
UnLinked:
Private Proximity-based Off-line OSN Interaction

Sky Faber
Computer Science Dept.

UC Irvine
fabers@uci.edu

Ronald Petrlic
Commission for Data Protection
Baden-Württemberg, Germany

petrlic@lfd.bwl.de

Gene Tsudik
Computer Science Dept.

UC Irvine
gene.tsudik@uci.edu

ABSTRACT
The recent decade has witnessed a rapid increase in pop-
ularity of mobile personal devices (notably, smartphones) t
hat function as all-purpose personal communication portals.
Concurrently, On-line Social Networks (OSNs) have contin-
ued their impressive proliferation. Meanwhile, the notion of
“OSN privacy” remains elusive and even self-contradictory.
Centralized nature of prominent OSNs is unlikely to change,
which does not bode well for OSN users’ privacy. However,
some user privacy can be gained from making certain OSN
functionality available off-line, such as discovering common
contacts and other features, as well as establishing affinity-
based connections. OSN providers stand to gain from this,
since users could avail themselves of OSN functionality in
scenarios where none currently exists, e.g., whenever Inter-
net connectivity is unavailable, expensive or insufficient. At
the same time, OSN users benefit from increased privacy
because off-line interactions can be made opaque to OSN
providers.

This paper explores off-line private proximity-based use
of OSNs. Although our approach is quite general, the pro-
posed system (called UnLinked) is grafted atop a specific
and popular OSN – LinkedIn. One key challenge is how to
ensure authenticity and privacy of users’ information (e.g.,
connections and other profile data) when they engage in
off-line interactions. This is addressed by designing an ef-
ficient technique for authorized two-way private set inter-
section (ATW-PSI), which allows two OSN users to jointly
learn only the intersection of their input sets, while being
assured of the authenticity of each others’ input. The pa-
per describes and evaluates a practical prototype that allows
physically proximate LinkedIn users to commit to a connec-
tion if they have a mutually acceptable number of common
connections.

1. INTRODUCTION
Building trust in previously unfamiliar people based on

common factors – such as interests, backgrounds, friends,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
WPES’15, October 12, 2015, Denver, Colorado, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3820-2/15/10 ...$15.00.
DOI: http://dx.doi.org/10.1145/2808138.2808149 .

or co-workers – has been practiced by the human race since
time immemorial and has been thoroughly studied as a sub-
ject. In the last decade, due to the popularity of on-line
social networks (OSNs), the process of finding and connect-
ing to other people (based on something in common) has
become easier due to OSNs’ integrated search functionality
and ability to trawl through public profiles and friends lists
of one’s own friends.

At the same time, despite very broad appeal, OSNs have
encountered certain limitations to their proliferation. One
reason is the fundamental connectivity requirement, i.e., the
”O” in OSN: in order to use an OSN, one must be connected
to the Internet and logged into the OSN provider. This is
not surprising since most OSNs – including Twitter, Face-
book, LinkedIn, VK and RenRen – are centralized.1 In other
words, there is no option for disconnected OSN usage. Con-
sider the following scenarios:
• Low bandwidth or intermittent Internet connectivity,

e.g., due to lossy and/or error-prone wireless links.
• Expensive Internet connectivity, e.g., abroad, on trains,

planes and cruise ships.
• Complete lack of Internet access, e.g., in planes, under

water, under ground or in remote locations.
We believe that such scenarios are fairly common for OSN
users who travel. and they share a common feature in that
OSN access is difficult: too slow, too expensive or simply
impossible. However, there is no fundamental reason why
two nearby OSN users – who either have no OSN access or
do not want to connect to the OSN, could not have some
limited OSN functionality. This observation is the premise
and one of the motivating factors for this paper.

Our second motivating factor is privacy. In general, lack
of privacy is not a fair complaint against OSNs. Most peo-
ple join an OSN for social reasons and privacy is not their
primary concern. Although privacy advocates often decry
brazen collection, marketing, mining and selling of OSN-
derived user information, expecting OSNs to behave in a
privacy-friendly manner is unrealistic. On one hand, it seems
reasonable to observe and retain behavior (i.e., actions) and
locations of users connected to the OSN. On the other hand,
if OSN users are communicating off-line, i.e., without involv-
ing the OSN infrastructure, it is no longer clear whether the
OSN ought to have access to user behavior and location.

We note that there are two types of off-line user (inter-
)actions: (1) those that lead to direct consequences to the
OSN, and (2) those that do not. For example, consider two

1Although decentralized OSNs exist, e.g., Diaspora [9] and
Safebook [5], they have not managed to attract many users.

OSN users: Alice and Bob, who interact verbally and in-
person while being disconnected from the OSN. During the
chat, they exchange information about their friends, work
history and educational background. If they have noth-
ing in common, they do not subsequently connect on the
OSN. However, if they discover some common factors (e.g.,
some number of shared friends), they might decide to con-
nect later. In the former case, the OSN clearly learns noth-
ing about their encounter. In the latter, the OSN observes
spontaneous establishment of their subsequent connection.

By analogy with the above example, suppose that Alice
and Bob interact electronically while being off-line (with re-
spect to the OSN) and their interaction leads to some impact
on the OSN, e.g., they later connect or “friend” each other,
thus changing their profiles. In this case, the OSN will right-
fully learn about their prior off-line interaction. Otherwise,
if Alice’s and Bob’s off-line activity does not lead to any-
thing and there is no reason for the OSN to learn about
their off-line interaction.

To summarize, this work is prompted by the need to sup-
port limited off-line interaction between nearby OSN users.
We believe that supporting this type of interaction would
be beneficial for OSN users, for two reasons: (1) they would
engage in social networking in a wider range of settings, and
(2) they would do so knowing that positive outcomes can
lead to new OSN connections, while inconsequential activ-
ity remains private. Furthermore, off-line user interaction is
advantageous to OSN providers, since it would extend the
reach of social networking. At the same time, we recognize
that not all privacy issues stem from the OSN itself. If users
communicate directly with no OSN involvement, their mu-
tual privacy is very important in cases that do not lead to a
later OSN connection. We make this one of the main design
goals.

Another key goal is information authenticity. When two
OSN users interact on-line (via an OSN provider), informa-
tion in their profiles can not be changed arbitrarily. For
example, friends in Facebook or connections in LinkedIn are
not added gratuitously. In the context of off-line interac-
tion, we need to make sure that OSN profile information
exchanged as part of that interaction is authentic and cor-
responds to the appropriate users.

In this paper, we design an architecture and a system,
called UnLinked. The main idea is to combine users’ social
proximity with their physical proximity to privately discover
common factors and later possibly establish OSN relation-
ships. UnLinkedsupports private off-line discovery of nearby
users with authentic common friends or connections, with-
out direct user interaction. Although conceptually appli-
cable to many current OSNs, UnLinked is grafted onto one
specific OSN, LinkedIn aimed at professionals who use their
profiles as a sort of an online CV.

