
Send(H);

end

5.1 Remote Attestation of Parts of Memory
The most natural usage of SMART is to attest a memory
segment and verify that it contains data (or code) that it
is expected to contain. This can be achieved by invoking
SMART with the start and end addresses of the memory
range to be attested, as shown in Algorithm 2.

5.2 Remote Proof of Reset
Some applications need to ensure that a device has been
reset successfully. This can be easily done with SMART,
as shown in Algorithm 3. HMAC guarantees that the reset

function (R) has been verified and executed. Here, we
assume that output of HMAC is not erased during reset,
e.g., stored in Flash or EEPROM.

5.3 Attested Reading of Measurements
Some applications need to make sure that values read
from a peripheral device cannot be forged by malware
possibly present on that device. For example, large-scale
incorrect reports of current electricity consumption by
smart meters might lead to power outages. Or, an IMD
that returns incorrect values when queried by a physi-
cian might result in an incorrect prescription issued to a
patient, with potentially catastrophic consequences. Pre-
dictably, attestation of measurements should provide: (1)
freshness of the values read, (2) proof of reading the val-
ues from the peripheral and (3) integrity of the values.

Freshness is provided via a nonce, present by default in
SMART invocation. Proof of reading the value is provided
by calling SMART to attest and runHC, that reads the val-
ues. Finally, HC calls SMART a second time, as a normal
HMAC function, to protect integrity of the read values.
Algorithm 4 presents this primitive.

Although this approach, using hash chains, bears some
resemblance to the extend operation of a TPM, there are
some important differences: HMAC attests each output of
SMART with the secret key of the device. This allows for
a simpler design. Besides integrity, HMAC correctness
confirms that it was produced by SMART. This is funda-
mentally different from the extend operation preformed
by a TPM, since integrity of the PCR is enforced by hard-
ware.

We note that the Send function, that sends the HMAC
to VRF , is not guaranteed to be executed since it is not
verified by SMART. However, this does not impact validity
of the HMAC or the obtained measurements.

5.4 Further Uses and Extensions
A primitive providing a dynamic root of trust, such as
SMART, can be used many other purposes. For example,
if certain known malware propagates over a network of
embedded devices, VRF can introduce detection or dis-
infection code. This code could be launched by SMART
to perform remote search for known malicious patterns in
code or data. Using SMART, validity of returned HMAC
would guarantee that detection code was executed unin-
terrupted and that the detection result is genuine.
SMART can also facilitate mutual authentication and

shared key generation between two (or more) previously
paired devices. In this case, each device acts as both a
PRV and VRF . SMART guarantees that, even in the



Algorithm 3: SMART usage to securely reset a de-
vice.

input : n nonce sent by VRF
R reset function address
|R| the reset function size
H HMAC result (global variable)

output: HMAC output
begin

SMART(R, R+ |R|, R, True,n,&H ,∅);
end
// ResetFunction: R()
begin

ShutdownDevices();
EraseAllMemoryButH();
PC = 0 ;

end
// The value H will be returned to VRF
// after boot is completed.

event of full software compromise of either device, a de-
vice’s long-term attestation key cannot be modified or dis-
closed. Consequently, the adversary cannot clone a gen-
uine device or eavesdrop on communication between two
devices. One possible application example is in car key
fobs. Such a fob, paired with the car’s on-board Embed-
ded Compute Unit (ECU) could share a key protected by
SMART.

Fine-grained access control to sensitive peripherals can
be limited toHC only with simple hardware extensions to
SMART. For example,HC code can be provided in a bun-
dle with its own HMAC and a bit field that describes au-
thorization to access specific memory regions correspond-
ing to memory mapped peripherals. Access to these mem-
ory regions would, in turn, be authorized only if HMAC
is validated. This is useful in many applications, e.g.,
pacemakers where it could control delivery of pacing im-
pulses.

