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ABSTRACT
One of the main challenges faced by content-based pub-
lish/subscribe systems is handling large amount of dynamic
subscriptions and publications in a multidimensional con-
tent space. To reduce subscription forwarding load and
speed up content matching, subscription covering, subsump-
tion and merging techniques have been proposed. In this pa-
per we propose MICS, Multidimensional Indexing for Con-
tent Space that provides an efficient representation and pro-
cessing model for large number of subscriptions and pub-
lications. MICS creates a one dimensional representation
for publications and subscriptions using Hilbert space filling
curve. Based on this representation, we propose novel con-
tent matching and subscription management (covering, sub-
sumption and merging) algorithms. Our experimental eval-
uation indicates that the proposed approach significantly
speeds up subscription management operations compared
to the naive linear approach.

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design Studies; Modeling
Techniques; I.6.3 [Simulation and Modeling]: Applica-
tions; I.6.4 [Simulation and Modeling]: Model Validation
and Analysis

General Terms
Algorithms, Experimentation, Performance

Keywords
Event notification, publish/subscribe

1. INTRODUCTION
Content-based Publish/Subscribe (pub/sub) is a customized

many-to-many communication model that can satisfy re-
quirements of many modern distributed applications [1]. In
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a pub/sub scheme, subscribers express their interest in con-
tent. Whenever a content is produced, it is delivered to
the interested subscribers . By decoupling communication
parties, a pub/sub system provides anonymous and asyn-
chronous communication making it an attractive communi-
cation infrastructure for many applications. Such applica-
tions include selective information dissemination, location-
based services, sensor networks and workload management
[1].

In order to distribute the load of publications and sub-
scriptions a distributed content-based pub/sub system uses
a set of network brokers. Routing protocols for publica-
tions and subscriptions in brokers aim to reduce network
cost that results from publication and subscription forward-
ing. Subscriptions typically are broadcast to all brokers.
This reduces network traffic by enabling filtering of publica-
tions close to their sources. To reduce subscription forward-
ing traffic, subscription covering, subsumption and merging
techniques are used to prevent propagation of redundant
subscriptions. It has been shown that exploiting subscrip-
tion covering, subsumption and merging results in signifi-
cant reduction in subscription traffic [2,4–7]. Li et al. show
that depending on subscription set, covering and merging
can result in up to 75% reduction in subscription traffic [6].
Ouksel et al. also show that subscription subsumption,
where a set of existing subscriptions cover a new subscrip-
ition, has a significant effect in reducing subscription traf-
fic [4]. However, existing algorithms for evaluating cover-
ing, subsumption and merging have at least linear execu-
tion time with respect to the number of subscriptions. Also,
most of the existing systems including Siena, PADRES and
REBECA only exploit pairwise subscription comparison or
merging and it is not clear how to extend them to exploit
subsumption relation among subscriptions [2, 6, 7].

In this paper we propose, MICS, an efficient approach
to evaluate subscription covering, subsumption and merg-
ing and perform publication matching. In MICS, subscrip-
tions are mapped to a single dimensional space using Hilbert
space filling curve and are represented using a set of ranges.
Based on this representation, we organize subscriptions in
a B+Tree and propose a novel algorithm that efficiently
detects if a subscription is covered or subsumed by exist-
ing subscriptions or if it can be merged with a set of exist-
ing subscriptions. We also propose an efficient publication
matching algorithm. The basic MICS approach is described
for lower dimensional spaces. To scale to higher dimensional
spaces, we propose a hybrid approach based on combining



MICS and previously proposed approaches that significantly
reduces load of subscription management.

The paper is organized as follows. In the next section
we provide a brief overview of distributed content-based
pub/sub model that we assume in this paper. Section 3
describes MICS, our content space representation model.
In Section 4 we present our novel subscription subsump-
tion and merging and content matching algorithms. Our
hybrid approach for content space with higher dimensions
is presented in Section 5. Section 6 discusses issues in the
proposed model and addressing them in MICS. Section 7
presents our experimental results. Section 8 describes re-
lated work and Section 9 concludes the paper.

2. DISTRIBUTED PUBLISH/SUBSCRIBE SYS-
TEM

To keep the paper self-contained, we provide a brief overview
of distributed content-based pub/sub system that we as-
sume in this paper. Different architectures for distributed
content-based pub/sub have been proposed in the litera-
ture [2, 3, 19, 20]. Our proposed system is based on the ar-
chitecture used in Siena, PADRES and REBECA [2,6, 7].

The pub/sub system consists of a set of brokers intercon-
nected through transport-level links which form an acyclic
overlay network. Each client is connected to one of the bro-
kers. When a client issues a subscription, it sends it to
the broker that it is connected to. The broker acts as a
subscriber with respect to the rest of the brokers and prop-
agates the subscription to all other brokers. When a client
publishes an event, it sends the event to its corresponding
broker. This broker also behaves as publisher with respect
to other brokers and forwards the event through the broker
overlay network toward brokers that have subscribed for the
event. Then each of these brokers delivers the event to their
clients that actually subscribed for the event. Figure 1 de-
picts a sample broker overlay network with 11 brokers and
clients connected to one of these brokers.

Figure 1: A sample broker overlay network.

Subscriptions are broadcast to all brokers in the overlay
network and brokers store them in their subscription ta-
ble. Upon receiving a publication from a neighbor broker or
one of its clients, the broker matches it to the subscriptions
in the subscription table and forwards the publication to a
neighbor broker if and only if it has received a matching
subscription from that neighbor. Since the content match-
ing operation is performed in each broker along the path
from publisher broker to subscribers, matching time has a
significant effect on the speed of publication dissemination.
Efficient matching techniques have been proposed in the lit-
erature to reduce matching time [10,13].