1.1 Contributions
This work makes several technical contributions in addi-

tion to the overall UnLinked system design. As part of Un-
Linked, we come up with an efficient Authorized Two-Way
Private Set Intersection (ATW-PSI) protocol and demon-
strate its security. Current protocols are one-way, which
means that only one party learns the intersection of the two
input sets. Furthermore, they only certify one party’s in-
puts. In our ATW-PSI, both participants learn the inter-
section only if each has a valid authorization issued by a

trusted third party (TTP). This has been identified as a ma-
jor problem with prior techniques, e.g., [7]. Moreover, in
contrast to prior work on protocols with linear complexity
[8, 16, 20], participants in our protocol can not transfer au-
thorizations for individual set elements to others. We also
present a new approach to the well-studied friend of friends
(FoF) discovery problem. By using LinkedIn as a concrete
OSN platform and developing a fully functional prototype23

of UnLinked, we show that ATW-PSI protocols are usable
in realistic settings.

2. DESIGN GOALS
Before proceeding with the system design, we overview

and motivate key desired features that are mainly derived
from the above discussion:

D0 Off-Line Interaction: support for efficient communi-
cation among two physically proximate OSN peers.We
restrict the number of peers to two since the ultimate
outcome of a fruitful off-line interaction is a two-way
OSN connection.

D1 Peer Anonymity: persistent user identifiers (names,
user ids, email addresses) associated with OSN mem-
bers must be kept confidential in off-line interaction,
unless the two decide to connect later by jointly re-
vealing their identities at the end of off-line interac-
tion. We require anonymity despite user’s apparent
proximity, since, in many situations the peers may be
physically close, yet still unaware of each other’s pre-
cise location or other identifying information.

D2 Profile Privacy wrt Peers: ability to perform cer-
tain OSN profile operations (e.g., compare respective
sets of friends/connections) with mutual privacy. In
other words, information learned from such operations
must be limited to what is common to both peers.

D3 Interaction Privacy wrt OSN: non-disclosure to
the OSN of off-line peer interactions and their loca-
tions. This specifically applies to interactions that
have no impact on OSN peers’ profiles, i.e., no eventual
connection establishment.

D4 OSN Connection Spillover: ability to later estab-
lish actual OSN connections, based on prior off-line
interaction that resulted in mutual agreement to con-
nect. That is, it should be possible for two peers to
connect via the OSN at some point when they are on-
line, if they have decided to do so as a result of suffi-
cient degree of commonality among their profiles, e.g.,
at least k shared friends.

D5 OSN Profile Authenticity and Owner Authen-
tication: authenticity (including timeliness) of OSN
profile information as well as authentication of each
peer as part of off-line interaction. This is needed to
protect OSN members from impostors (non-members)
as well as malicious members.

D6 OSN-Independent Operation: ability to operate
along-side (or on top of) an existing OSN, i.e., no re-
quirement to introduce changes within an OSN; also,
no restriction against an OSN implementing proposed
functionality.

2The prototype Android app can be downloaded from
https://db.tt/XQXE9pqF.
3Due to a recent change in the LinkedIn developer agree-
ment, our latest prototype uses Twitter as an example OSN.

D7 OSN-Agnostic Design: minimal reliance on OSN-
specific features, i.e., applicability to the broad spec-
trum of OSNs.

D8 Voluntary Participation: OSN users must opt in to
participate in off-line interaction.

Note that off-line interaction between users of different OSNs,
while desirable in the long term, is not among our goals for
now.

3. SYSTEM DESIGN
Based on the goals outlined above, our system architecture

(called UnLinked) includes two main software components:
1. UnLinked App (ULA): an application that runs on the

OSN user’s personal device, such as a smartphone or a
laptop, that takes part in off-line interaction, and per-
forms auxiliary tasks on-line. ULA primarily supports
D0, D2, D3, described in Section 2 above.

2. UnLinked Server (ULS): a stand-alone server program
that supports D1, D5, D6, D7 and D8.

There are several practical reasons for ULS to be stand-
alone, as opposed to being a component of an OSN. First,
it allows us to support desired off-line functionality with-
out any involvement of – or permission from – any specific
OSN provider (D6). Second, ULS can be expanded to sup-
port multiple OSNs (D7). Third, ULS can operate as a
registration portal where OSN users can enroll to partici-
pate in off-line interaction (D8). Fourth, acting as a neutral
and independent trusted third party (TTP), ULS can certify
(authenticate) profile information of OSN users (D5). Last
but not least, ULS serves as a sort of a privacy buffer be-
tween the OSNs and ULA users. Although it can be argued
that, from the complexity perspective, it makes more sense
to integrate ULS into the OSN itself, independent operation
of ULS insulates the OSN from its natural lack of motiva-
tion to respect user privacy (D3). That said, most privacy
guarantees still hold if ULS is integrated into the OSN.

3.1 OSN Requirements
Following D7, we need to minimize assumptions about

the underlying OSN. The only requirement of UnLinked is
that the OSN must offer a secure automated way to export
member profiles in some well-defined format, i.e., something
that can be parsed by ULS. This feature is supported, via
REST APIs, by most major OSN providers, such as Twitter,
Facebook, Google+ and LinkedIn.

3.2 Types of Communication in UnLinked
UnLinked involves several types of communication, shown

in Fig. 1. To start, a user who chooses to use UnLinked needs
to download and install ULA. Then, a user needs to inter-
act with the OSN and facilitate secure export of her profile
to ULS (Fig. 1b). This involves user-OSN and ULS-OSN
communication. Finally, the main purpose of UnLinked is
direct communication between off-line users, i.e., a pair of
end-devices running ULA (Fig. 1c). If two users decide to
later connect or become OSN friends, UnLinked helps facil-
itate this interaction, per Fig. 1d.

3.3 Communication Channels
UnLinked does not restrict the means of communication

between the OSN and its users, or between ULS and OSN.
We assume that both transpire over the Internet. Off-line
interaction between users is assumed to involve a wireless

broadcast communication medium that facilitates seamless
discovery of peers, e.g., via periodic beaconing. We believe
that this is a natural requirement for several reasons. First,
per D0, two users need to be physically near each other.
Second, virtually all modern personal devices (from laptops
to smartphones) communicate over broadcast wireless chan-
nels.

Obvious candidates for off-line communication between
OSN users are: WiFi, Bluetooth and NFC. Of these, NFC
is less appealing than others since it requires the two de-
vices to be very near each other. This might be “too close
for comfort” in scenarios where users are separated by some
distance – e.g., on planes, trains and ships – or whenever
they prefer to maintain some physical space and personal
privacy. Further, broadcast based user discovery would be
impossible via NFC. Both Bluetooth and WiFi are available
on a wide range of devices types.

3.4 Cryptographic (Privacy) Requirements
Based on design goal D2, we need to support private com-

putation of common factors in OSN profiles of two users.
These common factors could include: friends, friends-of-
friends, educational and employment histories, as well as
various group memberships. Furthermore, D5 requires au-
thenticity of computed common factors.

While online, the OSN allows users to restrict profile in-
formation visible to others. Most OSNs only allow friends or
friends of friends to view one’s profile content. For example,
LinkedIn requires that two users have some shared profile
information before allowing one of them to request a con-
nection. We aim for the same amount of peer privacy but in
off-line operation where the OSN itself can not provide it.
Thus, we clearly can not stipulate that users simply down-
load and exchange ULS-certified copies of their OSN profiles.
Instead, we need to run a set of cryptographic protocols that
maintain a comparable (to on-line) level of privacy and allow
users to learn only their common factors. This motivates the
use of 2-party protocols that perform private set operations,
such as Private Set Intersection (PSI) and Private Set Inter-
section Cardinality (PSI-CA). Furthermore, based on D5,
these protocols must operate on user-bound and authen-
ticated input (i.e., profile information), thus guaranteeing
authenticity of the result.

