
Provision of Recovery from Host Failure for Sama Group
Communication Middleware for Mobile Agents

Hojjat Jafarpour and Nasser Yazdani

Dept. of Electrical & Computer Engineering
University of Tehran

Tehran, Iran
hjafarpour@ece.ut.ac.ir , yazdani@ut.ac.ir

Abstract
A high speed group communication middleware can
considerably improve performance of multi-agent
systems. Sama1 is a fast and scalable group
communication middleware for mobile agents. It achieves
scalability and low message delivery time by dis tributing
message dissemination load among all mobile agent
servers. Sama uses Message Dispatcher Objects (MDOs),
which are special objects on each agent server, to
parallelize message propagation process. In this paper, we
describe the Sama group communication middleware and
its recovery from host failure feature. We categorize host
failures in the mechanism and show how Sama overcomes
these failures. Using these features Sama can provide
more reliable message propagation infrastructure for
mobile agent groups.

1. Introduction

Mobile Agents are executing programs or objects that
can migrate from one machine to another in a
heterogeneous network to perform tasks on behalf of their
user [1]. This characteristic of mobile agents have made
them suitable to be used in various distributed
applications like distributed information retrieval [2],
network management [3], E-commerce [4] etc. Many
mobile agent platforms such as Voyager [5], Aglet [6] and
Grasshopper [7] have been developed to provide facilities
for developing mobile agent based applications.

Undoubtedly, communication among agents plays a
crucial role in many mobile agent applications. Different
communication models such as broadcasting, forwarding
and central server have been proposed [8]. An important
communication model which is used in many multi-agent
applications is group communication. Scalability and
speed of a group communication mechanism can

1 This work has been supported by the Univ. of Tehran as a research
project.

definitely improve performance. Applications like E-
commerce or distributed simulations [9] can easily have
hundreds of mobile agents distributed over a continental
distance requiring a scalable and fast mechanism for
communication among agents.

Sama [10] is a fast and scalable group communication
middleware for mobile agents. It provides a message
propagation infrastructure on heterogeneous
internetworks such as the Internet which involves all
mobile agent servers in the system. By mobile agent
server, we mean programs that are run on hosts in order to
enable them to accept messages or requests for mobile
agents. Consequently, only the hosts that have agent
servers, which our agents can migrate on, are considered
in our mechanism. The building blocks of this
infrastructure are special objects on each agent server
called Message Dispatcher Objects (MDOs). Sama
achieves scalability and rapid message delivery by
distributing and parallelizing message propagation
process among all MDOs. Sama propagates a message
among a group of agents using constant number of remote
messages respect to the number of mobile agent servers in
the system. Message delivery in Sama is independent of
agents’ locations.

In addition to scalability and high message propagation
speed, dealing with failures also has an important role in a
group communication mechanism. A common type of
failure in heterogeneous internetworks is Host Failure.
Unfortunately, majority of previously proposed
mechanisms do not provide fault tolerance features to
recover from this kind of failures.

In this paper, we propose the methods that enable Sama
to deal with host failures in the system. We categorize
different types of host failures in Sama and show how it
recovers from each of them. Using these new features,
Sama can provide more reliable communication for
mobile agent groups.

The rest of the paper is organized as follows. In the next
section, we provide an overview on Sama group
communication middleware. Section 3 describes how
Sama recovers from host failures. In this section we

propose different host failure categories in Sama and
methods for recovering from them. Section 4 reviews
related work. Section 5 provides some directions for
future work and concludes the paper.

2. Sama Group Communication Middleware
for Mobile Agents

Sama provides group communication infrastructure on
a heterogeneous internetwork. It does not assume any
special feature for the underlying network and
communications are done using application layer
mechanisms such as Remote Method Invocation.