To prevent unnecessary dissemination of subscriptions and
reduce the size of subscription tables, pub/sub systems use
subscription covering, subsumption and merging techniques.
A subscription s1 covers subscription s2 if and only if all
publications matching s2 also match s1. When a broker, Ni

receives a new subscription from one of its neighbors, Bj ,
that is covered by a subscription previously received from
Bj , since it does not affect publication routing, Bi does not
forward the new subscription to other neighbors. Since the
covered subscriptions are not disseminated to all brokers,
it results in lower network traffic and compact subscription
tables. Note that the receiver of the covered subscription
stores the subscription in its passive subscription list since
it may forward this subscription later should the covering
subscription be canceled by an unsubscription request from
its subscriber. In this case, the covering subscription is re-
moved from the corresponding subscription table and the
covered subscription(s) in the passive subscription list are
moved to the subscription table and forwarded to the neigh-
bors along with the unsubscription request for the covering
subscription.

The more efficient utilization of covering is subscription
subsumption. While a new subscription may not be cov-
ered by a single existing subscription, it is possible that it is
covered by a set of existing subscriptions. In this case also
forwarding the new subscription does not have any effect
on publication routing and is redundant. In fact subscrip-
tion covering process is a subset of subscription subsumption
process and if a subscription is covered by an existing sub-
scription, the subsumption process can detect it. However,
subscription subsumption in general has been proved to be
a co-NP complete [14].

The other technique that is used to further minimize sub-
scription table size in brokers is subscription merging [6].
The goal of subscription merging is to replace a set of sub-
scriptions with one subscription that have the same effect
on publication routing. This results in reduced subscription
table size and speeds up matching operation in brokers. In
fact, the result of merging a set of subscriptions is a sub-
scription that represents the union of these subscriptions.

In general, the goals of these subscription management
operations are to 1) Reduce subscription dissemination traf-
fic. 2) Reduce subscription table size that results in reduc-
ing subscription table memory consumption and speeding
up the content matching operation.

3. MICS: CONTENT SPACE REPRESENTA-
TION MODEL

In this section we present the basic MICS approach to
represent content space in a pub/sub system. We begin by
first introducing the notation that we use.

3.1 Notations
We assume the content space consists of d attributes,

A = {a1, a2, ..., ad}, that form a d-dimensional space. The
maximum and minimum boundaries of each attribute in the
system is known. We represent the domain of attribute ai

with [li, ui] where li is the lower bound of the attribute do-
main and ui is the upper bound of the attribute domain.
Note that li ≥ −∞ and ui ≤ ∞. Each publication rep-
resents a point in the content space that is represented as
p = (v1, v2, ..., vd) where vi is the value of attribute ai in



the publication and vi ∈ [li, ui]. A subscription s is repre-
sented as a conjunction of predicates where each predicate
represents the subset of the corresponding attribute domain
that the subscriber is interested in. We assume that each
predicate in subscription sj is represented as [lowj

i , upj
i ] that

indicates the boundaries of the subscription for ith attribute.
Thus, a subscription corresponds to a d-dimensional rectan-
gle in the content space. Note that li ≤ lowj

i and upj
i ≤ ui.

We say that publication p matches(satisfies) subscription
sj if and only if for each vi in p, vi ∈ [lowj

i , upj
i ].

Figure 2: H2
3, a 2 dimensional space partitioning and

indexing using Hilbert curve.

3.2 Multidimensional indexing using Hilbert
curve

To be able to efficiently support subscription manage-
ment, we map the multi dimensional content space to a
single dimensional representation using Hilbert curve [16].
The first step is to partition the multi dimensional space.
Each dimension domain is divided into 2k intervals and
these intervals are numbered from 0 to 2k − 1. We rep-
resent ith interval in j’th domain as Iij

. The result of this

partitioning is (2k)d d-dimensional cubes that we refer to
as cells. We use C(Ii1 , ..., Iid

) to represent the cell com-
posed by ijth interval in jth dimension in the space. The
partitioned d-dimensional space is represented by Hd

k. The
next step is to index these cells in the space. Sophisticated
indexing functions have been proposed in the literature in-
cluding functions based on z-curve, Gray-coded curve and
Hilbert curve [16]. Since Hilbert curve preserves locality
better than other space filling curves [17], we use Hilbert
curve for mapping the content space.

Hilbert curve. A d-dimensional Hilbert space filling
curve in Hd

k is a one to one mapping from [0, 2k − 1]d into
[0, 2kd − 1] that assigns an integer to each cell in the parti-
tioned space and is defined as follows.

Hilbert : [0, 2k − 1]d → [0, 2kd − 1]

The index of cell C(Ii1 , ..., Iid
) that has been produced using

Hilbert space filling curve is represented by Hilbert(Ii1 , ..., Iid
)

that is an integer in [0, 2kd−1]. Figure 2 depicts partitioning
and indexing of a 2-dimensional space using Hilbert curve.

3.3 Publication/Subscription representation in
MICS

Publication Representation: As discussed above, ev-
ery publication is a point in the content space that is repre-
sented as p = (v1, v2, ..., vd). In the mapping of a publication
into single dimensional space, we represent the publication

by the index of the cell that the publication falls in. For-
mally, p = (v1, v2, ..., vd) is represented by Hilbert(Ii1 , ..., Iid

)
where vj ∈ Iij

for j ∈ {1, ..., d}.
Therefore, the vector representation of a publication is

reduced to just an index number. Figure 3 shows three
sample publications, p1, p2 and p3, in the two dimensional
space, H2

3, that are represented as 28, 52 and 50 respectively.

Figure 3: Sample publications and subscription in a
two dimensional space.

Subscription Representation: To represent a subscrip-
tion in the partitioned space, the first step is to augment the
subscription rectangle to a rectangle that is composed of
cells in the partitioned space. The resulting rectangle from
the subscription augmentation step is the minimum bound-
ing rectangle of the original subscription. This minimum
bounding rectangle consists of all cells in the partitioned
space that have intersection with the subscription. Sub-
scription s2 is the augmentation of subscription s1 in figure
3. The formal representation of minimum bounding rectan-
gle for a subscription s in the event space Hd

k is as follows.

Hilbert(s) = {C(Ii1 , ..., Iid
) ∈ Hd

k where C(Ii1 , ..., Iid
) ∩

s 6= ∅}

This augmentation covers some parts of the content space
that are not requested by the subscription and may result in
false positives in publication dissemination. The amount of
resulting false positives directly is related to the space par-
titioning granularity. The finer granules and smaller parti-
tions result in fewer false positive.