6 Implementation

To assess feasibility, practicality and impact of SMART
we implemented it on two low-end commodity MCU plat-
forms. We believe that this is the best way to understand
its benefits and limitations as well as to evaluate the im-
pact of required MCU modifications. We chose to base
our implementation on two fully open-source clones of
widely used off-the-shelf MCU-s: Atmel AVR and Texas
Instruments MSP430. These processors share many fea-
tures. They both have a limited memory address space

Algorithm 4: SMART usage to attest a measurement,
e.g., a reading from a peripheral accessed from mem-
ory mapped I/O.
input : n nonce sent by VRF

in address to read from device
R reading function address
|R| the reading function size
H1 first HMAC (global variable)
H2 second HMAC (global variable)

output: HMAC output
begin

SMART(R, R+ |R|, R, True,n,&H1,in);
/* Function R will be called by SMART code */
Send(V,H2);

end
// ReadingFunction: R(in)
begin

V ←− ReadValueFromHW(in) ;
tmp=V ||H1 ;
SMART(&tmp,&tmp+
sizeof(tmp),0,False,n,&H2,∅);
RestoreIRQ();

end

with 16-bit addresses. Common memory sizes in both
devices are between 2 − 16 KBytes of SRAM used as
data memory and between 16− 64 KBytes of flash mem-
ory used for program storage. Both are designed for low-
power as well as low-cost and are widely adopted in many
application areas, e.g., in the automotive industry, utility
meters, consumer devices and peripherals.

AVR and MSP430 also have some major architectural
differences. Notably, MSP430 is a 16-bit Von Neumann
architecture processor with common data and code ad-
dress spaces. Whereas, AVR is an 8-bit Harvard archi-
tecture processor that has separate address spaces for data
and program memory. Another prominent difference is in
the instruction set: AVR is a RISC architecture with most
instructions requiring a single 16-bit word and executing
in one clock cycle. In contrast, MSP430 can perform mul-
tiple memory accesses within a single instruction. Its in-
struction execution time can range from 1 to 6 clock cy-
cles, and instruction length can vary from 16 to 48 bits.

The differences between AVR and MSP430 makes
them good representatives of architectures commonly
used in many modern embedded systems.



6.1 Implementation Details
SMART implementation consists of three main compo-
nents:

• Processor modifications to add ROM code, key stor-
age and memory access controls.

• Largely architecture-independent SMART routine
stored in ROM that implements Algorithm 1. This C
code has a small number of architecture-dependent
lines.

• One or more software protocol implementations that
utilize the SMART primitive.

Implementation on AVR and MSP430 Cores. We first
implemented the hardware part of SMART on the AVR
processor, an Atmega103 [5] clone from the OpenCores
Project [31]. Figure 4a illustrates the execution core and
its memory. Parts that had to be modified or added are
shaded. They mainly correspond to memory and memory
access controls on memory buses.

Next, we implemented SMART on MSP430. We used
the open-source OpenMSP430 core from the OpenCores
Project [31] and ported SMART to it. The port consists
of processor modifications, adaptation of ROM code to
MSP430 architecture as well as testing and synthesiz-
ing the resulting core. These tasks were performed in
one week by one developer with moderate Verilog knowl-
edge and no previous experience with the OpenMSP430
core. Processor modifications were limited to implement-
ing and adding modules for ROM code and key memory.
In addition, minor modifications and address checks were
required in the memory backbone module of the Open-
MSP430 core. The memory backbone module performs
arbitration of memory accesses. Figure 4b presents re-
quired modifications (shaded) for MSP430.

In both processors, less than 200 lines of code (Table 1)
were changed to implement these modifications. In ad-
dition to processor modifications, we extended existing
regression tests (or test benches) to verify correct imple-
mentation of each of assertion from Section 4 that is rele-
vant here: A3, A5, A6, and A10.
ROM-Resident Code. This code corresponds to 487
lines of portable C and uses a standard SHA-1 implemen-
tation [13]. It requires 4KBytes of ROM for the AVR and
6KBytes for MSP430. It executes in 10-s to 100-s of mil-
liseconds (see Table 2), depending on the size of HC to
attest.

Memory usage in SMART has to be carefully managed.
SMART code cannot reserve memory for its own usage.
Memory should only be allocated on the stack (i.e. local
functions variables). It should not attempt to use global

Component Original Changed
Lines Lines Ratio

AVR, core (VHDL) 3932 151 3.84%
AVR, tests 2244 760
MSP430, core (Verilog) 4593 182 3.96%
MSP430, tests 17665 1122

Table 1: Changes made (in # of HDL lines of code)
in AVR and MSP430 processors, respectively, excluding
comments and blank lines.