Message Dispatcher Objects (MDOs): The main
components of the mechanism are special objects on each
mobile agent server, which we call them MDOs. They can
be assumed as a part of mobile agent servers which are
running on some of the hosts in the internetwork. Each
MDO knows all MDOs and their addresses in the system.
This information is stored in an array which is called
MDO List. It also knows MMTT, the Maximum Message
Transfer Time, and MAMT which is the Maximum Agent
Migration Time between two hosts. These values are used
to calculate threshold values to detect failures. Each MDO
also has a message storage queue to store incoming
messages.

Using this queue, MDOs store a message for a limited
period of time to ensure that all group members, specially
migrating members during message propagation, will
receive them. Each MDO also has the list of all its co-
located group members, which is called Local Agent List.
MDOs provide facilities for migrating agents to register
and un-register in their Local Agent List. A group
member before migration should un-register itself from
the list of the source MDO and after migration it should
register itself in the list of destination MDO. Messages
not received by a migration agent are delivered to it by
the destination MDO.

Figure 1 . A sample system with 8 hosts with agent

servers.

The first MDO in the MDO List is called the Proxy
MDO. It coordinates all MDOs in the system and plays
the role of the group proxy. The proxy MDO also assigns
sequence numbers for incoming messages which are used

by MDOs to detect the correct order of received
messages.

Figure 1 depicts a sample system with 8 hosts. As it can
be seen, hosts that have mobile agent servers and agents
can migrate on them are connected through the Internet
and there is one Message Dispatcher Object (MDO) on
each host. There also exist one or few mobile agents on
some of these hosts.

Message Propagation Mechanism: In Sama, when a
group member wants to send a message to the group, it
does not send the message to the members directly.
Instead it sends the message to the group proxy via its
local MDO and MDOs propagate the message among
themselves. Then each MDO delivers the message to its
local group members using its Local Agent List.

Figure 2. Tree Generating Algorithm

Message dissemination among MDOs is done in a
parallel manner and the propagation load is distributed
among hosts in the system. It can be described as follow.
Suppose that the proxy MDO receives a message to
propagate among MDOs. It first sends the message to one
of the MDOs. Now two MDOs have the message, the
proxy and the MDO, which just received the message
from the proxy. Thus the second MDO can also
participate in message propagation process. In the next
step, both MDOs send the message to two other MDOs
and the number of MDOs which have the message will be
four. Then all the four MDOs deliver the message to four
other MDOs and this process will continue until all
MDOs receive the message. As it can be seen the number
of MDOs which know the message is doubled after each
step and each MDO that receives the message participates
in message delivery. In fact, messages are propagated
among MDOs using a binomial tree structure and then

Each MDO does the following steps after receiving a message.
Suppose the number of MDOs is n and the boundaries of the
Customized MDO list are (a , b)

1. Get the message and the boundaries for the MDO list and

calculate the customized MDO list.
2. If there is no boundaries

a. If you are the first receiver MDO and your position in
the MDO list is p set the boundaries as a = (p+1)
MOD n and b = (p-1) MOD n.

b. Finish
3. If b-a MOD n < 2 send the message to the MDOs which are at

indices a and b and finish.
4. Find the median component of the customized list. Assume its

position in the customized list is m then
m = (a + ((b-a) MOD n)/2) MOD n

5. Calculate the boundaries of the new customized list, which is
the first half of the current list as follow:

a = a , b = (m-1) MOD n
6. Send the message and the following boundaries to the MDO,

which is at index m in the old MDO list.
a = (m+1) MOD n , b = b

7. Go to step 1.

each MDO delivers the message to its local mobile
agents.

To construct the binomial tree for message
dissemination, each MDO runs a distributed tree
generating algorithm using its MDO List which contains
information about all MDOs in the system and is the same
for all MDOs. The algorithm is shown in figure 2. The
customized MDO List in the algorithm is a portion of the
main MDO List. Figure 3 shows the message propagation
tree among MDOs in a system with 16 MDOs and MDO0
as the proxy of the group. As can be observed there, in
each step, the number of MDOs that receive the message
is doubled and the number of communication steps
required for dissemination of a message among all MDOs
is [log2 n] where n is the number of MDOs in the system.
A communication step is the time required for a message
to be sent form one MDO to another.