After finding the indexes for the cells in the augmented
subscription, the next step is to form the intervals represent-
ing these indexes. In this step augmented subscription in-
dexes are clustered based on their sequence and represented
by a set of intervals (ranges) based on indexing the space
by Hilbert curve. Therefore, the result of mapping a sub-
scription into the one dimensional space is a set of discrete
ranges. We represent the number of ranges for subscription
s by Ns and the set of these ranges by s = {R1, ..,RNs}.
If the mapping process results in large number of intervals,
subscription representation in one dimensional space may
not be efficient. We discuss this in section 5. The number of
resulting ranges for a subscription depends on the number of
dimensions and the indexing technique that is used for space
partitioning. It has been shown that the indexing technique
based on the Hilbert space filling curve results in the least
number of intervals in most circumstances [17]. Moon et.
al., have shown that in a d-dimensional space Hd

k, the aver-
age number of intervals for a rectangle is evaluated by the
following formula [16].



lim
k→∞

Ns =
S

2d
(1)

In this formula S represents the total surface area of the
augmented subscription. Since subscriptions are rectangles
in our system and assuming that a rectangle for subscrip-
tion sj is represented by

Qd

i=1
[lowj

i , upj
i ] the surface of the

subscription rectangle is calculated as follow.

S = 2
d

X

k=1

(
1

[upj

k − lowj

k]

d
Y

l=1

[upj
i − lowj

i ]) (2)

Therefore, the average number of intervals for such query
is as follow.

lim
k→∞

Ns =
1

d

d
X

k=1

(
1

[upj

k − lowj

k]

d
Y

l=1

[upj
i − lowj

i ]) (3)

As an example of subscription representation consider the
subscription s1 in figure 3. The augmented version of this
subscription in the sample two dimensional space is s2. The
set of cells that form the augmented subscription is {32, 33,
34, 35, 45, 46, 50, 51, 52, 53, 54, 55}. This results in three
intervals for representing the subscription that are {[32,35],
[45,46], [50,55]}.

3.4 Content matching in MICS
In the new one dimensional space, we say publication p

matches subscription s if and only if the Hilbert index of
the cell for the publication is included in one of the intervals
representing s. Formally, in the new representation of the
content space, matching is defined as follow.

p matches s iff ∃Ri ∈ s such that Hilbert(p) ∈ Ri

Based on the new matching definition, the problem of
content matching converts to finding if a point is covered
by at least one of ranges in a set of ranges representing
subscriptions. As an example consider matching of p1=28,
p2=52 and p3=50 as three publications with subscription
s1 in figure 3. Since we use the augmented subscription
to represent a subscription in our representation model, the
content matching process uses s2 to perform matching oper-
ation. Therefore, 28 /∈ {[32,35], [45,46], [50,55]} means that
p1 does not match s2. On the other hand, since 52, 50 ∈
{[32,35], [45,46], [50,55]}, p2 and p3 match s2. Note that p3

does not match s1 and is a false positive.

Figure 4: Covering relation between subscription
ranges.

3.5 Subscription covering in MICS
To reduce the subscription dissemination traffic and con-

dense the subscription information stored in brokers and
speed up matching operation, brokers exploit covering re-
lation between subscriptions. The MICS representation of

the content space simplifies the use of covering relation be-
tween subscriptions. Based on the one dimensional repre-
sentation of subscriptions, the covering relation is defined as
follows. Subscription s1 covers subscription s2 if and only
if for all range Ri ∈ s2, there exists a range Rj ∈ s1 such
that Ri ⊆ Rj . Since in our representation subscriptions are
ranges, the above definition in fact shows that all ranges in
s2 are covered by ranges in s1.

Partial Covering: In the existing covering algorithms
for content-based pub/sub a subscription can either cover
another subscription or can be covered by another subscrip-
tion. We call this relation total covering relation. Our pro-
posed scheme enables us to define the novel concept of partial
covering. In partial covering relation between two subscrip-
tions, if even just one of the ranges of a subscription, which
represents one part of it, covers one of the ranges of the other
subscription, we can remove the covered range from the sub-
scription table. The partial covering relation enables our
approach to exploit overlap between subscriptions to reduce
required storage size for subscriptions in brokers. Figure 4
shows the difference between partial covering and total cov-
ering relations between two subscriptions. As it can be seen
in figure 4.a, all ranges of s2 are totally covered by ranges of
s1. However, in figure 4.b one range of s1 covers one range
of s2 while the other range of s2 is not covered by the other
range of s1.

Figure 5: Imperfect and perfect merging of three
subscriptions.

3.6 Subscription merging in MICS
Merging subscriptions is a technique to reduce subscrip-

tion table size in brokers. Subscription merging in multidi-
mensional space is not a trivial process. There are different
techniques for merging subscriptions in a multidimensional
space [15]. Figure 5 depicts samples for two main approach
for subscription merging in two dimensional space. The
most straightforward way to merge a set of subscriptions
is to represent them by their minimum bounding rectangle.
The result of merging in this way is a new rectangle that
includes all the subscriptions that are being merged. Figure
5.b shows merging of three subscriptions in a two dimen-
sional space using minimum bounding rectangle. The main
advantage of using minimum bounding rectangle for merging
subscriptions is that the result of merging is also a rectangle
that can be easily produced for a known set of subscriptions.
However, a disadvantage is that the resulting new subscrip-
tion may also cover parts of the content space that there is no
subscription for them. This may result in false positives in
publication dissemination and increases publication dissemi-
nation traffic. This merging method is imperfect. The more
sophisticated merging technique is perfect merging where
bounding hyperpolygon is the result of merging. Figure 5.c
depicts merging of three subscriptions in a two dimensional
space using their bounding polygon. As it is depicted, this
technique does not result in extra false positives, however,



the generated hyperpolygon complicates content matching
and covering algorithms.

The other important issue in subscription merging is the
criteria using which set of subscriptions are merged. Select-
ing subscriptions to merge can be based on the amount of
false positives that may result from combining these sub-
scriptions and amount of resource consumption for main-
taining subscriptions and performing content matching. The
general efficient subscription merging has been proved to be
NP-complete [15].