4. LINKEDIN
Most popular OSNs offer users a personal profile page to

describe themselves: provide information on their place of
residence, educational and professional backgrounds, mem-
berships, interests, as well as share photos, videos and other
information. Generally, two users can connect to each other
by becoming contacts or friends. Depending on the individ-
ual’s privacy settings, one typically sees more information
about friends, contacts or connections. (We use these three
terms interchangeably.) Most OSNs allow users to hide pro-
file information from those who are not direct contacts.
Why LinkedIn? Although, based on D7, the general de-
sign of UnLinked is OSN-agnostic, we needed to make an
initial choice of a specific OSN platform. LinkedIn’s strong
emphasis on validity and integrity of user’s connections is
important for UnLinked. Also, LinkedIn appeals mainly to
adult professionals who generally tend to value privacy, se-
rious communication and maintaining real world links more
than the younger and/or more socially-minded population

OSN

(a) (b) (c) (d)
OSN

ULS

OSN

ULA

PW

(1)

(3)

(4)
(5)

(6)

(2)

Figure 1: Interaction in UnLinked: (a) Regular OSN interaction, (b) Setup, (c) Offline, (d) OSN Spillover

of Tumblr or Facebook. Furthermore, considering D7 and
Section 3.1, LinkedIn facilitates secure export of user profiles
via OAuth and a REST API. Further background informa-
tion on LinkedIn can be found in Appendix B.

5. CRYPTOGRAPHIC TOOLS
As discussed in Sect. 3.4, in order to support off-line in-

teraction, we need privacy-preserving protocols that operate
over generic and authenticated input. Furthermore, follow-
ing design goal D5, a participant’s input must accurately
reflect its real OSN profile. To accomplish this, we rely on
a trusted third party that verifies participant’s input and
issues a signed certificate of authenticity. ULS functions as
this trusted third party: it validates user profile information
by direct communication with OSN. We stress that ULS is
only needed at setup time and it is not involved in any off-
line interaction.

A setup phase is performed while A is on-line and con-
nected to the OSN. In this phase, A inputs its profile in-
formation a and obtains the corresponding certificate authA

issued by ULS. This certificate is later used in off-line in-
teractions with other OSN users, i.e., any B that receives
authA in the off-line phase, can validate a without learning
its value.

Generally speaking, our goal in the off-line phase is for A
and B to privately compute a function P (a, b) via a two-
party protocol P ∗ that realizes P (). To do so, we need to
construct authA such that a is bound to a specific evaluation
of P ∗ on partial input a. That is, authA bootstraps evalua-
tion of P (a, ·). Later, when B presents authB to A, contin-
ued execution of P ∗ can only be used to compute P (a, b).
The basis for our constructions is that ULS signs the initial
message of P ∗ which is later used as certified input to the
off-line phase of the protocol. For this to work, P ∗ must
have the following properties:

1. Limited-Round: ULS only signs the initial message
sent by each party. All subsequent messages are open
to manipulation. By minimizing the number of rounds,
we also minimize potential impact of malicious partic-
ipants who might deviate from the protocol.

2. Mirrored: All protocol actions are identical for A
and B. This includes cryptographic operations and
message transmission order. Thus, allows the same
certificate can be used to both initiate and respond to
P ∗.

3. Two-Way: Both parties learn the same correct re-
sult P (a, b). We note that this does not hold for two
separate instantiations of a one-way protocol, since a
malicious participant could provide different input in
each one-way instance.

For the two certified private set operation protocols (ATW-
PSI and ATW-PSI-CA) used in UnLinked we denote the first
signed message as BAS(·), and BASCA(·), respectively. De-
scription of our cryptographic building blocks and notation
can be found in Appendix A.

5.1 Adversarial Model
Our initial goal is security in the so-called Honest-but-

Curious (HbC) (aka semi-honest) model. In it, the adver-
sary is a protocol participant who follows the protocol while
passively trying to learn as much information as possible.
However, as discussed in Sect. 5.3.4, we can achieve security
in the stronger Malicious model with some simple exten-
sions. In this model, the adversary can arbitrarily deviate
from the protocol.

ULS is assumed to be trustworthy, i.e., it honestly and
correctly certifies a user’s input. We do not consider exter-
nal adversaries, since standard network security techniques
(e.g., TLS and IPSec) can mitigate outsider attacks. Finally,
due to the use of hash functions, our constructs are secure
in the Random Oracle Model [2].

5.2 Security Properties
We informally summarize desired security properties:

Correctness. We say that a protocol is correct if, whenever
both A and B are honest, each outputs P (a, b) at the end
of protocol execution, except with negligible probability.
Peer-Privacy. We require secrecy of elements of a and b,
unless they appear in the output of P (a, b). For the case of
P ∗ computing a private set intersection, secrecy holds only
for elements not in {a∩ b}. In other words, no information
beyond P (a, b) is learned by either party.
Pseudonymity. By executing P ∗, A and B must not learn
each other’s identities.
Authenticity. P ∗ aborts if a or b are not certified by ULS
or if either authA or authB is expired. Thus, the adversary
can not learn P (a, b) for any a or b for which it does not
hold authA or authB .

Binding. To prevent transferability, an authorization
provided to U on input u = u1, . . . , un, must be bound to
all of u. That is, U can not transfer or omit any ui-s.

Output Integrity. If a and b are certified by ULS, then
P ∗ outputs P (a, b). In the HbC model, output integrity is
directly implied by authenticity and correctness.

Early Termination Resistance (ETR). If either party
aborts the protocol, both must learn nearly4 equal amounts
of information. For an HbC adversary, termination may
occur accidentally, e.g., A and B lose connectivity in the
middle of the protocol or one of their devices dies. In the
malicious model, no protocol can be guaranteed to be Two-
Way. One party always learns the result first, at which point
it can simply abort execution. ETR attempts to remedy
this imbalance by limiting information conveyed by the final
message.

5.3 Two-Way Private Set Intersection
Authorized Two-Way Private Set Intersection (ATW-PSI)

is a protocol between users A and B on respective inputs:
(a = {a1, . . . , am}, authA, RA) and (b = {b1, . . . , bn}, authB ,
RB):

FATW−PSI (a,b)→


⊥ iff ¬V ERPK(BAS(a),authA)

or ¬V ERPK(BAS(b),authB)

{xi|xi∈a∩b} otherwise

We claim that the combination of the setup and offline ex-
ecution phases described below yields a concrete instantia-
tion of the ATW-PSI protocol. This construction is based
loosely on the One-Way PSI variant from [16].

5.3.1 Setup
Certification of user input is shown in Fig. 2. For user U ,

let u = {u1, . . . , un} denote the set of U ’s inputs. ULS, on
input of its private key SK, generates a random value RU ←
Z∗p (step 1) and signs all hashes of elements in u, masked
with RU (step 2). Both authU and Ru are transferred to U
(step 3). Note that all exponentiations are mod p.