Figure 3. Message Propagation Tree among MDOs

3. Recovery from Host Failure

To ensure reception of a message by all group
members, Sama uses an acknowledgement mechanism.
MDOs, which are leaves of the message dissemination
tree, after receiving a message and delivering it to their
local group members using their Local Agent List, inform
their parent MDO in the tree by sending an
acknowledgement. Each non-leaf MDO also, after
delivering the message to its local group members and
receiving acknowledgements from its entire child MDOs
in the tree, sends an acknowledgement to its parent MDO.
This acknowledgement informs the parent about correct
propagation of the message among all MDOs located in
the sub-tree rooted by the child MDO. Finally, reception
of acknowledgements from its entire child MDOs by the
proxy MDO indicates that all the MDOs have received
the message correctly. However, MDOs store the message
for a limited period of time to ensure that the migrating
group members have also received it. This period of time
is calculated using MMTT and MAMT values and should
not be less than the following amount.

1 MMTT * (log2 NMDOs) + MAMT

In formula 1, NMDOs presents the number of MDOs in
the system.

Each MDO before sending a message to its child MDO
sets a timer. The child MDOs should send the
acknowledgement before the expiration of the timer in its
parent. If an MDO does not receive acknowledgement
from at least one of its child MDOs after expiration of the
timer it infers that there is a failure in the sub-tree rooted
by the child MDO. The timer value is calculated using the
MMTT and the first Customized MDO List in the tree
generating algorithm. The value is an estimation of the
time that all child MDOs should send the
acknowledgement to their parent MDO. MDOs use the
following formula to calculate the timer value for their
child MDOs in the tree generation algorithm.

2 Timer>= 2*MMTT*(log2 FirstCustomizedListSize)
+ LMDT * NAgents

In formula 2, LMDT is the maximum amount of time
that takes an MDO delivers the message to one of its local
group members and NAgents is the number of group
members. Formula 2 can be inserted in the tree generation
algorithm.

Using the mentioned features Sama can detect host
failures in the system and recover from them. Regarding
the location of an MDO in the propagation tree and the
failure time, we categorize host failures in the system into
four different groups.

1. Host failure before and during receiving a
message

2. Host failure after receiving a message and before
sending acknowledgement for it.

3. Host failure of the proxy MDO before and
during receiving a message

4. Host failure of the proxy MDO after sending a
message and before receiving its
acknowledgements

3.1. Host Failure before Receiving a Message

As mentioned in section 2, communications in Sama
are performed using application layer mechanis ms such as
Remote Method Invocation. Our mechanism interprets
failure in establishing this kind of connection as the
failure of the receiver host. Consequently, when a host
fails in the system, its parent MDO can detect this failure
when it wants to send a message to the failed MDO. After
detection of the failure, the parent MDO first informs its
own parent about the failure and requests it to reset its
timer. By receiving a timer reset request after resetting its
timer, every MDO sends a timer reset request to its own
parent MDO until the request reaches to the root of the
tree, the proxy MDO. Then the failure detector MDO
sends the message to the MDO which is located next to
the failed MDO in the Customized MDO List.

Figure 4. Message Propagation Tree during recovery

form failure of Host 12

After sending the message, the detector MDO informs
the proxy MDO about the failure by sending the name of
the failed MDO. The proxy first deletes the failed MDO
from its MDO List and then generates a correction
message to inform all other MDOs about the failure. The
correction message is propagated among all MDOs using
the same group communication mechanism. Every MDO
after receiving the message first removes the failed MDO
from its MDO List and then executes the tree generating
algorithm to construct the new message propagation tree
using the new MDO List.