Partial merging: A novel technique that we use in merg-
ing subscriptions is partial merging. Similar to partial cover-
ing relation that described in section 3.4, in partial merging
we consider merging parts of subscriptions. This can be done
because of representation of subscriptions as a set of inter-
vals. Since each interval can be considered independently,
some of intervals of a subscription can be used for merging
while some other intervals are not used.

In MICS we can support both perfect and imperfect merg-
ing. In the perfect merging, we merge intervals that either
have intersection with each other or there is no space be-
tween them. Formally, the perfect merging of interval Ri =
[minRi

, maxRi
] with interval Rj = [minRj

, maxRj
] is per-

formed if one of the following conditions holds Ri ∩Rj 6= ∅

or minRi
= maxRj

+ 1 or minRj
= maxRi

+ 1. The result
of merging is a new range Rmerge = [minmerge, maxmerge]
where minmerge = MIN{minRi

, minRj
} and maxmerge =

MAX{maxRi
, maxRj

}. In the imperfect merging we merge
two intervals if the gap between them is less than a specified
threshold. The imperfect merging is done in the same way
as the perfect merging. Note that the result of merging can
be used for further merging.

3.7 Subscription subsumption in MICS
We formally define the subscription subsumption as fol-

lows.
Assume the set of existing subscriptions in a subscription

table is represented as S = {s1, s2, ..., sn}. Also assume
that subscription sm is the new subscription received by the
broker. The result of subsumption checking for sm is true if
and only if sm ⊆

Sn

i=1
si.

This is the general definition of subscription subsumption
in d-dimensional content space. In MICS subsumption can
be checked as follows.

Assume the set of ranges from all existing subscriptions is
represented as R = {R1, ..,Rn} and the set of intervals for a
new subscription is represented as sm = {R1, ..,Rm}. The
result of subsumption checking for sm is true if and only if
for every range Rj ∈ sm, Rj ⊆

Sn

i=1
Ri where Ri ∈ R.

Similar to subscription covering and merging, since we
represent a subscription as a set of intervals, we can exam-
ine subsumption of each of these intervals independently.
We call this partial subsumption since even if a part of a
new subscription is covered by a set of subscriptions, this
covering is exploited to reduce the corresponding subscrip-
tion table size.

4. PROPOSED ALGORITHMS IN MICS
In this section we propose subscription covering, subsump-

tion, merging and content matching algorithms based on
MICS model. We first describe the data structure we use
for subscription table. Then, we present the subscription
management (subsumption and merging) algorithm and the

content matching algorithm.

4.1 Subscription table structure
Combining the proposed model for representing subscrip-

tions as set of one dimensional intervals and applying sub-
scription covering, merging and subsumption techniques, it
is straightforward to show that the resulting intervals for a
subscription are discrete and have no intersection. Because
if there are overlapping intervals in the subscription table,
we can merge them into one interval, therefore, there is no
overlapping range in subscription table.

To maintain these non overlapping intervals we propose a
subscription table data structure based on B+Tree [18]. In
the B+Tree, we organize intervals based on their starting
point. Every leaf in the tree points to an interval and leaves
are sorted based on their start point.

Algorithm 1 Subscription subsumption and merging.

1: Input ← A new subscription in ranges format s = {R1, ..,RNs}

2: Input ← Subscription ranges organized in a B+tree

3: Output ← List of ranges to forward List = ∅.
4:
5: L1:

6: for all Ri = [minRi
, maxRi

] ∈ s do

7: Look up for minRi
in the tree

8: Assume the visited leaf is Lmin

9: and its corresponding range is RLmin

10: end for

11: Step 1:

12: if Ri ∈ RLmin
then

13: Ri is covered. Goto L1.
14: end if

15: Step 2:

16: CoveredList = ∅

17: if (RLmin
∈ Ri) then

18: CoveredList = CoveredList ∪ {RLmin
}

19: end if

20: Lj = Lmin.next

21: while RLj
∈ Ri do

22: CoveredList = CoveredList ∪ {RLj
}

23: Lj = Lj .next

24: end while

25: if CoveredList 6= ∅ then

26: remove all RLj
∈ CoveredList from the tree

27: end if

28: Step 3:

29: RMerged = Ri

30: if minRi
∈ RLmin

or minRi
= maxRLmin

+ 1 then

31: RMerged = Merge(Ri,RLmin
)

32: end if

33: if maxRi
∈ RLmax or

maxRi
= minRLmax

− 1 then

34: RMerged = Merge(RMerged,RLmax )
35: Remove RLmax from the tree
36: maxRLmin

= maxRLmax

37: List = List ∪ {RMerged}
38: end if

39:
40: if List 6= ∅ then

41: forward ranges in List.

42: end if

4.2 Subscription subsumption and merging al-
gorithm

Algorithm 1 represents the subscription covering, sub-
sumption and merging procedure in MICS. When a new
subscription in the form of set of ranges is received by a
broker, it uses this algorithm to insert the ranges into the
subscription table data structure if necessary and then for-
wards the subscription ranges that are not subsumed. The



algorithm performs the following for each of new subscrip-
tion’s ranges. The first step is to inspect if the range is
covered by previously stored ranges. This is done by look-
ing up the B+tree for the starting point of the new range.
Assume the leaf of the tree that is visited in this search is
represented by Lmin. Then, if the new range is covered by
the corresponding range of the matched leaf, Lmin, it means
that the new range is covered by one or more subscriptions
and the algorithm stops for this range. Otherwise, the algo-
rithm starts inspecting if the new range covers other existing
ranges. This step is done by going through the sequence of
leaves in the tree and checking if they are covered by the
new range. Note that in B+tree data structure, leaves are
sorted in ascending order from left to right and the sorted
list of leaves can be achieved using the pointers between
leaves [18]. The traverse through leaves stops when the first
leaf with a range that is not covered by the new range is en-
countered. We represent this leaf by Lmax. All the covered
ranges are added to the passive subscription list and are re-
moved from the B+tree structure. The last step for a new
range in the algorithm is to inspect the possible merging
with other existing ranges. This step is done by examin-
ing two leaves in the tree, Lmin and Lmax. If the ranges
for these two leaves can be merged with the new range, the
merge operation takes place and these leaves are removed
from the tree. Finally the new range or the result of merg-
ing is added to the tree and the new range is added to the
list of ranges that should be forwarded to the corresponding
neighbor. At the end of the algorithm, if this list is empty it
means that the new subscription is covered or subsumed by
previous subscriptions and there is no need to forward it to
the corresponding neighbor. Otherwise, the list is forwarded
to the corresponding neighbors.