CA User U

(1) RU ←$ Z
∗

q

(2) authU = SIGSK((H(u1)
RU , . . . , H(un)

RU))

(3) RU , authU

msc Certification

Figure 2: Setup

5.3.2 Offline Execution
User A on input (a = {a1, . . . , am}, authA, RA) and

user B on input (b = {b1, . . . , bn}, authB , RB) execute
the protocol shown in Fig. 3. First, A computes a set
Z = {z1, . . . , zm} where each zi = H(ai)

RA . A forwards
Z along with authA, to B. This allows B to verify whether
A sent valid zis by computing V ERPK(z1, . . . , zm, authA)

4The meaning of nearly depends on the specific P ∗. The less
information revealed in each message, the closer the outputs
will be.

in step (2). In concurrent steps (3) and (4), B computes
Y (mirroring A’s computation of Z) and forwards Y and
authB to A. Next, A exponentiates B’s yjs with RA and
returns the results to B (step 5). B does the same with A’s
zis and its own RB (step 6). Note that protocol steps are
executed concurrently when applicable. e.g., (1) and (3), (2)
and (4). Also, in steps (5) and (6), each element sent by A is
followed by one element sent by B. In step 7, both A and B
output the intersection of a and b, i.e., a set of elements at
(resp. bs) where yRA

s = zRB
t for 1 ≤ s ≤ m and 1 ≤ t ≤ n.

User A User B

(1) ∀i : zi = H(ai)
RA , authA

(2) assert: V ERPK(z1, . . . , zm, authA), if not: abort

(3) ∀j : yj = H(bj)
RB , authB

(4) assert: V ERPK(y1, . . . , yn, authB), if not: abort

(5) ∀j : yRA

j

(6) ∀i : zRB

i

(7) output {yRA

1
, . . . , yRA

n } ∩ {zRB

1
, . . . , zRB

m }

(7) output {yRA

1
, . . . , yRA

n } ∩ {zRB

1
, . . . , zRB

m }

msc PSI Execution Phase

Figure 3: Offline Execution Phase

5.3.3 Security Considerations
We claim that ATW-PSI is a peer-private, pseudonymous

instantiation of PSI, with binding in the presence of mali-
cious adversaries in the Random Oracle Model [2]. Further-
more, ATW-PSI provides protocol execution integrity in the
HbC model. We sketch the proof below. Since ATW-PSI
is Mirrored, we assume w.l.o.g. that B plays the role of the
adversary B∗.

Correctness follows trivially from the protocol descrip-
tion. If both parties are honest, both compute:
{H(a1)RARB , . . . , H(am)RARB} ∩
{H(b1)RARB , . . . , H(bn)RARB}
This is equivalent to: {H(ai)

RARB |s.t. ∀i ∃j ai == bj}.
Thus, both parties output the intersection a ∩ b.

Peer-Privacy. For an HbC adversary, privacy is pro-
vided by the One-More Gap Diffie Hellman Assumption
(OMG-DH) [11]. Informally, this provides indistinguisha-
bility of exchanged elements of the form H(x)R, even with
adversarial access to a Diffie-Hellman oracle. Only matching
elements are learned in step (7). All privacy arguments (in
the HbC model) from [16] apply to ATW-PSI with minor
adjustments.

However, our protocols offer privacy in the malicious model
with no further modifications. Since it can not deviate from
the protocol without forging ULS’s signature, B∗ can only
manipulate its response to A’s initial message, in step 6.
However, this message is completely de-coupled from any of
A’s responses. Thus, no matter what it sends, B∗ learns no
any additional information.

Pseudonymity. Peer-Privacy implies privacy of A’s
and B’s identities during one protocol instance. However,
further information can be learned from multiple protocol
executions. As long as A re-uses the same authA, all off-line

interactions are initiated with this value, and B can easily
correlate multiple encounters with A.

However, whenever it is on-line, A can always contact
ULS and request a fresh certificate, i.e., a new pseudonym
auth′A, thus preventing B from linking future interactions
with auth′A to any prior interactions involving authA. This
is because any two protocol transcripts, both involving A
on input a, with different blinding factors RA and R′A, are
indistinguishable.

As discussed in Sect. 7.3, pseudonymity can be strength-
ened if a user obtains a batch of pseudonyms for each off-line
epoch. In a single on-line interaction with ULS, A can re-
quest a batch of certificates and use each one as few or as
many times as it wants. Clearly, if each authA is only used
once, pseudonymity transitions into anonymity.

Authenticity follows directly from unforgeability of the
underlying signature scheme SIG. If either authA or authB

does not verify in steps (2) or (4), execution is aborted.
Binding. Each authU is bound to the entire set u. There-

fore, binding is trivially achieved due to unforgeability of
SIG.

Output Integrity. In HbC, this follows directly from
security of SIG used by ULS and correctness of ATW-PSI.
However, in the malicious model, A can convince an honest
B that the protocol output is any subset of a ∪ b.

5.3.4 Malicious Security
In its current form, ATW-PSI does not provide Integrity

of Output in the malicious model. To achieve this stronger
security, we need to modify steps (5) and (6) in Fig. 3 to
force users to adhere to the protocol. This can be done using
techniques similar to [16], i.e., by introducing two Schnorr-
based signature of knowledge (SoK) constructs: SK-LOG
and SK-EQ-LOG [1], described in Appendix A.

First, we modify setup to include gRa within authA. Dur-
ing Offline Execution, A provides a single (Schnorr) signa-
ture SK-LOG proving knowledge of Ra. Later, in step (5), A
provides a proof of correctness that shows, via SK-EQ-LOG,
that each exponentiation yj

Ra is performed with the same
Ra supplied earlier in gRa . These measures demonstrate
that: (1) A indeed uses the same Ra in all exponentiations
of yjs, and (2) A uses the Ra as signed by ULS and included
in authA. For B’s part, Step (6) is modified similarly.

Early Termination Resistance (ETR). Even with the
Integrity feature, a malicious participant can abort the pro-
tocol at any time. We counter this by enforcing concurrent
execution of steps (5) and (6). Specifically, messages be-
tween A and B are “interleaved”, i.e., each party alternates
between transmitting and receiving a specific set element
zi

Rb or yj
RA . The two will only swap once the computation

has been verified, using SoK. This way, at any point dur-
ing protocol execution, parties compute a equal portion of
the intersection. A malicious participant learns at most one
additional element; thus, its advantage is very low.

Clearly, ETR does not come for free. The modified proto-
col incurs O(max(n,m)) rounds, instead of the previous two.
Although in some scenarios this added complexity might
make the protocol impractical, recall that UnLinked users
are expected to be near each other and transmission latency
is therefore expected to be negligible.

6. SYSTEM ARCHITECTURE
UnLinked includes two phases: Setup and Off-line. This

section describes basic system assumptions and the details
of each phase.

6.1 Requirements
Although UnLinked is OSN-agnostic, there are a few re-

quirements:
• In order to support meaningful off-line interactions,

OSN profile information must contain at least a unique
owner’s user id and a list of connection’s ids. Also,
OSN must provide the ability to securely export a user
profile once authorized by the user. This is offered –
via OAuth2 API [13] – by several popular OSNs, e.g.,
LinkedIn, Facebook, Twitter, and Google+. In our
setting, an OAuth2 interface allows ULA and ULS to
communicate to OSN on behalf of the user.
• ULS requires a public key signature scheme [SIGSK(·),
V ERPK(·, auth)] with a public/private key-pair: [PK,
SK]. ULS retains no state information about its in-
teractions with any ULA or OSN.
• ULA needs access to a broadcast medium, in order to

support nearby peer discovery. ULA is also responsible
for storing all user’s private cryptographic information,
including BASU . In addition, ULA must trust ULS’s
PK; this is provided by including PK in the ULA
installation package.

