Weak Forward Security in Mediated RSA*

Gene Tsudik!

Department of Information and Computer Science, University of California, Irvine.
Email: gts@ics.uci.edu

Abstract. Mediated RSA (mRSA) [1] is a simple and practical method
of splitting RSA private keys between the user and the Security Medi-
ator (SEM). Neither the user nor the SEM can cheat each other since a
signature or a decryption must involve both parties. mRSA allows fast
and fine-grained control (revocation) of users’ security priviliges.
Forward security is an important and desirable feature for signature
schemes. Despite some notable recent results, no forward-secure RSA
variant has been developed. In this paper (abstract), we show how weak
forward security can be efficiently obtained with mediated RSA. We con-
sider several methods, based on both multiplicative and additive mRSA
and discuss their respective merits.

1 Forward Security

Forward security is a timely and active research topic which has received some
attention in the recent research literature. The purpose of forward security is
to mitigate an important problem in ordinary public key signatures: the inabil-
ity to preserve the validity of past signatures following a compromise of one’s
private key. In other words, if a forward-secure signature scheme is employed,
an adversary who discovers the private key of a user is unable to forge user’s
signatures from earlier times (pre-dating the compromise).

The notion of forward security was introduced by Anderson [2]. Since then,
a number of schemes were proposed. Some are generic, i.e., applicable to any
signature scheme [3], while others target (and modify) a particular signature
scheme to achieve forward security [4, 5].

In this paper we concentrate on weak forward security in a mediated signature
setting. Informally, weak forward security means that the adversary is unable to
forge past signatures if she compromises only one (of the two) share-holders of
the private key. Specifically, we propose, discuss and analyze two simple schemes
built on top of mediated RSA (mRSA), a 2-out-of-2 threshold RSA scheme.

The paper is organized as follows: the next section provides an overview
of mRSA. Then, Section 3 describes the forward secure additive mRSA and
discusses its security and efficiency features. Section 4 presents another scheme
based on multiplicative mRSA. This scheme is more flexible but slightly less
efficient. The paper ends with the summary and some directions for future work.

* This work was supported by DARPA contract F30602-99-1-0530.

2 Mediated RSA

Mediated RSA (mRSA) involves a special entity, called a SEM (SEcurity Media-
tor) which is an on-line semi-trusted server. To sign or decrypt a message, Alice
must first obtain a message-specific token from the SEM. Without this token
Alice can not use her private key. To revoke Alice’s ability to sign or decrypt,
the administrator instructs the SEM to stop issuing tokens for Alice’s public key.
At that instant, Alice’s signature and/or decryption capabilities are revoked. For
scalability reasons, a single SEM serves many users. One of the mRSA’s advan-
tages is its transparency: SEM’s presence is invisible to other users: in signature
mode, mRSA yields standard RSA signatures, while in decryption mode, mRSA
accepts plain RSA-encrypted messages.

The main idea behind mRSA is the splitting of an RSA private key into two
parts as in threshold RSA [6]. One part is given to a user while the other is
given to a SEM. If the user and the SEM cooperate, they employ their respec-
tive half-keys in a way that is functionally equivalent to (and indistinguishable
from) standard RSA. The fact that the private key is not held in its entirety
by any one party is transparent to the outside, i.e., to the those who use the
corresponding public key. Also, knowledge of a half-key cannot be used to derive
the entire private key. Therefore, neither the user nor the SEM can decrypt or
sign a message without mutual consent.

We now provide an overview of mRSA functions. The variant described below
is the additive mRSA (+mRSA) as presented by Boneh, et al. in [1]. There is
also a multiplicative mRSA variant — denoted *mRSA — where the private key is
computed as the product of the two shares. (See Appendix for the description).
Muliplicative mRSA was first introduced in the Yaksha system [7] and later
discussed in [8].