Note that in the proposed algorithm since we merge all
overlapping ranges, subscription subsumption implicitly is
evaluated by the step that evaluates covering. The reason
is that the covering does not use ranges of a single subscrip-
tion but it considers result of previously merged ranges that
results in subsumption checking too. Hence, if a range is
covered by the range resulted from merging several ranges
form different subscriptions, it is subsumed by these sub-
scriptions.

An important property of the algorithm is that for each
range the algorithm looks up the subscription table (B+tree)
only once to detect covering, subsumption and merging and
the B+tree look up operation has logarithmic execution
time. This results in significantly fast evaluation of covering,
subsumption and merging evaluation for subscriptions.

4.3 Publication matching algorithm
In this section we propose our content matching algo-

rithm. The content matching algorithm illustrated in algo-
rithm 2 is very similar to the B+Tree search. The algorithm
tries to find the leaf in the tree that the publication may
fall in. When a new publication is received, the B+Tree is
looked up for the match. However, when search reaches to a
leaf and it does not match the starting point of an interval,
the search does not stop. The algorithm retrieves the range
corresponding to this leaf and examines if the publication
point is included in this range. If it is included, this means
the publication matches at least one of the subscriptions re-
ceived from the corresponding neighbor and therefore, the
publication is forwarded to this neighbor. Otherwise, it is

not forwarded to this neighbor.

Algorithm 2 Publication matching.

1: Input ← Publication point p

2: Input ← Subscription ranges organized in a B+tree

3: Output ← TRUE if p is covered, FALSE otherwise.
4:
5: Look up for p in the B+tree.
6: Assume the leaf that the search stops in is L and its correspond-

ing range is R
if p ∈ R return TRUE
else return FALSE

7: if p ∈ R then

8: return TRUE.
9: else

10: return FALSE

11: end if

5. SCALING TO HIGHER DIMENSIONS
The number of ranges to represent a subscription consider-

ably increases in spaces with higher dimensions [16]. There-
fore, applying basic MICS approach for converting subscrip-
tions into one dimensional ranges may result in large num-
ber of ranges. In this section we propose two techniques
for applying MICS in applications with high dimensionality
without generating enormous amount of ranges.

The first technique, Content Space Projection, is to select
a subset of attributes (dimensions) and project the content
space on these dimensions. In fact, we eliminate evaluation
of the rest of attributes and consider the space resulting
from the selected attributes. While, this approach keeps
the number of ranges manageable, it may result in higher
amount of false positives during publication dissemination
since some of attributes are not represented in the model.
Our experimental results indicate that the increased false
positives can be from 3% to even higher that 50% depending
on the distribution of subscriptions.

The second technique is a hybrid approach that is based
on combining MICS with any of the previously proposed ap-
proaches. As mentioned, the main drawback of conventional
subscription management approaches is that they have a
linear execution time with respect to the number of sub-
scriptions. This results in a large search space for subscrip-
tion management algorithms in a large scale system with
enormous amount of subscriptions. In our hybrid approach,
which we refer to as Subscription Indexing, we use MICS to
narrow down the search space for conventional subscription
management algorithms. The main idea behind subscrip-
tion indexing is to use MICS to index subscriptions using a
small subset of dimensions. Based on this index, subscrip-
tion management and content matching algorithms have two
phases. In the first phase MICS is used to filter the subscrip-
tions that do not match the incoming subscriptions or pub-
lications in the selected dimensions. This narrows down the
subscription set that should be used by conventional algo-
rithms. Then, any of the conventional subscription manage-
ment algorithms is used to evaluate the resulting subscrip-
tions achieved from the first phase. The selection of dimen-
sions for construction of the index for subscriptions plays
an important role in the efficiency of subscription indexing.
In this paper we use a greedy approach to select the index
dimensions based on the selectivity of the attributes. We
use the top k attributes that have the highest selectivity for
the subscriptions. Applying more sophisticated techniques
for efficient selection of attributes to index subscriptions is



subject of our future work and out of the scope of this paper.
Subscription management in Subscription Index-

ing: Similar to our first technique, a subset of attributes are
chosen for content space representation. Each subscription
has an extra component that is the resulting ranges from
mapping the subscription into one dimensional space using
the selected subset of its attributes. The B+tree data struc-
ture is used as an index to access actual subscriptions. Each
leaf in B+tree consists of a range and the list of subscrip-
tions that this range is resulted from. When a subscription
is received, its index ranges are used in a similar way as
described in section 4.2 to find the set of previously exist-
ing subscriptions that must be evaluated for covering, sub-
sumption or merging with this subscription. The result of
the algorithm will be a set of candidate subscriptions that
should be used for evaluation of covering, subsumption and
merging. Then, these subscriptions are evaluated using the
existing methods to check if they cover or subsume the new
subscription or if they can be merged with it.

Content matching in Subscription Indexing: After
finding the range that matches a publication, the matching
algorithm does not stop. Instead, it retrieves all the sub-
scriptions corresponding to the matching range and then
performs the content matching using these subscriptions. If
at least one subscription matches publication, it is forwarded
to the corresponding broker.

Compared to content space projection, in subscription in-
dexing the publication matching algorithm performs more
computation, however, it has an important advantage that
is eliminating false positives in subscription dissemination
process. This is achieved by using exact subscriptions for
content matching. However, since we prune all other sub-
scriptions and just select a very small fraction of subscrip-
tions for matching in the second phase, it does not have sig-
nificant computation overhead compared to the case where
all subscriptions are evaluated. As we show in Section 7.2
subscription indexing can significantly reduce the number of
subscriptions that should be evaluated in high dimensional
spaces.