6.2 Setup Phase Details
The goal of this phase is for ULA to obtain enough infor-

mation to be able to later operate independently from OSN
and ULS. Since a typical OSN user’s profile can change fairly
often, e.g., on a daily basis, we need to ensure that users have
up-to-date profile information. For this reason, ULS issues
BASU with a relatively short lifespan, e.g., one week in the
current implementation, as described in Sect. 7.4. Setup
proceeds as follows:

1. Via local web browser, Alice logs in to OSN, retrieves
and stores an OAuth token tok. Alice’s password is
not revealed to ULA.

2. Alice’s ULA presents tok to OSN, retrieves her profile
P and stores it locally.

3. Alice’s ULA presents tok to ULS.
4. ULS relays tok to OSN
5. OSN sends Alice’s profile P .
6. ULS parses P into basic components:

[c = connections, identity,misc]
where identity consists of the user-name or identifier as
well as a profile picture, if any. The misc field is par-
titioned into OSN-specific sub-fields, i.e., education,
employment and residence.

7. ULS computes and sends to ULA:
σid = SIGSK(identity), along with σ1 = SIGSK(BAS(c)),
σ2 = SIGSK(BAS(misc)) and the corresponding ran-
dom blinding factors Ru1, Ru2

5.

6.3 Off-line Phase Details
This phase handles communication between peer ULAs.

Once connected, ULAs privately compute common informa-
tion of their profiles. Depending on user policy, this may

5If requested by ULA, ULS uses BASCA(·) (Blinded At-
tribute Set for ATW-PSI-CA) instead of BAS(·)

entail multiple rounds of communication and executions of
both ATW-PSI (defined in Sect. 5.3) and ATW-PSI-CA (de-
fined in Appendix C). We now describe the interaction be-
tween two nearby ULAs: Alice and Bob, assuming that the
former starts the interaction.

1. Without involvement of the actual human users (i.e., in
the background) Alice and Bob emit broadcast “pings”
or beacons at fixed time intervals6, advertising their
membership in UnLinked.

2. Alice detects Bob’s broadcast and responds with a
PID. PID selection is discussed in Section 7.2 be-
low.

3. If Bob wishes to continue communication, it responds
with its own PID.

4. Using standard techniques (TLS, in our case), ULAs
establish a secure channel.

5. ULAs execute a series of ATW-PSI-CA protocols, pri-
vately computing the size of their common connec-
tions and miscellaneous fields. Comparing connections
means exchanging σ1, BAS(c), followed by a series
of short computation and transmission rounds. See
Sect. 5.3, and Appendix C for more details.

6. Next, ULAs perform one or all of the following, de-
pending on their mutual desire to continue interac-
tion, either by explicit user action, or by policy. Their
choices are conveyed across the secure channel.
(a) ULAs perform a series of ATW-PSI protocols to

compute the actual set intersection of their pro-
files, analogous to computation and communica-
tion in Step 5. Each instance of ATW-PSI is per-
formed over a different type of data, e.g., connec-
tions, employers and educational institutions.

(b) ULAs exchange authenticated identities of the form
(identity, σid). Upon receipt, identity is validated
and results are displayed to the user.

(c) ULAs exchange messages via a simple chat inter-
face.

(d) If both decide to later connect through OSN, each
ULA stores the peer’s identity. At a later time,
when it is on-line, ULAcan use the OSN to request
a connection to the peer.

6.4 Notification Policy
As mentioned earlier, during the off-line phase, ULAs per-

form a series of cryptographic tests, each on one of various
profile fields. A ULA determines explicitly which tests are
conducted and, for every test, based on its results, whether
it wants to continue interacting with a particular peer. How-
ever, such fine-grained control over every interaction can be
cumbersome. We envision numerous scenarios where large
numbers of OSN users, all with something in common, are
in physical proximity. For instance, on a university cam-
pus, most users will have the same employer (or educational
institution) and several connections in common. In such
settings, most users would rather not to be notified of every
nearby peer. In other settings (e.g., on a plane, or simply
far from home) a user may wish to be notified of any nearby
peer even with very little in common between their profiles.

To increase flexibility, we introduce the notion of personal
policy. Each policy includes a set of conditions for ULA to
initiate each of the following actions:

6Typical interval between pings is 30-60 secs.

1. Execute a more revealing protocol. i.e., ATW-PSI in-
stead of ATW-PSI-CA.

2. Alert the user to the presence of a peer.
3. Exchange identifying information, e.g., name, image,

or OSN profile id.
4. Send a message to a peer.
5. Receive and display messages and requests to exchange

ids.
Criteria for these actions can be any combination of the
following:

1. A threshold or a range based the size of the intersection
of connections or any misc sub-field.

2. Presence or absence of a specific value in the intersec-
tion.

Note that criteria of the first kind can be applied using only
the result of ATW-PSI-CA. Whereas, the second type of cri-
teria relies on successful ATW-PSI execution for that field.

While our policy language for UnLinked is flexible, ULA is
pre-configured with a few default policies. All such policies
require explicit user actions to exchange identifying informa-
tion and send messages. Furthermore, criteria for notifying
the user of a message or identity exchange are identical to
that for ULA to be alerted to the presence of a nearby peer.
This simplifies effects of policy to the user.

The most permissive supported policy, Open, allows ULA
to run ATW-PSI with any UnLinked peer. This policy is
useful for maximizing off-line interactions. A slightly more
restrictive policy, Low, is designed for use away from one’s
typical locations, e.g., on travel. In this case, the user is
alerted of a nearby peer’s presence if any of the following
conditions are satisfied:

1. At least one friend in common, and one school or em-
ployer.

2. At least three friends in common.
3. A common current employer or current academic in-

stitution.
We also provide a third default policy, Medium, designed for
use at everyday locations, such as work-place or school. In
this case, having an employer or a school in common is not
very meaningful. Instead, we add extra weight to the value
of past employers and connections. Users are notified if any
of the following occurs:

1. At least three connections in common, and at least one
common employer or academic institution, other than
the current one.

2. At least five connections and one institution in com-
mon.

3. More than seven connections in common.
Preventing SPAM: User policy also controls the amount
of communication with peers. If Alice and Bob have different
policies, Bob might wish to contact Alice but not vice versa.
Suppose that Alice is not alerted of Bob’s presence. Should
Bob’s contact attempts be transmitted to Alice? This deci-
sion is based upon Alice’s policy. If desired, Alice can specify
a different threshold for receiving messages from a peer than
that for being initially alerted to the peer’s presence. With-
out this feature, Bob could bombard Alice’s ULA with spam
messages or connection requests simply by acquiring many
fake OSN identities.

7. DISCUSSION AND EXTENSIONS
We now discuss some system considerations and exten-

sions.