Algorithm +mRSA.key (executed by CA)

Let k (even) be the security parameter

1. Generate random k/2-bit primes: p, q
2. n < pq

3. e & Zgn)

4. d + 1/e mod ¢(n)

5. dy & Zp— {0}

6. dsem < (d—dy,) mod ¢(n)

7. SK < d

8. PK « (n,e)

After computing the above values, the CA securely communicates dgep, to
the SEM and d,, — to the user. (A detailed description of this procedure can be
found in [1].) The user’s public key PK is released, as usual, in a public key
certificate.

Protocol +mRSA.sign (executed by User and SEM)

1. USER: h « H(m)
where H() is a suitable hash function (e.g., SHA-based HMAC) and
[H()| < k.
2. USER: send h to SEM.
3. In parallel:
3.1 SEM:
(a) If USER revoked return (ERROR)
(b) PSsem 4+ h%e™ modn
(c) send PSsem to USER
3.2 USER:
(a) PS, + h% modn
USER: b’ + (PSserm * PS,)¢ modn
USER: If b’ # h then return (ERROR)
S « (PSsem x PSy) mod n
USER: return (h,S)

NS ok

The signature verification (+mRSA.ver) algorithm is not provided as it is iden-
tical to that in plain RSA.

3 Forward Secure +mRSA

The main idea in forward-secure additive mRSA (FS+mRSA) is for both SEM
and user to evolve their private key shares in parallel. The evolution is very
simple: each party logically multiplies its share by e. We say “logically” since
no actual muliplication is performed; instead, each party merely maintains a
counter (i) which is the index of the current time period. As in all other forward
secure schemes, there is a maximum number T past which the shares are not
evolved.
At any given time, the current private key is:

d; =dyxe' and dy =dxe” T
The user’s and SEM’s respective key shares, at a given interval are:
diw = (o) * € where do, = dy * e~ mod ¢(n)

and:
dhsem = (dO,sem) x e’ where dO,sem = dsem * e~" mod ¢(n)

The i-th private key evolution can be thus rewritten as:
d; = (dou) * el + (do,sem) * el=dyxet =dxe"T

In actuality, both user and SEM always maintain dy,,, and do, sem, which are
their respective initial shares. However, when they apply their respective shares
(to sign a message) they use the current evolution. The reason for not actually

computing d; ,/sem i because neither the SEM nor the user knows ¢(n) and
thus cannot compute values of the form:

((dO,u/sem) * ei) mod ¢(n)

Recall that p,q and, consequently, ¢(n) are known only to the CA.

The flavor of forward security offered by our approach is weak. Here 'weak’
means that, throughout the lifetime of the public key (T periods), the adversary
is allowed to compromise only one of the parties’ secrets, i.e., only d; ., or d; sem
but not both.

Although the above may be viewed as a drawback, we claim that weak for-
ward security is appropriate for the mRSA setting, since the security of mRSA
is based on the non-compromise of both key shares. More specifically, the SEM is
an entity more physically secure and more trusted than a regular user. Hence, it
makes sense to consider what it takes for mRSA to be forward secure primarily
with respect to the user’s private key share.

3.1 FS+mRSA in detail

Like most forward-secure signature methods, FS+mRSA is composed of the fol-

lowing four algorithms: FS+mRSA.key, FS+mRSA.sign FS+mRSA.ver and FS+mRSA.update.
The purpose of the first three is obvious, while FS+mRSA.update is the secret

key share update algorithm executed by both user and SEM. We do not spec-

ify FS+mRSA.update since it is trivial: as mentioned above, it does not actually

evolve each party’s key share: it merely increments the interval counter.

Algorithm FS+mRSA.key (executed by CA)

Let (¢,T) be the length of the update interval and the max.
number of update intervals, respectively.

1-7. Identical to +mRSA key

8. PK «+ (t,T,n,e)

9. dow + du*e T mod ¢(n)

10. dosem 4 dsem * e~ mod ¢(n)

Protocol FS+mRSA.sign (i,m)
i (0 < 4 < T) is the current interval index and m is the
input message

1. USER: h « H;(m)
where H;() is a suitable hash function (e.g., SHA-based HMACQC) in-
dexed with the current interval. (|H;()| < k)
2. USER: send m to SEM.
3. In parallel:
3.1. SEM:
(a) If USER revoked return (ERROR)
(b) h + H;(m)

(¢) PSsem 4« (h%0sem)¢" modn

(d) send PSsem to USER

3.2. USER: ,

(a) PS, + (h%)* modn

USER: I’ < (PSeem * PS,)*¢" " modn
USER: If b’ # h then return (ERROR)

S + (PSsem * PS,) modn

USER: return (h,S)

N ook

We note that, in steps 3.1.a, 3.2.b and 4, two exponentiations are performed.