Figure 4 shows the message propagation tree during the
recovery from the failure of Host 12 in the previous
example. As it can be observed, MDO 8 after detecting
the failure of Host12 sends the message to MDO 13
which is located next to the failed MDO in the MDO List.
After propagation of the correction message and removal
of the failed MDO from all MDO Lists, the new message
propagation tree will be generated as shown in figure 5.

Figure 5. Message Propagation Tree after recovery

form failure of Host 12

3.2. Host Failure after Receiving a Message and
before Sending Acknowledgement for It

To recover from the second category of failures, our
mechanism uses timers. As explained previously, before
sending a message to its child MDO, each MDO sets a
timer. If the MDO does not receive the acknowledgement
from its entire child MDOs before expiration of the timer,
it infers that there is a failure and finds the MDO that has
not sent acknowledgement. The MDO first resets its timer
and then sends timers reset request to its parent MDO. All

the MDOs in the path from the detector to the proxy
MDO in the root of the tree reset their timers by receiving
requests from their child MDOs. The MDO then resends
the message to the failed MDO. Now the failure is similar
to the first category of failure and the mechanism recovers
from the failure using the same process described in the
previous subsection. In this kind of recovery, the MDOs
can detect duplicate messages using the message
sequence numbers.

3.3. Host Failure of the Proxy MDO before
Receiving a Message

Our middleware deals with the failure of the proxy in a
different way. When an agent wants to send a message to
the proxy in order to be propagated among group
members, it can detect the failure of the proxy MDO.
Then the agent informs its local MDO about the proxy
failure and delivers the message to it. The local MDO
informs the first available MDO after the failed proxy in
the MDO List about the proxy failure and sends the
message to it and makes it the new proxy for the group.
The new proxy first removes the failed proxy from its
MDO List. Then generates a correction message and
informs all other MDOs about the proxy failure by
sending the correction message to them using the new
MDO List. Every MDO after receiving the correction
message first deletes the failed proxy from its MDO List
and then cooperate in generation of the new message
propagation tree using its new MDO List.

After the generation of the new tree, the new proxy
sends the message to the group using the new tree. Figure
6 depicts the message propagation tree for the sample
system in section 2 after recovery from the failure of the
proxy.

As it can be observed in the figure, MDO 1 has been
selected as the new proxy and is the root of the
propagation tree.

3.4. Host Failure of the Proxy MDO after
Sending a Message and before Receiving Its
Acknowledgements

The last form of the host failure is detected by the child
MDOs of the failed proxy. If the host of the proxy MDO
fails before receiving acknowledgements from its entire
child MDOs, the child MDOs can detect its failure when
they try to send acknowledgement. The child MDO then
selects the next available MDO in the MDO List as the
new proxy for the group. The new proxy first deletes the
failed proxy from their MDO List and generates new
propagation tree similar to the described method in the
third category of failure. Then the new proxy asks all
MDOs about the highest received message sequence

number. The proxy then receives all the messages which
have not been received by all MDOs from one of them
which has the messages and then resends the messages to
the group using the new message propagation tree. The
new propagation tree for this kind of failure for a system
with 16 MDOs is similar to the tree in figure 6.

Figure 6. Message Propagation Tree after recovery

form failure of Host 0 (the proxy)

In case of multiple host failure, Sama uses a mixture of
the described methods for recovery. We have
implemented the Sama using the described recovery from
host failure feature in Java language and it automatically
recovers from all of the mentioned failure categories.

4. Related Work

Many researches have been done on the group
communication in distributed systems; however, almost
all of them assume static group members, i.e. they remain
at the same host in the distributed environment during
their whole life in the system. Among these mechanisms,
the reader can refer to [20].

A few mechanisms have been developed for the group
communication among mobile agents. We can categorize
them into two main groups.

1. Mechanisms in which an agent has a proxy such that
it informs its proxy about its current location on
migration. These mechanisms should know the
current locations of the agents to deliver message to
them. This property restricts autonomy of mobile
agents.