7.1 Minimizing Irrelevant Connections
In some settings, ULA may encounter the same peer mul-

tiple times. Being notified of each such encounter is bur-
densome to the user and costly in terms of device resource
consumption. To this end, ULA has a mechanism for pre-
venting repeated interactions. However, a given user’s pro-
file information might change frequently and to ensure new
information is considered in future encounters this process is
time-dependent. To this end, the prevention mechanism op-
erates on two levels. First, ULA maintains a list of recently
encountered device MAC addresses. Entries in this list have
a lifespan of one day. We consider this to be an acceptable
granularity, since user profiles rarely change dramatically
within a single day. Second, each ULA broadcasts its own
public identifier PID. Upon connecting to a new device,
ULAs exchange PIDs. If a PID has been seen recently,
communication is terminated. When an off-line interaction
completes, the peer device address is added to the avoid
list.7

In addition to avoiding recently seen peers, we consider a
likely scenario where two users who are already each other’s
connections discover each other anew and attempt to con-
nect. Clearly such unnecessary interactions should be avoided.
For this purpose, we provide a simple mechanism that allows
users to learn, and to be optionally alerted, when current
connections are nearby. As part of every interaction with
ULA, ULS inserts a “dummy” tuple corresponding to that
ULA into the set of connections returned to ULA. Upon in-
teracting with a peer, this tuple will appear in the result set
if and only if the two are already connected.

7.2 Authenticated Channels
There are many ways to select PIDs. To easily establish

an authentic channel we take advantage of the trusted ULS.
The basic idea is that each PID is the public portion of
a Diffie-Hellman key exchange. Specifically, for a user U ,
PID = gRu . To fully prevent man in the middle attacks,
ULS includes this PID in all authorizations returned to U .
This effectively binds all certificates to the corresponding
user.

7.3 Unlinkability
For a privacy conscious user, UnLinked can also operate

in an unlinkable mode. In it, ULA contacts ULS and re-
ceives a new authorization along with a new private key Ru,
whenever possible. This provides the user with a unique
pseudonym linked to the specific Ru and allows the user to
control the degree of unlinkability. Of course, other factors
influence both privacy and performance. To be completely
unlinkable, a user might wish to avoid redundant connection
optimizations discussed previously. Using the mechanism for
detecting pre-existing connections would significantly lower
the level of anonymity to their connections, and could triv-
ially reveal their identity in some cases. Furthermore for
each pseudonym, ULA needs to reset the list of previously
discovered peers. Otherwise unwillingness to participate in
an interaction may itself be used to link pseudonyms. Fi-
nally, ULA may need to make device configuration changes
dependent on the medium, e.g., change MAC addresses.

Nonetheless, even with these safeguards, peers always learn
the outcome and input size of cryptographic protocols. This

7PIDs are refreshed when new profile information is down-
loaded.

information could be used to help identify the other user.
Exact severity of this de-anonymization is dependent on the
uniqueness of one’s contact graph and common profile traits.

7.4 Freshness of Credentials
In order to operate offline, UnLinked relies on authenti-

cated profile information. Since profiles can change with
arbitrary frequency, ULAs should be assured of freshness
of peer profiles. Otherwise, misbehaving users with stale
or outdated information could claim connections they no
longer have. Intuitive ways of dealing with this problem rely
on either time-stamped signatures or revocation lists. Since
UnLinked operates off-line and aims to minimize overhead,
distributing periodic revocation information is not feasible.
Instead, all ULS signatures include a global timestamp and
a relatively short validity interval of one week. We believe
that this is sufficiently long for ULA to regain connectivity
to ULS. At the same time, it is short enough to minimize
the impact of malicious peers. To support this feature, we
assume that each ULA’s clock is loosely synchronized with
that of ULS. This is a reasonable assumption for most mod-
ern devices, even when operating off-line.

7.5 Detecting Misbehavior
Since ATW-PSI and ATW-PSI-CA do not offer output

integrity from a malicious peer by default, UnLinked pro-
vides an alternative to handle malicious behavior. This is
achieved by allowing ULS to audit communication traces
from offline interactions. A ULA records every protocol
transcript. Later, when it re-gains connectivity, ULA sends
a transcript to ULS along with its current profile. ULS au-
dits every message in the transcript and determines whether
peers behaved correctly. ULS can then blacklist misbehav-
ing users or take other measures to prevent further cheating.
However, auditing interaction transcripts imposes consider-
able storage and computation burden on ULS and exposes
ULA’s off-line interactions to ULS. Consequently, auditing
is an optional feature, disabled by default. Only a user who
suspects fraud should submit transcripts for auditing.

8. IMPLEMENTATION & EVALUATION
We developed and benchmarked a fully functioning pro-

totype of UnLinked, consisting of an Android application
implementing the functionality of the ULA and a Ruby on
Rails application implementing ULS.

For the signature scheme ULS computes “attached” RSA
signatures (those that include the signed data in the signa-
ture) using PKCS7 implemented over OpenSSL. Currently,
ULA supports a wide range of communication technologies:
WiFi Direct, Bluetooth, and WLAN based Network Service
Discovery. Any subset of these can be used concurrently.
The current prototype only supports ATW-PSI without ex-
tensions for malicious security. For the purposes of bench-
marking, ULA was tested on two Nexus 5 smartphones com-
municating over Bluetooth. Each phone has a 2.26GHz pro-
cessor and 2GB of RAM. ULS was tested on a desktop run-
ning Ubuntu 12.10, with an Intel i7-3770 3.4GHz quad-core
CPU and 16GB of RAM.
Performance: UnLinked was tested on several input sizes:
10, 100, 1000, and 10,000 friends. As expected, protocol ex-
ecution time was linear in the number of friends. For 100
friends, ULS signature computation completed in 0.83s, and
used 25.2kb of storage. Also, each ULA completed the Of-

fline Phase of the ATW-PSI protocol in under 1 second, with
526kb exchanged. See Tab. 1 for detailed results. We note
that, even with 1,000 friends, information returned by ULS
in the setup phase only consumed 243kb. One could easily
batch 100 of such signatures to interact with unlinkability
off line, without significant storage impact. Similarly, autho-
rizations for ATW-PSI-CA can be batched without signifi-
cant storage costs. Finally, round-trip times between devices
was, on average, only 7.86ms. When using ATW-PSI with
interleaving this amounts to less than 1 second of overhead
for the input size of 100 friends.

Table 1: Evaluation of UnLinked.

Input Size
Setup
Time (s)

Signature
Size (kb)

Offline
Time (ms)

Offline
Band. (kb)

10 0.0739 3.41 143 9.2
100 0.837 25.2 508 75
1000 8.57 243 8790 2941
10000 86.4 2420 14530 7337

9. RELATED WORK
Most related work falls into two groups: (1) private dis-

covery of common friends and (2) cryptographic protocols
for private set operations.

9.1 Private Friends Discovery
In von Arb et al. [24] privacy is considered in the

friend-of-friends scenario where two users want to learn whether
they have the same contacts on their mobile phones, based
on phone numbers. The proposed technique, based on [15],
uses commutative encryption: each party encrypts its own
elements and gets the resulting ciphertexts encrypted by the
other party. By comparing encrypted ciphertexts both par-
ties identify common elements. This approach offers no au-
thorization of set elements. Thus, parties can use any phone
numbers as protocol input and learn the other party’s con-
tacts. Moreover, there are no ETR features, meaning that
a malicious party can end the protocol as soon as it learns
the intersection.