Data Size Cycles Time at 8MHz
1 KByte 2302281 287 ms

512 Bytes 1281049 160 ms
32 Bytes 387471 48 ms

Table 2: HMAC execution timing.

variables or heap allocated memory. Doing so allows us
to avoid relying on untrusted data. Finally, the code is
compiled and linker scripts are used to generate the ROM
image suitable to the modified processor.
Hardware Footprint. Simulating the design demon-
strates its functional status. Whereas, comparing the num-
ber of lines of code of its implementation provides in-
sights into the amount of effort required to implement
SMART on a given MCU. However, this is insufficient to
assess real impact of SMART in terms of hardware over-
head, i.e., surface increase due to its presence on an actual
manufactured device. A single line of HDL can add a
simple wire, a register or an entire memory block; each of
these would be counted as one line of code, although they
have very different impact on synthesized hardware. We
synthesized the original and SMART-ified designs for both
AVR and MSP430. This provides an initial estimate of the
impact of SMART on the final devices. Synthesizing is the
act of transforming (or compiling) the design from a high-
level description language (Verilog or VHDL) into a set of
wires and elementary gates that serve as building blocks
of an Application-Specific Integrated Circuit (ASIC).

Synthesis needs to be performed for a specific target
hardware. We used the library from UMC 180nm pro-
cess [18] and Synopsys Design Compiler [44]. For better
performance, RAM and ROM memories were generated
with a specific tool [17, 16]. Flash memory numbers were
gleaned from publicly available information [10]. Results
can vary substantially depending on many parameters,
such as: required maximum frequency, latency, placement
and routing and availability of better memory IP. How-



(a) AVR: Dark gray boxes represent logic added to the processor. Core
control signals provide information about internal processor status to
memory bus controls.

(b) MSP430: Memory backbone was modified to control access to
ROM and K. Since MSP430 is based on Von Neumann architecture,
concurrent access can occur to different memory parts (e.g., instruc-
tion fetch and read data). In that case, memory backbone arbitrates
bus access and temporarily saves/restores data.

Figure 4: Modifications to AVR and MSP430.

ever, our current measurements (in Table 3) show that the
impact of SMART on surface area is minimal. Adding
SMART to both AVR and MSP430 caused only a 10%
increase in their respective surface areas. As mentioned
before, most of that added area is due to the ROM hous-
ing SMART code. Modifications to the core required only
1K and 0.7K gate equivalents in AVR and MSP430, re-
spectively. This could probably be reduced as we did not
perform optimizations.

6.2 Lessons Learned From Experiments
The first observation from our experiments is that imple-
menting SMART is not a complex task and porting it to
a different architecture is even easier. Second, additional
footprint of our implementation is minimal. One change
that impacted chip surface area the most is the additional
ROM storing SMART code.

Another important result is that, in both cases, we did
not have to change the processor core itself. Instead,
we only had to modify the memory access controller.10

Therefore, SMART might be also well-suited to settings

10The only exception is that, in some cases, we needed information
about the execution engine state (e.g., detection of wait states).

where the processor core is available only as a “black box”
and provides enough information about accessed memory

Component Size in kGE
Orig. with SMART Ratio

AVR MCU 103 113 10%
Core 11.3 11.6 2.6%
SRAM 4 kB 26,6 26.6 0%
Flash 32 kB 65 65 0%
ROM 6 kB - 10.3 -
MSP430 MCU 128 141 10%
Core 7.6 8.3 9.2%
SRAM 10 kB 55.4 55.4 0%
Flash 32 kB 65 65 0%
ROM 4 kB - 12.7 -

Table 3: Comparison of chip surface used by each com-
ponent of the original MCU to its modified version. kGE
stands for thousands of Gate Equivalents (GE-s). One
GE is proportional to the surface of the chip and com-
puted form the module surface divided by the surface of a
NAND2 gate, 9, 37 ∗ 10−6mm2 with this library.



on its external interface, e.g., low-end ARM cores.
One limitation is that we rely on “reasonably” fast

HMAC computation, which might make SMART too slow
for some applications. This is a consequence of the con-
scious trade-off made when we chose to limit the amount
of hardware changes in the processor. Depending on the
application, it may be possible to use a hardware-based
SHA-1 implementation (e.g., [30]), which would signifi-
cantly improve performance without requiring major pro-
cessor modifications.