2. Mechanisms in which there is no proxy for agents
and they can migrate autonomously.

These mechanisms do not need to know the current
location of the agents.

Mobile Process Groups [12] and Voyager Spaces [5]
are among the first category. Mobile Process Groups are
process groups that support migrating processes [12]. In
this method, each process installs a view, which is a
mapping between processes and their locations. To
maintain consistent views, agents need to update their
views in case of any change in the group such as

migration of a member. Clearly, this is costly in large
systems. In this approach, when an agent wants to send a
message to the group members, it sequentially sends the
message to all agents in its installed view. This approach
provides features for recovering from host failures but
does not scale well to the large group members.

Some mobile agent platforms provide group
communication mechanism for agent groups [13].
Voyager uses a specialized architecture with superspaces
and subspaces to deliver the messages [5]. In Voyager, a
space is a logical container that contains some subspaces
objects. A message is sent into a space by publishing it
into one of its sub-spaces. Then, it is cloned in all
neighboring subspaces and is also delivered to every
object in the local subspace. Space users have to connect
subspaces to form arbitrary topologies. The mechanism
has negative impact of sending many unnecessary
messages and consuming high bandwidth for a large
number of connected subspaces. Indeed, many nodes
might receive a message several times. Because members
of a subspace can migrate to different locations, the
number of remote messages can also increase rapidly.
Voyager does not provide any mechanism for recovering
from host failures.

Among the mechanisms in the second category, we can
mention the mechanism proposed in [14] and group
communication using IP multicast [15]. In [15], the
mechanism interprets the migration of a group member as
a change in multicast group. It uses Multicast Backbone
(MBone) [16] as it communication infrastructure.
However, MBone comprises only a small fraction of the
Internet routers which considerably restricts the
applicability of the method.

A multicast mechanism using reliable communication
in a fault-free environment has been proposed in [14]. It
attempts to deliver a message to every agent using an
approach similar to the distributed snapshot [17].
However, only agents who are group members, actually,
accept the message which makes it slow in large scale
systems. In this approach, a message may be delivered
several times to an agent. The mechanism does not
provide any feature for detecting and recovering from
host failures.

An event multicasting among mobile agents has been
proposed in [18], which is similar to the event model of
Java. The method uses ‘EventTransceiverServers’ to
distribute messages over the network. However, the
sender should broadcast the message to ‘EventTransceiv-
erServers’ sequentially, which is time consuming in large
scales.

4. Conclusions and Future Work

We have proposed Sama, a distributed and scalable
application level group communication mechanism for

large scale mobile agent applications which delivers
messages in a considerably low time. Sama uses Message
Dispatcher Objects (MDOs), which are special stationary
agents, to parallelize and speed up message delivery to the
group members. We then provide the methods that Sama
uses to deal with host failure in the system. Sama uses an
acknowledgement and timeout mechanism to recover
form host failures. We categorized host failures into four
different groups and showed how Sama recovers from
them.

We have implemented Sama in Java and using Voyager
mobility features. We tested Sama on a LAN with 16
hosts and compared it with Mobile Process Groups [11].
Our experimental results showed that Sama scales well
and propagates messages in considerably lower time in
comparison to Mobile Process Groups; however, we
planned to make more comprehensive evaluation on the
mechanism using NS simulator [21].

References

[1] A.Fuggetta, G.P.Picco and G.Vigna.
“Understanding Code Mbility”, IEEE Transactions
on Software Engineering. Vol.24, No.5. May, 1998

[2] B. Brewington, R. Gray, K. Moizumi, D. Kotz, G.
Cybenko and D. Rus. “Mobile Agents in
Distributed Information Retrieval”, In Intelligent
Information Agents, pages 355-395, 1999.

[3] Bieszczad, A., White, T. and Pagurek, B., “Mobile
Agents for Network Management”, In IEEE Com-
munications Surveys, September, 1998.