De Cristofaro et al. [7] introduced the concept of pri-
vate contact discovery that offers privacy-preserving com-
putation of common contacts. The proposed scheme uses
index-based message encoding [19]. Unauthorized relaying
of contact set elements is addressed via contact certification
which requires no trusted third party. The main idea is that
each user U issues to its every contact V a contact certifi-
cate, which is essentially U ’s signature on V ’s id. Thus a
certificate is bound by the issuer to a specific user (contact)
and can not be relayed. As [24], this scheme is prone to
early protocol termination attacks. Also, it is limited to
connections and does not consider other types of profile in-
formation, e.g., educational insitutions or past employers,
for which such contact certificates are not applicable.

Nagy et al. [20] construct a Common Friends proto-
col that allows two parties to privately learn whether they
are already friends or share some OSN friends. The proto-
col uses so-called bearer capabilities [23] for authenticity of
friends lists. Bearer capabilities constitute proofs of friend-
ship. Other than containing IDs of OSN users, those ca-
pabilities are considered to be “high-entropy objects”. Con-
sequently [20] claims that using full-blown (standard) PSI

protocols is overkill since set elements are not “predictable”.
This allows the usage of more efficient PSI protocols based
on Bloom filters [3]. Concerning authenticity, [20] acknowl-
edges that re-distribution of contacts is not addressed.

9.2 Private Set Intersection
Private set intersection (PSI) protocols [8], [16], [4], [10],

[14] allow two parties, each with its own set, to privately
compute a set intersection. In other words, if two parties’
(private) sets include common elements, one or both learn(s)
these elements and no information about other set elements
(other than their number) is revealed. If both parties learn
the result, the protocol is called mutual or two-way PSI. It
is claimed in [8] that mutual PSI can be obtained by two in-
stantiations of one-way PSI. However, we believe that this
holds only in the semi-honest model, where protocol execu-
tions require no binding. In an authorized PSI protocol, set
elements need to be signed beforehand by a trusted third
party. In this setting, special care must be taken to disallow
trading authorized inputs. This is typically not addressed.

9.3 Policy-Enhanced Private Set Intersection
Another class of related protocols is called Policy-Enhanced

Private Set Intersection (PE-PSI) [22]. These allow a ATW-
PSI to be constructed from any PSI protocol secure against
a malicious adversary. The scheme from [22] offers super-
linear computational complexity. Also, binding is not pro-
vided: any individually authorized set element can be omit-
ted from the intersection. Furthermore, this scheme requires
a PSI protocol secure in the malicious model, which may not
be two-way. Thus, in some instantiations, output integrity
is not provided. In a practical deployment, such as Un-
Linked, the added costs of such schemes may be prohibitive.
In contrast, ATW-PSI and ATW-PSI-CA provide efficient
binding, as well as ETR in the malicious model, and can be
optionally extended to provide output integrity.

10. CONCLUSIONS
In this paper, we reported on the design of UnLinked

that supports private off-line interaction among nearby OSN
users. As part of this work, we developed a novel ATW-PSI
protocol that allows two parties to learn the intersection of
their pre-authorized private input sets. Pre-authorization
of these input sets by ULS prevents transfer and manipula-
tion of individual set elements. A fully functional prototype
of UnLinked is available for Android smartphones, allowing
LinkedIn users to automatically discover nearby peers who
share a sufficient number of friends or other profile features.

A far as future work, we intend to integrate information
from multiple OSNs, e.g. Facebook, Google+ and Twitter.
This will allow for more flexible policies and would allow
us to tap into a greater user pool. Furthermore, we plan
to investigate whether our approach is applicable to other
application scenarios, such as mobile social services relying
on encounter-based trust.

11. REFERENCES
[1] G. Ateniese, J. Camenisch, M. Joye, and G. Tsudik. A

practical and provably secure coalition-resistant group
signature scheme. In CRYPTO 2000, pages 255–270.
Springer, 2000.

[2] M. Bellare and P. Rogaway. Random oracles are
practical: A paradigm for designing efficient protocols.
In Proceedings of the 1st ACM conference on
Computer and communications security, pages 62–73.
ACM, 1993.

[3] B. H. Bloom. Space/time trade-offs in hash coding
with allowable errors. Commun. ACM, 13(7):422–426,
July 1970.

[4] J. Camenisch and G. Zaverucha. Private intersection
of certified sets. In R. Dingledine and P. Golle, editors,
Financial Cryptography and Data Security, volume
5628 of Lecture Notes in Computer Science, pages
108–127. Springer Berlin Heidelberg, 2009.

[5] L. A. Cutillo, R. Molva, and T. Strufe. Safebook : a
privacy preserving online social network leveraging on
real-life trust. ”IEEE Communications Magazine”, Vol
47, N ↪a12, 12 2009.

[6] E. De Cristofaro, P. Gasti, and G. Tsudik. Fast and
private computation of cardinality of set intersection
and union. In Cryptology and Network Security, pages
218–231. Springer, 2012.

[7] E. De Cristofaro, M. Manulis, and B. Poettering.
Private discovery of common social contacts.
International Journal of Information Security,
12(1):49–65, 2013.

[8] E. De Cristofaro and G. Tsudik. Practical private set
intersection protocols with linear computational and
bandwidth complexity. IACR Cryptology ePrint
Archive, 2009:491, 2009.

[9] Diaspora Foundation. Webpage.
https://diasporafoundation.org/.

[10] M. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In C. Cachin
and J. Camenisch, editors, Advances in Cryptology -
EUROCRYPT 2004, volume 3027 of Lecture Notes in
Computer Science, pages 1–19. Springer Berlin
Heidelberg, 2004.

[11] D. Freeman. Pairing-based identification schemes.
arXiv preprint cs/0509056, 2005.

[12] S. Goldwasser, S. Micali, and R. L. Rivest. A digital
signature scheme secure against adaptive
chosen-message attacks. SIAM Journal on Computing,
17(2):281–308, 1988.

[13] D. Hardt. The OAuth 2.0 authorization framework,
Oct. 2012.

[14] C. Hazay and Y. Lindell. Efficient protocols for set
intersection and pattern matching with security
against malicious and covert adversaries. In
R. Canetti, editor, Theory of Cryptography, volume
4948 of Lecture Notes in Computer Science, pages
155–175. Springer Berlin Heidelberg, 2008.

[15] B. A. Huberman, M. Franklin, and T. Hogg.
Enhancing privacy and trust in electronic
communities. In In Proc. of the 1st ACM Conference
on Electronic Commerce, pages 78–86. ACM Press,
1999.

[16] S. Jarecki and X. Liu. Fast secure computation of set
intersection. In J. Garay and R. Prisco, editors,
Security and Cryptography for Networks, volume 6280
of Lecture Notes in Computer Science, pages 418–435.
Springer Berlin Heidelberg, 2010.

[17] M. Lepinski and S. Kent. Additional diffie-hellman
groups for use with IETF standards, January 2008.
RFC 5114.

[18] LinkedIn Help Center. Account Restricted. Webpage,
Mar. 2013. https://help.linkedin.com/app/
answers/detail/a_id/1386.