6. DISCUSSION

6.1 Distributed processing of Hilbert indexes
In our content representation model subscriptions and

publications are represented using their corresponding in-
dexes generated by Hilbert curve. Computing these indexes
for large amount of subscriptions and publications may re-
quire significant amount of computation resources. How-
ever, such computation can be done very fast and without
requiring significant computing power if it is done in a dis-
tributed fashion by the subscribing clients. Table 1 depicts
the time for computing one dimensional representation of
one subscription in different settings using a MacBook lap-
top machine with a Intel Core 2 Duo processor with 2 GHz
speed and 1 GB memory running MacOS 10.4.8. Each di-
mension is partitioned into 256 intervals here. As it can be
seen the computation time in all cases is around 0.1 sec-
ond. Therefore, to avoid imposing such overhead on bro-
kers, we push the conversion process to clients. By acquiring
knowledge about the partitioning, each client can compute
its limited number of subscriptions and publications in one
dimensional format and send them in the one dimensional
format to the corresponding broker. This way, computation

Table 1: Hilbert index computation time in different
dimensions and different subscription sizes

2 4 8 16

2d 0.1ms 0.1ms 0.3ms 1.0ms

3d 0.1ms 0.3ms 1.9ms 12.8ms

4d 0.1ms 1.1ms 10.2ms 124.1ms

of Hilbert indexes for subscriptions and publications is done
in a distributed fashion and does not result in higher load
on brokers.

6.2 False positives
The augmentation of subscriptions to represent them as

set of cells in partitioned space may result in forwarding pub-
lications to brokers that do not have matching subscriptions
which we reefer to as false positives. The main negative ef-
fect of false positives is increasing publication propagation
traffic. The amount of false positive directly depends on
the size of partitions that are generated in the system. The
larger partitions of the space results in more inaccuracy and
consequently higher false positive rate.

Exploiting covering and merging relations among subscrip-
tions in our model results in considerable reduction of aug-
mentation size for subscriptions. For instance, assume a set
of overlapping subscriptions. Since we merge all of these sub-
scriptions, the total augmented size for these subscriptions
only results from the augmentation in the surface of the re-
sulting hyperpolygon. This is considerably smaller than the
sum of subscription augmented area for each subscription.

6.3 Space partitioning with variable cells
As mentioned, having fine grained partitions reduces in-

accuracy in subscriptions and results in less amount of false
positives in publication dissemination. So far, we consid-
ered partitioning of content space into equal cells. Since
all parts of content space have the same chance of having
publications and subscriptions when the distribution of pub-
lications and subscriptions is uniform, we treat all parts of
the space in the same way by having equal size partitions.
However, if there is prior knowledge about the distribution
of publications, we can exploit it to partition the space in
such a way that reduces amount of false positives. For in-
stance, if we know that publications in an application follow
Zipfian distribution, space partitioning can be done in such
a way that the resulting false positive is reduced consider-
ably compared to the case of having equal size partitioning.
In this way, partitions in the areas with large amount of
expected publications are finer grained compared to other
parts of the space. The number of created cells is the same
as the equal size partitioning, however, the cell sizes are
different depending on the part of content space they are
in. Therefore, for a large number of publications, we con-
siderably reduce amount of false positives by reducing the
augmentation size for their matching subscriptions. Figure
6 depicts a variable size partitioning in a two dimensional
space.

7. EVALUATION
In this section we evaluate our proposed algorithms. We

implemented the modified B+Tree for handling intervals in
Java. All of the experiments are done on a machine with



Figure 6: Space partitioning with variable cell sizes.

a 3GHz Intel Pentium 4 processor and 1GB RAM running
Ubuntu with Linux kernel 2.6.12. For each simulation run
1GB memory is allocated for JVM. Each attribute domain
in the content space is divided into 256 partitions. Similar
to previous work in the literature subscriptions and publi-
cations are generated using Zipfian and uniform distribu-
tions [22]. To create a subscription we first compute the
lower bound of the range for each dimension using the se-
lected distribution. Then we add the average subscription
size to the computed lower bound to detect the upper bound
of the range. We set the default subscription range size to 4.
We conducted simulations in 2, 3 and 4 dimensional content
space. We compared our approach with a linear implemen-
tation of covering, subsumption and merging algorithms.
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7.1 Evaluation metrics
We evaluate our proposed content space representation

and algorithms based on three main metrics. The first met-
ric is the time required for checking subscription covering,
subsumption and merging.

The second metric to evaluate our approach is content
matching time. This is a critical factor in content dissem-
ination because content matching is done in every broker
along the path of publication dissemination. Therefore, an
efficient content matching algorithm plays a critical role in
reducing total dissemination time for publications.

The third metric is the amount of ranges stored in sub-
scription table. We consider amount of ranges that should
be stored in a subscription table structure in one broker to
evaluate the amount of required resource in our approach.
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Figure 8: Subscription insertion time with covering,
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There are two main factors that affect the number of stored
ranges. First, representation of each subscription with a set
of ranges that increases the number of stored ranges. Sec-
ond, the partial and total covering, subsumption and merg-
ing algorithms we presented in this paper that reduce the
number of stored ranges for subscriptions. The number of
stored ranges shows the overall effect of these factors.

We also evaluate the approach we proposed for dealing
with higher dimensions. We evaluate content space projec-
tion by measuring the amount of false positives resulted from
ignoring subset of dimensions. We then evaluate the effect of
subscription indexing approach in MICS to deal with higher
dimensionality in the content space. We evaluate this ap-
proach by measuring the reduction of the search space for
the subscription covering, subsumption and merging.

Our proposed subscription covering, subsumption and merg-
ing algorithm also prevents redundant dissemination of sub-
scriptions in the broker overlay network that results in re-
duced subscription dissemination traffic. The reduced amount
of subscriptions depends on the subscription set and is the
same for all techniques. However, in order to stress on the
importance of subscription subsumption, we present our re-
sults in comparing subscription subsumption and covering
effects in reducing the subscription forwarding traffic in bro-
ker network.