AMlgorithm FS+mRSA.ver (i,S,m,e,n)

i1(0< i< T) is the claimed interval index,

S is the purported signature on a message m, and (e,n) is the
public key of the signer

1. if (¢ < 0) or (> T) return (ERROR)
2. h « H;(m)
3.0 « S

If B # h then return (0)
5. return (1)

=

From the descriptions of FS+mRSA .sign and FS+mRSA.ver it is clear that
the present scheme is correct, i.e., signature verification succeeds iff a valid sig-
nature is provided:

i)) -T, i —T_ i i—T
S «— hd — hdi‘u+d1‘sem — hd"*e *e'+dgem *€ xe' _ hd*e

and

i i

—ped = p

Se*eT7 — (hd*e"fT)e*eT7

3.2 Efficiency

In [1], the efficiency of mRSA is shown to be roughly equivalent to unoptimized
RSA, i.e., RSA without using the Chinese Remainder Theorem (CRT). The

efficiency of FS+mRSA is only slightly lower than that of mRSA. The only
difference in signing is the extra exponentiation with e! performed by both the
user and the SEM in parallel.

In general, an additional exponentiation with e’ is also needed for verifying
FS+mRSA signatures. However, we observe that, if the user’s public exponent
is small (e.g., 3), the curent public key e; = 3i! is likely to be smaller than the
modulus n for many values of i. For example, if e = 3 and k = 1024, |e;| < k
and e; < n for 0 < i < 592. In that case, e; can be stored as a single k — bit
number and only one exponentiation would be required to verify an FS+mRSA
signature.

The extra storage due to forward security in FS+mRSA is negligible. Since
key shares are only logically evolved, the only extra information maintained by
all signers and SEM-s (on top of what is already required by mRSA) is the index
of the current time interval.

3.3 Security Considerations

In all security aspects (other than forward security) the proposed scheme is
essentially equivalent to plain RSA as argued in [1]. Similarly, the forward se-
curity property of FS+mRSA is based on the difficulty of computing roots in a
composite-order group which is also the foundation of the RSA cryptosystem.
While this extended abstract does not contain a proof of this claim, we provide
the following informal argument:

Assume that the adversary compromises the user at an interval j and,
as a result, learns dg ,." In order to violate forward security, it suffices
for the adversary to generate a single new signature of the form (where
i < j and h = H(m) for some new message m):

S = hdi _ hdo*ei — hdo,sem*ei+d0vu*ei — (hdo‘sem*ei % hdo‘u*e")

Computing h%=*¢"(mod n) is trivial. However, computing h%-s¢m*¢" (mod
n) seems to require taking e-th (cube) roots (modn) since, in the cur-
rent interval j (j > i), the SEM is using as its key share (dp sem * /) and
only “produces” values of the form: h%sem*¢’ mod n.

All forward-secure signature schemes proposed thus far rely on the secure
deletion of old secret keys. This is not always a realistic assumption, especially
when secure (tamper-resistant) hardware is not readily avaialable. In this aspect,
FS+mRSA offers an advantage since the user’s secret key share is not actually
evolved and no deletion of prior secrets is assumed. While the compromise of
the user’s current key share yields all user’s key shares for all prior intervals,
no past-dated signatures can be produced since the SEM’s key share evolves
separately. We also note that this property is symmetric: if a SEM’s key share

! This is possible because d; . is never actually computed, but composed, when needed,
as do,y *x €’.

is ever compromised, forward security is preserved as long as the user’s share
remains secure.