[19] M. Manulis, B. Pinkas, and B. Poettering.
Privacy-preserving group discovery with linear
complexity. In Proceedings of the 8th international
conference on Applied cryptography and network
security, ACNS’10, pages 420–437, Berlin, Heidelberg,
2010. Springer-Verlag.

[20] M. Nagy, E. De Cristofaro, A. Dmitrienko, N. Asokan,
and A.-R. Sadeghi. Do i know you?: Efficient and
privacy-preserving common friend-finder protocols and
applications. In Proceedings of the 29th Annual
Computer Security Applications Conference, ACSAC
’13, pages 159–168, New York, NY, USA, 2013. ACM.

[21] C.-P. Schnorr. Efficient signature generation by smart
cards. Journal of cryptology, 4(3):161–174, 1991.

[22] E. Stefanov, E. Shi, and D. Song. Policy-enhanced
private set intersection: Sharing information while
enforcing privacy policies. In Public Key
Cryptography–PKC 2012, pages 413–430. Springer,
2012.

[23] A. S. Tanenbaum, S. J. Mullender, and R. van
Renesse. Using sparse capabilities in a distributed
operating system. In International Conference on
Distributed Computing Systems (ICDCS), pages
558–563, 1986.

[24] M. von Arb, M. Bader, M. Kuhn, and R. Wattenhofer.
VENETA: Serverless friend-of-friend detection in
mobile social networking. In IEEE Conference on
Wireless & Mobile Computing, Networking &
Communication, 2008.

APPENDIX
A. CRYPTOGRAPHY BACKGROUND

Prime Order Groups
Our schemes require a prime order subgroup with a genera-
tor g, along with a full domain cryptographic hash-function
H(·) with a range of this subgroup. Specifically, we use a
Diffie-Hellman subgroup defined by primes p and q where
p = tq + 1, for some integer t [17]. As an instantiation of
H(·) we use the SHA-1 hash function, whereby, on input x,
H(x) = (SHA-1(x))t mod p.

Public Key Signature Scheme
We assume the existence of a public key signature scheme
secure against existential forgery under an adaptive cho-
sen message attack [12]. Given a public/private key-pair
(PK,SK) we denote such a scheme as a pair of protocols:
sign – SIGSK(·), and verify – V ERPK(·, ·). These protocols
operate on message m: σ = SIGSK(m) and V ERPK(m,σ).
Verify returns true if and only if σ was computed using
knowledge of SK.

Signatures Of Knowledge
We use two popular signature-of-knowledge (SoK) schemes.
They operate similar to zero knowledge proofs in that they

allow a party to demonstrate knowledge of secret without re-
vealing any additional information (given some shared pub-
lic knowledge). However, SoK can be performed without
interaction, via Schnorr signatures [21]. Specifically, we rely
on signatures demonstrate knowledge of (1) a discrete loga-
rithm and, (2) two discrete logarithms (with different bases)
being equal. These signatures operate over the same cyclic
subgroup as discussed above.

To show knowledge of discrete log of gx, a party computes
SK-LOG as:

SKLOG(gx, g,m) = (c, s) = (h(gx||g||gt||m), t− cx)

where t is chosen randomly. Upon receipt of (c, s, y = gx),
one can verify that c = h(y||g||gsyc||m).

Similarly we can construct an SoK proving equality of two
discrete logs with different bases SK-EQ-LOG, i.e., given
(gx, fy), show that x = y. This is done by constructing:

SK-EQ-LOG(y = gx, z = fx, g, f,m) =

(c, s) = (h(gx||fx||g||f ||gt||f t||m), t− cx)

Verification is perfomed as: c = h(y||z||g||f ||gsyc||fszc||m).
For more details we refer to [1].

B. LINKEDIN
LinkedIn, with more than 250 million users worldwide, is

a global OSN that provides a networking platform for profes-
sionals. As such, it is widely considered to be more serious or
“grown-up” than its more social counterparts, such as Face-
book. To this end, a typical LinkedIn profile page resembles
a CV or a resumè, rather than a dynamic scrapbook.

Connections play a major role on LinkedIn. One user gets
connected to another by sending an invitation. Such a “di-
rect connection” between two users is established only if the
invitee accepts the invitation. The invitee can refuse it and
report the inviter as unknown, or the invitation – as spam.
An inviter who accumulates many invitation refusals might
get her account restricted [18]. This approach constitutes
an entry barrier for fraudsters who attempt to join groups
of professionals and provides some level of trusted relation-
ships among users. Moreover, users can benefit from their
contact network by getting introduced to new contacts, by
their existing contacts. This way, a user has “access” to
second-degree and even third-degree connections.

The main idea is that this“get introduced”approach might
lead a user not just to new contacts but possibly to new com-
panies or jobs, as recommended by their connections. Thus,
a major goal for LinkedIn users is to discover and establish
new connections based on criteria such as: common connec-
tions, interests, membership and educational or professinal
experience.

C. TWO-WAY PSI CARDINALITY
As the privacy and usability of UnLinked can be greatly

enhanced by additional crypto primatives, we present here
an extension of PSI-CA form [6] to construct a linear-time
Two-Way Private-Set Intersection Cardinality protocol with
Authenticity (ATW-PSI-CA). We follow a similar procedure
to ATW-PSI with minor modifications to setup and offline
phases. Resulting protocols are shown in Fig. 4 and Fig. 5
respectively. They rely on two random permutations Π, and
Π′.

ATW-PSI-CA provides the same security as ATW-PSI,
however, at additional cost. Unlike ATW-PSI, authoriza-
tions (authU) cannot be reused. Instead, U must obtain
from CA a distinct authU for each future off-line interac-
tion. In Sect. 8 below, we argue that, in the context of
UnLinked, this is a small price to pay for better privacy.

CA User U

(1) ∀i : u′

i = Π′(ui)

(2) RUs
←$ Z

∗

q , RUc
←$ Z

∗

q

(3) authU = SIGSK((H(u1)
RUc , . . . , H(un)

RUc),
(H ′(H(u′

1)
RUs), . . . , H ′(H(u′

n)
RUs)))

(4) RUs
, RUc

, authU

msc Certification for PSI-CA

Figure 4: Setup w/ Cardinality

User A User B

(1) ∀i : zi = H(ai)
RAc , vi = H ′(H(ai)

RAs), authA

(2) ∀j : yj = H(bj)
RBc , wi = H ′(H(bi)

RBs), authB

(3) assert: V ERPK(({z1, . . . , zm}, {v1, . . . , vm}) , authA), if not: abort

(4) assert: V ERPK(({y1, . . . , yn}, {w1, . . . , wn}) , authB), if not: abort

(5) (y′
1
, . . . , y′n) = Π(y

RAs

1
, . . . , y

RAs

n)

(6) (z′
1
, . . . , z′m) = Π(z

RBs

1
, . . . , z

RBs

m)

(7) ∀i : hbi = H ′(z′
R

−1

Ac

i)

(7) ∀i : hai = H ′(y′
R

−1

Bc

i)

(8) output {w1, . . . , wm} ∩ {hb1, . . . , hbm}

(8) output {ha1, . . . , han} ∩ {v1, . . . , vn}

msc PSI-CA Execution Phase

Figure 5: Offline Execution Phase w/ Cardinality