7.2 Experimental Results
Subscription covering and subsumption effect: To

show the importance of covering and subsumption we plot
the subscription traffic before and after using covering and
subsumption in figure 7 for a neighbor broker and different
dimensionalities with subscription size 4 and Zipf distribu-
tion. The graph depicts three different scenarios. The first
scenario is when no covering and subsumption is used. In
this scenario all subscriptions are forwarded to the neigh-
bor broker, therefore, the subscription dissemination traffic
is the same regardless of the number of dimensions. The
second scenario is the effect of using only covering and fi-
nally the last one is the effect of using subsumption. As
it is shown, exploiting subsumption results in considerable
reduction in subscription forwarding traffic compared to the
case where only subscription covering is used. The differ-
ence is more significant when the dimensionality is smaller
because of higher overlapping among subscriptions. The



graph also depicts the significant reduction in traffic com-
pared to the case where no covering and subsumption is
used.

Subscription insertion time: Subscription insertion
process includes checking if the subscription is covered or
subsumed by the existing subscriptions. It also exploits all
possible merges that can be done by adding the new sub-
scription. Since all of the existing approaches provide sep-
arate algorithms for covering, subsumption and merging we
only present subscription insertion time for our insertion al-
gorithm described in section 4.2. On the other hand, in order
to compare the performance of our proposed approach with
the most commonly used linear approach, we adapted our
algorithm to just check subscription covering and measured
this time for our algorithm and the linear covering algorithm
that has been used in [2, 7].
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Figure 9: Subscription covering time.

Figure 8 depicts the average subscription insertion time
for different subscription table sizes in different dimensional-
ities with Zipfian and uniform distributions of subscriptions
when the subscription size in each dimension is two. Gener-
ally, the covering, subsumption and merging time for each
subscription in our proposed algorithm and the described
setting is in the order of 0.1 ms that is because of logarithmic
execution time of the algorithm. As it can be seen, the time
is almost the same for different number of subscriptions in
the system. The main reason is the B+Tree based subscrip-
tion management algorithm. However, our measurements
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Figure 10: Publication matching time.

shows that the subscription insertion time considering cov-
ering, subsumption and merging increases by dimensionality.
The reason for this increase is the increased number of gen-
erated one dimensional ranges for each subscription when
the space dimension increases. Another interesting fact in
the graph is that the insertion time for uniform distribution
is more than Zipfian distribution. This is because Zipfian
distribution of subscription results in higher covering, sub-
sumption and merging among subscription which results in
smaller subscription table size.

In comparing our proposed algorithm to a commonly used
linear approach with respect to detection of pairwise cov-
ering relation between subscriptions, our approach outper-
forms the linear one with a significant margin. Figure 9
depicts our results for uniform and Zipfian distributions of
subscriptions. As it can be seen, in both cases our algo-
rithm checks subscription covering much faster than the lin-
ear algorithm. The other fact depicted in the figure is that
the covering detection time for our algorithm does not have
considerable fluctuation for different subscription table sizes
which is justified by the logarithmic execution time for the
algorithm.

Publication matching time: We compare our proposed
content matching algorithm with a linear matching algo-
rithm. We evaluate the algorithms based on uniform and
Zipfian distributions for subscriptions and uniform distribu-
tion for publications. The results are presented in figure 10.
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Figure 11: Stored ranges for different dimensionali-
ties.

The matching time is measured for different subscription
table sizes in different dimensionalities for subscription size
two in each dimension. The graphs show that our proposed
algorithm that uses B+Tree structure of subscription ta-
ble significantly outperforms linear content matching. The
matching time for linear algorithm increases for larger num-
ber of subscriptions, however, since our algorithm has a log-
arithmic execution time, matching time does not increase
significantly.

The other fact that is shown in figure 10 is that the match-
ing algorithm is faster when the subscription distribution is
Zipf. This is because of smaller subscription table size re-
sulted from more covering, subsumption and merging among
subscriptions.

Subscription storage space: We measure the required
storage for subscriptions by counting the number of ranges
that should be stored for subscriptions. It is clear that if the
number of dimensions in the content space is d, the number
of required ranges for a subscription also is d (one range for
each dimension). The main parameters affecting the num-
ber of generated ranges for a subscription in one dimensional
indexing are the number of dimensions and the size of sub-
scriptions. We measure the stored ranges for subscriptions
for both of these parameters.

First we consider the effect of the number of dimensions
on the stored ranges. Figure 11 depicts the amount of stored
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Figure 12: Stored ranges for different subscription
sizes.

ranges after applying subscription covering, subsumption
and merging for uniform and Zipfian distributions of sub-
scriptions where subscription size in each dimension is two.
Note that in this figure, CSM refers to covering, subsump-
tion and merging. As it is seen by increasing the dimen-
sionality, the number of ranges that should be stored in-
creases. The other fact depicted in the both graphs is that
the number of ranges after conversion of subscriptions to one
dimensional representation and applying covering, subsump-
tion and merging reduces compared to the actual number of
ranges in subscriptions. The reduction is more when sub-
scriptions follow Zipfian distribution that results in higher
utilization of covering, subsumption and merging relations
among subscriptions.

Increasing subscription size, however, results in larger num-
ber of ranges for each subscription that increases the num-
ber of stored subscriptions. Figure 12 shows the number of
stored ranges for different subscription sizes in a 3-dimensional
content space. As it can be observed, by increasing size of
subscriptions the number of ranges that should be stored in
subscription table increases. This increase is considerable
when subscription size in each dimension increases from 2
to 8. However, the increase in the number of stored ranges
slows down when the number of subscriptions increases.
This is because of the higher probability of overlapping sub-
scriptions that results in more utilization of subscription



covering, subsumption and merging. Note that the effect
of having more overlapping subscriptions is more consider-
able when subscriptions follow Zipfian distribution.

Content space projection: As mentioned, one way to
use MICS in spaces with higher dimensions is using subset
of dimensions and eliminate the rest of them. This results in
false positives in content dissemination. Table 2 presents the
number of matched publications that must be forwarded and
the percentage of false positives in the matched publications
for 10K publications and different number of subscriptions
with Zipf and uniform distributions when 3 dimensions in
a 7-dimension space are used for MICS. As it is seen, very
small percentage of publication dissemination traffic results
from false positives in Zipf distribution of subscriptions and
publications. However, for uniform distribution almost half
of the traffic results from false positives. The reason is that
in Zipf distribution there is higher chance for most of pub-
lications to be matched by real subscriptions. However, the
probability of matching is lower for uniform distribution that
results in less number of actual matches while increases the
portion of traffic resulting form false positives. Therefore,
using this approach is more efficient in terms of extra dis-
semination traffic when subscriptions and publications have
Zipf distribution.