7 Related Work
Related work falls into several categories:

Hardware Attestation. Secure boot [2] checks the in-
tegrity of a system at power-on. The root of trust, usually
a small bootloader, computes a hash of loaded memory,
and compares it to a signed value, a device is allowed
to boot-up only if all checks are passed. Trusted Plat-
form Modules (TPM) [45] are secure co-processors that
are nowadays present in most commodity systems. TPMs
compute integrity checksums of loaded memory at boot
time and send them to be verified by a remote verifier.
TPMs also protect data against compromised operating
system, i.e. make an encryption key available only when
Platform Configuration Registers (PCRs) are in a given
state. The integrity measurements are stored in PCRs in-
side the TPM. Security is based on the following facts: (1)
PCRs are only accessible through the TPM and (2) mea-
surements stored in PCRs can only be extended by includ-
ing the previous values in the computation. Each exten-
sion is computed using a cryptographic hash of the current
measurement and the previous PCR value. Trust is es-
tablished because the very first extension is performed by
BIOS upon boot. Several approaches have been proposed
that rely on the TPM as a common foundation [33, 14, 25].
Software Attestation. Pioneer [37] provides device at-
testation without relying on any specialized hardware or
secure co-processor. It computes a checksum of mem-
ory using a function that relies on “enough” side-effects
of computation (status registers, etc.) such that malicious
emulation of this function incurs a temporal overhead that
is sufficient to detect cheating. Attestation that relies on
timed software checksums has been also adapted to em-
bedded devices in [36, 38, 40]. However, security of such
solutions has been challenged by [41] and several attacks
on such schemes have been proposed [8]. Other hybrid
solutions (e.g., [32]) rely on ROM and fill prover’s entire
memory to ensure absence of malicious code and then re-
store a device to a known secure state. All software solu-

tions rely on strong assumptions on adversarial capabili-
ties and do not consider that colluding devices can actively
participate in the protocol to defeat attestation. This, com-
bined with the high overhead of software solutions, makes
the application of software attestation for time critical de-
vices questionable.
Dynamic Root of Trust. Recently a dynamic root of
trust mechanism has been added to the TPM specifica-
tions [46] and has been implemented as AMD SVM [1]
and Intel TXT [24]. This provides a way to perform at-
testation dynamically after boot. This is accomplished
by allowing a specific CPU instruction to atomically re-
set the state of some PCRs, isolate a region of memory,
hash the contents of that memory and execute it. Several
hardware protections measures, such as disabling DMA,
debugging and resetting the TPM PCRs, are included to
prevent fraudulent attestation. The Flicker system archi-
tecture [29] establishes a dynamic root of trust on com-
modity computers, leveraging AMD and Intel advances,
by running a Piece of Application Logic (PAL) on the
prover. The execution of PAL is guaranteed even if BIOS,
OS and DMA of the system are all compromised. This
was further extended into TrustVisor [28] which provides
a dynamic root of trust for PALs directly from a minimal
hypervisor. This significantly improves the performance
of the Dynamic Root of Trust mechanism. Flicker and
Trustvisor are the closest to the approach considered in
this paper. However, their complexity and reliance on a
TPM and Intel or AMD architectures inhibits their use in
low-cost commodity embedded devices.
Other Hardware-Based Techniques. SPM [43] is a
hardware-based mechanism for process isolation. It relies
on a special vault module that must be bootstrapped with
a static root of trust. This vault bootstraps SPM protected
programs that gain exclusive control over the protection
of their own memory pages. SPM and SMART share some
key features, such as the use of program counter to restrict
access to secret storage, and code entry point enforce-
ment. However, unlike SMART, SPM does not provides a
dynamic root of trust. It also involves a larger TCB and is
generally oriented towards higher-end embedded systems
with an MMU or an MPU. Furthermore, SPM requires
new custom instructions to be added to the core. Finally,
its feasibility (i.e., effort needed to implement on a real
hardware platform) and footprint remain unclear.

8 Conclusions
This paper is motivated by lack of currently feasible tech-
niques for providing dynamic root of trust on remote em-
bedded devices. We proposed SMART a very simple,



lightweight and low-cost architecture that nonetheless of-
fers concrete security guarantees in the presence of any
kind of non-physical attacks. Future work will consist in
formally verifying the ROM-resident code in order to ob-
tain a strong security proof for the entire architecture; this
is likely to be a challenging task. More experiments us-
ing current MCU implementations need to be performed
to better assess the overhead. We also plan to implement
and evaluate SMART on several other common MCU plat-
forms and among a larger project we plan to produce a
few test ASIC samples of microcontrollers with SMART.
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Srdjan Ĉapkun and NDSS’12 anonymous reviewers for
their insightful comments that helped us improve this pa-
per.

Daniele Perito was supported in part by the Euro-
pean Commission within the STREP WSAN4CIP project.
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