There are, however, two types of attacks unique to FS+mRSA. We refer
to the first type as a future-dating attack. In it, an adversary obtains a valid
signature from the user (m,S) under the current public key (e,n,7). He then
takes advantage of the private key structure to construct a valid signature (S’)
on the same message m dated in some future interval j (i < j < T). This can
be easily done by computing:

S = Sej_i — (h(du+dsem)*ei_T)ej_i — hd*ej_T
We note that this attack does not compromise the forward security property of
the signature scheme. However, it does pose a problem for FS+mRSA. Fortu-
nately, there is an easy fix. It involves hashing the index of the current time
interval together with the message. This is already specified in the initial step
in protocol FS+mRSA.sign. (In other words, instead of h = H(m) we can com-
pute h = H(m,1), or, better yet, h = HMAC;(m). This essentially rules out the
future-dating attack.)

The second attack type is an oracle attack. In it, an adversary, masquarading
as the user, sends signature requests to the SEM during the time interval 1.
This is easy to do since the communication channel between the user and the
SEM is neither private nor authentic. The adversary collects a number of “half-
signatures” of the form (m, PSs.,,) where:

Psi,sem — hdsem*ei_T

Suppose that at a later interval j (i < j < T), the adversary actually com-
promises the user’s secret d; . Although the adversary can not compute “new”
signatures from prior time intervals, he can use the previously acquired half-
signatures to forge signatures from period i:

i—-T T

S = (PSi,sem)du*el_T — (hdsem*e)dsem*e’_T — pdxe’”
One simple way of coping with the oracle attack is to require the user-SEM
communication channel to be authentic. This is not much of a burden in practice
due to widely-deployed and available tools such as IPSec [9] and SSL [10]. An
alternative is to require mRSA-based authentication of the signature request
messages flowing from the user to the SEM. This can be accomplished as follows.
When sending a signature request to the SEM), the user computes, in addition:
h = H(h) where H() # H() is a suitable (cryptographically strong) hash
function such that |H ()| < k. He then computes:

PS, « h%» modn

The user sends PS, along with h in the signature request to the SEM. The
SEM, before computing its half-signature (PSsem), verifies PS, by computing:

h' = H(h) and comparing;:

B and (PS,"*™)**¢" modn

Since these two values match only if the user originated the signature request,
oracle attacks can be thereby avoided.

4 Forward Secure *mRSA

We now construct another forward-secure scheme based on the multiplicative
mRSA variant. Only the key generation and signing algorithms are shown; the
verification algorithm is identical to that in FS+mRSA.

Algorithm FS*mRSA.key

1-7. Identical to *mRSA key (see Appendix)
8. PK «+ (t,T,n,e)
9. dO,sem «— dsem * e_T mod q’)(n)

The main difference with respect to F'S + mRSA is the unilateral update
feature. In the present scheme, only the SEM’s share is evolved whereas the user’s
share remains the same throughout the lifetime of the key. This is a desireable
feature since it saves the user one exponentiation over FS+mRSA. However, this
does not significantly influence the overall performance since, unlike FS+mRSA,
the two parties cannot compute their half-signatures in parallel.

Protocol FS*mRSA.sign

USER: h + H;(m)

USER: send m to SEM

SEM: If USER revoked return (ERROR)
SEM: h « Hi(m)

SEM: PSsem < h%=em modn

SEM: send PSsem to USER.

USER: ' « (PS%)**¢" " modn
USER: If b’ # h then return (ERROR)
S «— (PS%)Ymodn

USER: return (h,S)

© O RN O W

—_

The correctness of FS*mRSA is evident from the verification procedure:

T—1 T—1 T—1

(S)e*e — ((PSsem)d")e*e — ((hdi‘sem)du)e*e —

((hdsem*ei_T — (hd*ei_T)e*e —h

Just like FS+mRSA, this scheme is vulnerable to both future-dating and
oracle attacks. Fortunately, the exact countermeasures described in Section 3.3
are equally applicable here.

Another trivial variation of this scheme entails only the user (but not the
SEM) evolving its key share. This is a less attractive option since it is much more
likely that the user, rather than the SEM, succumbs to eventual compromise.
Finally, it is also possible to have both parties evolving the key (just as in
FS+mRSA). The main difference here would be that signature verification would
require an extra exponentiation with e?’ rather than e’.