Table 2: False positives percentage for 10k publica-
tions.

Traffic FP% Traffic FP%

(Zipf) (Zipf) (Uniform) (Uniform)

20K 5217 5.54% 209 42.11%

60K 6472 3.71% 583 42.37%

100K 7040 3.15% 858 36.95%

150K 7502 2.57% 1325 38.19%

Subscription indexing effect: To evaluate the effec-
tiveness of subscription indexing in evaluation of covering,
merging and subsumption, we measure the reduction in the
number of subscriptions that should be evaluated. Table 3
depicts the average number of subscriptions that should be
evaluated after looking up the index in a 7-dimensional space
for both uniform and Zipfian distributions of subscriptions
with subscription size 4. We choose first 3 attributes in the
space and index subscriptions using these three attributes.
As it is depicted in the graph, the number of subscriptions
to evaluate for covering, subsumption and merging signifi-
cantly reduces. For instance, in Zipfian distribution of sub-
scriptions when there are 100,000 subscriptions, when a new
subscription arrives at the broker, it just needs to evaluate
414 subscriptions instead of 100,000. This reduction is more
significant when the distribution of subscriptions is uniform.
This is because of less overlapping subscriptions in uniform
distribution compared to the case where the subscription
distribution is Zipf. On the other hand, uniform distribu-
tion results in larger subscription table size and more sub-
scription traffic because of less covering, subsumption and
merging possibility.

8. RELATED WORK
Most of the existing work have dealt with content match-

ing and subscription covering, subsumption and merging

Table 3: Number of subscriptions to evaluate.

No of Subs Zipf Uniform

20000 64 1

60000 232 1

100000 414 1

150000 600 1

in an isolated way. Several efficient content matching al-
gorithms have been proposed in the literature [10, 13]. A
Bloom filter based approach for content matching proposed
in [12] that results in high matching efficiency while pre-
serving the expressiveness and flexibility. However, it does
not discuss how subscription subsumption or merging can
be done in the presented scheme. Tarkoma proposed a
chained forest structure for fast matching of profiles and
queries [9]. The proposed approach uses chained forests for
maintenance and matching of partial orders. Bittner and
Hinze proposed an arbitrary Boolean pub/sub model that
targets time and space-efficient content matching [11]. In
this model, subscriptions and advertisements are presented
as arbitrary Boolean expressions and matching, conform-
ing and overlapping relationships among messages, subscrip-
tions and advertisements are defined accordingly.

Subscription covering concept in pub/sub systems was in-
troduced in Siena event dissemination system [2]. Siena or-
ganizes subscriptions in a partially ordered set (poset) where
the order is defined by covering relation. Siena only con-
siders pairwise covering relation between subscriptions and
does not exploit subsumption and merging. REBECA is an-
other pub/sub system that not only uses covering, but also
considers subscription merging [7]. Subscription covering
and merging algorithms in REBECA have linear execution
time regarding to the number of subscriptions.

Li et al. propose a representation of subscriptions using
modified binary decision diagrams in PADRES pub/sub sys-
tem [6]. They propose subscription covering, merging and
content matching algorithms based on this representation.
However, these algorithms in worst case may evaluate all
the subscriptions. They also do not consider subscription
subsumption relation among subscriptions.

Shen et al. propose a novel approach for approximate sub-
scription covering detection using Space Filling Curves(SFC)
[23]. They convert a d-dimensional subscription into a 2-
dimensional point and represent the subscription covering
as a point dominance problem which is solved using space
filling curve. In this model, if the point for subscription s1

dominates the point for subscription s2 then s1 covers s2.
However, the proposed approach can only detect pairwise
covering and it is not clear how to extend it for subsump-
tion and merging.

Ouksel et al. present a Monte Carlo type probabilistic
algorithm for the subsumption checking [4]. The algorithm
has O(kmd) time complexity where k is the number of sub-
scriptions, m is the number of distinct attributes (dimen-
sions) in subscriptions, and d is the number of tests per-
formed to detect subsumption of a new subscription. This
algorithm not only has a linear complexity with respect to
the number of subscriptions but also may result in false neg-
atives. In this algorithm it is possible that propagation of a
subscription is stopped while it is not subsumed by the ex-



isting subscriptions. This may result in not delivering pub-
lications to some subscribers that may not be acceptable in
applications like stock ticker. Compared to this approach
our proposed approach not only prevents false negative but
also detects subsumption in logarithmic time.

To effectively detect covering subscriptions Triantafillou et
al. propose an approach based on subscription summaries
[8]. Attributes of each incoming subscription are indepen-
dently merged into their corresponding summary structures.
The summaries will ensure reduction in the network band-
width required to propagate subscriptions and the storage
overhead to maintain them. This technique in combination
with MICS can be used to deal with higher dimension con-
tent spaces. We can partition dimensions into subsets with
lower number of attributes and for each attribute subset use
our proposed system. Then, we can treat each of these sub-
sets independently similar to the approach proposed in [8]
for summarizing indexes and combining matching operation
among these attribute subsets.

9. CONCLUSIONS
In this paper we proposed MICS, a new model for repre-

senting content space including publications and subscrip-
tions in a content-based pub/sub system. We used multidi-
mensional indexing to represent publications and subscrip-
tions in a one dimensional space. Based on the proposed
model, we defined covering, subsumption and merging re-
lationships among subscriptions and proposed an efficient
algorithm for evaluating all of these relationships. We also
presented a content matching algorithm based on our con-
tent representation model. We showed that MICS can effec-
tively be used for systems with larger dimensionality using
our proposed subscription indexing technique.

Based on our experimental evaluations, subscription in-
dexing appears to be a promising approach for subscription
management in large scale pub/sub systems. As part of
future work, we intend to work on different approaches in
providing efficient indexing for subscriptions and study the
effect of using these indexes in subscription management and
content matching algorithms.
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