IS Secure XxADL

Institute for Software Research
uuuuuuuuuuuuuuuuuuuuuuuuuuu

Motivation

Highly networked and componentized modern software
poses significant challenges to assuring its security.
Traditional security research mostly focuses on formally
assuring monolithic software and low-level supporting
mechanisms. A more comprehensive perspective is needed to
deal with the challenges of modern software. Traditional
software architecture research provides such a perspective on
decentralized and networked software, but lacks support for
specific properties like securities.

UClIrvine

University of California, [rvine

describing access control at the architecture level.
Connectors are used to form secure composites. Our
approach supports good security practices at the architecture
level, and provides tools to support design, analysis, and
execution of secure software.

Based on a unified access control model that integrates the
classic, role-based, and trust management models, these
security modeling constructs are identified: subject,
principal, resource, privilege, safeguard, and policy. A
new language, Secure XADL, is designed to incorporate
these constructs. This is the first effort to model these
security concepts directly in an

We need a solution that can =lolx] . .
help us design, analyze, and ;i\»:t:ic::;;gan oo n_l:oas;tumml - . ?rchltecture description
execute software that is made |[1®zve= Fo [, oy anguage.
up of components coming from | ® | comae Comtr A subject is the user on whose
and running at different . 3 behalf software executes. A
locations with security as a /\ subject can take multiple
major concern. Such a solution principals. Essentially,
g principals encapsulate the

enables developers and
administrators to design and ﬂ

maintain secure software, and

US to France
Connector

France to
France to US France Filter
Connector Component

credentials a subject possess to

provides them with the power
to adopt security-aware design,
identify potential problems, and :
effectively respond to attacks. e

© USFiterand
* Command&Contral

I n S I g htS Connector

4] I ID T

acquire permissions.

A resource is an entity whose
access should be protected.
Traditionally such resources
are passive, and they are

accessed by active software
1 ~]

£

French Filter and
Command&Control Connector

m 7| components operating for

Traditional security research | || -

Zoom: oo -] different subjects. In a software

does not provide a high-level |

architecture model, resources

perspective on the software
architecture of a system.
Traditional software architecture research does not address
security issues sufficiently. We believe that a secure
software architecture methodology advances state of art
for secure software design and analysis.

Connectors could be the center of this integration, connecting
heterogeneous components to form a secure composite. We
maintain that a first class connector facilitates expressing,
constructing, integrating, enforcing, reusing and evolving
security properties among heterogeneous components.

Approach

Our approach is to extend a widely-used base architecture
description language, XADL, with constructs necessary for

Figure 1: Coalition: two secure connectors connect partially
trustworthy parties to exchange information

can also be active, such as
components and connectors.

Permissions describes a possible operation on an object.
Privilege describe what permissions a component is
possessing depending on the executing subjects. We model
two types of privileges, corresponding to the two types of
resources. The first type handles passive resources, such as
which subject has read/write access to which files. The
second type handles active resources. These privileges
include architecturally important privileges, such as
instantiation and destruction of architectural constituents,
connection of components with connectors, execution, and
reading and writing of architecturally critical information. A
corresponding notion is safeguard, which are permissions
that are required to access the interfaces of the protected
components and connectors.

A policy ties all above mentioned concepts together. It
specifies what privileges a subject should have to access
resources protected by safeguards. It is the foundation for
making access control decisions. We adopt the eXtensible
Access Control Markup Language (XACML) as the basis
for our architectural security policy modeling.

When components and connectors are making security
decisions, the decisions might be based on entities other than
the decision maker itself. More specifically, the context of
the decision making, such as the neighboring entities, the
type, the containing sub-architecture, and the global
architecture, can play an important role in such decision
makings.

Secure Connectors play a key role in our approach. They
decide what subjects the connected components are
executing for, inspect whether components have sufficient
privileges to communicate through the connectors, and have
potentials to provide secure interaction between insecure
components. Connectors can be composite connectors,
where a composite connector combines several connectors
together into a large connector to achieve a composite policy.
During execution, connectors can decide whether
instantiation, connection and routing should be allowed.

A Firefox Component Security Architecture - [file:/C:/Documents and SettingsJie Ren/Hy Docume: =[Ol
Architecture Edit View Test Access Control
Archipelaga : =
9 Structures v} !
or DOM from rigin 2

7 DoM Content Cort B “

[Firafox Component

Types y
Ll Frame 4 y Frame DM ol

Chrome Cartainer pom Dom (Gantainer
Javacript s Node 1 Node 2 pE L Node 1 Node 2
o « n T u “
W
‘ XPConnect |
T
—
XPCOM
Gomponents

] - E
L1 v E
2 q L] [
Z 4D Zoom: 100 [~]

Figure 2, Firefox component security architecture described
in Secure XADL. XPConnect is the central connector for
JavaScript security.

<connectorType>
<security>
<principal>NATO</principal>
<policies>
<PolicySet PolicySetld =
"InstantiateConnectorType"
PolicyCombiningAlgld =
"deny-overrides'>
<Policy RuleCombiningAlgld
= "deny-overrides'>
<Rulle Effect="Deny'>
<SubjectMatch
Matchld="string-equal'>
<AttributeValue>
SecureManagedSystem
<AttributeDesignator>
subject-id
<AnyResource />
<ActionMatch
Matchld="string-equal'>
<AttributevValue>
urn:xadl:action:AddBrick
<AttributeDesignator>

action-id
<Condition Functionld="not">
<Apply
Functionld="'string-is-in">
<Attributevalue>NATO
<AttributeDesignator>
principal

Figure 3, Secure XADL description of Coalition. The policy
will not create any connector that does not possess a NATO
principal.

Tool Support

Tool support is included as part of our base architecture
development environment, ArchStudio. The tools include an
editor to describe a secure software architecture written in
Secure XADL, a checker to decide whether one interface has
sufficient privileges to access another, and an execution
engine to execute secure architectural operations for event-
based software architectures.

Contact Information

Jie Ren

Professor Richard Taylor
Institute for Software Research

University of California
Irvine, California 92697-3425

{jie, taylor}@ics.uci.edu

+1-949-824-{2776, 6429}

Fax 949-824-1715

To learn more about the Secure xADL
language, please visit the website:
http://www.isr.uci.edu/projects/xarchuci/
http://www.isr.uci.edu/projects/archstudio/

This material is based upon work sponsored
by the National Science Foundation under
grant number 0326105 and by the Intel
Corporation. The content of the work should
not be interpreted as necessarily representing
the official policies or endorsements, either
expressed or implied, of either organization.

January 2006