)du)e*eT_i

5 A Final Observation

A crucial (but purposely ignored above) detail in the construction of FS+mRSA
and FS*mRSA is the use of the current period index ¢ in the hashing of the
input message. The intended purpose of the index is as a hedge against possible
attacks against the key evolution scheme. However, a closer look indicates that
the inclusion of the index in the hash is in and of itself sufficient to provide the
same weak forward security that we hope to attain with key evolution. In this
case, key evolution as described above can be dropped completely to be replaced
by the simple hashing of the period index. (This would also result in a much
more efficient scheme.)

6 Summary

We described two methods of obtaining efficient (yet weak) forward security
with mediated RSA. These methods work with both multiplicative and additive
mRSA variants. The degree of forward security is weak since we assume that
only the user or the SEM (but not both) are compromised by the adversary.
However, this assumption is in line with the mRSA notion of security which is
based on the inability to compromise both parties.

Since, aside from signatures, mRSA can be used for encryption, the natural
issue to consider is whether FS+mRSA and FS*mRSA schemes are useful for
forward-secure encryption.

7 Acknowledgements

Many thanks to Giuseppe Ateniese for pointing out an attack on the previous
version of FS+mRSA as well to anonymous referees for their comments.

References

1. D. Boneh, X. Ding, G. Tsudik, and B. Wong, “Instanteneous revocation of security
capabilities,” in Proceeding of USENIX Security Symposium 2001, Aug. 2001.

2. R. Anderson, “Invited lecture at the acm conference on computer and communi-
cation security (ccs’97),” 1997.

3. H. Krawczyk, “Simple forward-secure signatures from any signature scheme,” in
ACM Conference on Computer and Communication Security (CCS’00), 2000.

4. G. Itkis and L. Reyzin, “Forward-secure signatures with optimal signing and veri-
fying,” in CRYPTO01, 2001.

5. M. Bellare and S. Miner, “A forward-secure digital signature scheme,” in
CRYPTO’99, 1999.

6. P. Gemmel, “An introduction to threshold cryptography,” RSA CryptoBytes, vol. 2,
no. 7, 1997.

7. R. Ganesan, “Augmenting kerberos with pubic-key cryptography,” in Symposium
on Network and Distributed Systems Security (T. Mayfield, ed.), (San Diego, Cal-
ifornia), Internet Society, Feb. 1995.

8. P. MacKenzie and M. K. Reiter, “Networked cryptographic devices resilient to
capture,” in Proceedings of the 2001 IEEE Symposium on Security and Privacy,
pp- 12-25, May 2001.

9. S. Kent and R. Atkinson, “RFC 2401: Security architecture for the internet proto-
col,” Nov 1998.

10. “The openssl project web page,” hitp://www.openssl.org.

A Multiplicative mRSA — *mRSA

The *mRSA variant is largely similar to its additive counterpart. The only sub-
stantive difference has to do with parallelizing private key operations by the user
and the SEM. In +mRSA, both parties can perform exponentiations with their
respective private key shares in parallel. In contrast, *mRSA prescribes serial
operation.

Algorithm *mRSA.key (executed by CA)

Let k (even) be the security parameter

Generate random k/2-bit primes: p,q
n <+ pq

e & Zyn

d < 1/e mod ¢(n)

du & Zj,

dsem — (/du
SK + (d,n)

PK « (n,e)

) mod ¢(n)

e e

As in additive mRSA, CA securely communicates dgey, to the SEM and d,
— to the user. The user’s public key PK is released as part of a public key
certificate.

Protocol *mRSA.sign (executed by User and SEM)

USER: h + H(m)

USER: send h to SEM

SEM: If USER revoked return (ERROR)
SEM: PSsem <+ h%*™ modn

SEM: send PSsem to USER

USER: I/ + (PS%.,)® modn

USER: If b’ # h then return (ERROR)
USER: S « (PS%,) modn

USER: return (h,S)

©o0ONOE W