[4] P. Dasgupta, N.Narasimhan, L.E. Moser and P.M.
Melliar-Smith, “MAgNET: Mobile Agents for Net-
worked Electronic Trading”, IEEE Transactions on
Knowledge and Data Engineering, Special Issue on
Web Technologies, vol. 24, no. 6, July/August
1999, pp 509-525

[5] Recursion Software, Inc. Voyager ORB Developer's
Guide, 2003. www.recursionsw.com.

[6] IBM Japan Research Group Aglets Workbench, web
site: http:// aglets.trl.ibm.co.jp

[7] Grasshopper, Release 2.2, Basics and Concepts
(Revision 1.0), March 2001.
http://www.Grasshopper.de

[8] Pawel T.Wojiehowski. “Algorithms for Location-
Independent Communication between Mobile
Agents”. Technical Report DSC-2001/13,
Département Systèmes de Communication, EPFL,
March 2001.

[9] Langton C., Minar N.,and Burkhart R. ,"The Swarm
Simulation System: A tool for stuying complex
systems". (Draft available at:
http://www.santafe.edu/projects/swarm/swarmdocs
/swarmdoc.html). Santafe Institute,1995

[10] Hojjat Jafarpour and Nasser Yazdani, “Sama: A
Scalable Group Communication Mechanism for
Mobile Agents”, In Proc. of SNPD 2003, Lubeck,
Germany, Oct. 2003, pp. 506-511.

[11] Gregory V. Chockler, Idit Keidar, and Roman
Vitenberg. : Group Communication Specifications:
A Comprehensive Study. In ACM Computing
Surveys 33(4), pages 1- 43, December 2001.

[12] Flávio M. Assis Silva, Raimundo J. A. Macêdo.
Reliable Communication for Mobile Agents with
Mobile Groups. In the Proceedings of the
Workshop on Software Egineering and Mobility
(co-located with IEEE/ACM ICSE 2001). Toronto,
Ontario, Canada. May 13-14, 2001.

[13] R. Broos, B. Dillenseger, P. Dini, T. Hong, A.
Leichsenring, M. Leith, E. Malville, M. Nietfeld,
K. Sadi and M. Zell. “Mobile Agent Platform
Assessment Report”,
http://www.fokus.gmd.de/research/cc/ecco/climate/
ap-documents/miami-agplatf.pdf

[14] A.L. Murphy and G.P. Picco, “Reliable
Communication for Highly Mobile Agents”,
Journal of Autonomous Agents and Multi-Agent
Systems, Special issue on Mobile Agents, pp 81-
100, 2002

[15] Hartroth and M. Hofmann, “Using IP Multicast to
Improve Communication in Large-Scale Mobile
Agent Systems”, In Proceedings of 31st Annual
Hawaii International Conference on System
Sciences (HICSS), Volume VII, Page 64-73,
Hawaii, January 6-9, 1998.

[16] K. Almeroth, "The Evolution of Multicast: From
the MBone to Inter-Domain Multicast to Internet2
Deployment", IEEE Network Special Issue on
Multicasting, January/February 2000.

[17] K.M. Chandy and L. Lamport. “Distributed
Snapshots: Determining Global States of
Distributed Sys-tems”, ACM Trans. on Computer
Systems, 3(1):63-75,February 1985.

[18] J. McCormick, D. Chacón, S. McGrath, and C.
Stoneking, “A Distributed Event Messaging
System for Mobile Agent Communication”,
Technical Report TR-01-02(Lockheed Martin
Advanced Technology Laboratories) March 2000.

[19] G.Coulouris, J. Dollimore and T. Kindberg,
Distributed Systems - Concepts and Design, 3rd
edition Addison-Wesley, 2001.

[20] Gregory V. Chockler, Idit Keidar, and Roman
Vitenberg,"Group Communication Specifications:
A Comprehensive Study",In ACM Computing
Surveys 33(4), pages 1-43, December 2001.

[21] Network Simulator. www.isi.edu/nsnam/ns/

