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Re-architecting boosts
security! P

Table 1. Secure by design. /

POTENTIAL PROBLEM PROTECTION MECHANISM DESIGN PRINCIPLES
The underlying d11 (ntdll.dll) Code was made more conservative during Check precondition
was not vulnerable because... the Security Push.

Even if it were vulnerable... Internet Information Services (IIS) 6.0 is Secure by default

not running by default on Windows Server 2003.
Even if it were running... 115 6.0 does not have WebDAV enabled by default. | Secure by default -
Even if Web-based Distributed Authoring The maximum URL lengthin 15 6.0 is 16 Kbytes | Tighten precondition, secure by

and Versioning (WebDAV) had been enabled... | by default ( > 64 Kbytes needed for the exploit). default

Even if the buffer were large enough... The process halts rather than executes malicious Tighten postcondition, check
code due to buffer-overrun detection code precondition
inserted by the compiler.

Even if there were an exploitable It would have occurred in w3wp.exe, which is Least privilege

buffer overrun... running as a network service (rather than
as admininstrator). (Data courtesy of David Aucsmith.)

Wing, IEEE Security & Privacy, 2003
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Problem

* Architectural Access Control:

— How can we describe and check access
control iIssues at the software
architecture level?
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Main Goal

» Integrate security and software
architecture

— Integrate

— Security: integrity through access
control

— Architecture level: abstraction

— Software engineering perspective: how
to express, check, and enforce
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Security Overview

»* Security
— confidentiality, integrity, availability
» Security policy, model, mechanism

* Reference Monitor and Trusted
Computing Base

— Anderson 1972
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Classic Discretionary
Access Control

,-? Tl
» Lampson 1971 =

* SUbJeCt cccccc rights that
. Objects 5 ShastoO:[S,0]
» Object ~
* Privilege /
S =
2 / .;"'
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Component and
Architecture Security

» Component-based Software Engineering
— Computer Security Contract, Khan 2001
— CTLA Contract, Herrmann 2003

» Software Architecture
— ASTER, Bidan and Issarny 1997
— System Architecture Model, Deng et al. 2003
— SADL, Moriconi et al. 1997
— Law-Governed Architecture, Minsky 1998 1
» Mostly cryptography, insufficient access A A
control 2%

_— 0
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Connectors

» Why connectors
— Model the fundamental communication issue

» Should they be first class citizens?
— Capture and reuse

» EXisting work
— Taxonomy: Mehta 2000
— Assembly Language: Mehta 2004
— Constructions: Lopes 2003
— Transformation: Spitznagel 2001
» Shortcoming: insufficient access control
— Dependability: Spitznagel 2004
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Hypotheses

» Hypothesis 1: An architectural connector may
serve as a suitable construct to model
architectural access control

»* Hypothesis 2: The connector-centric approach
can be applied to different types of
componentized and networked software
systems

» Hypothesis 3: With connector propagating
privileges, the access control check algorithm
can check the suitability of accessing interfaces

»* Hypothesis 4: In an event-based architecture
style, connectors can route events in
accordance with the secure delivery
requirements
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Approach

* A connector-centric approach to describe
and enforce Architectural Access Control

— Combine software architecture and security
research

— Adopt an integrated access control model:
classic, role-based, trust management

— Secure XADL, based on xADL and XACML
— Architectural contexts
— Architectural execution

— Connector-centric description and
enforcement

— Tool support
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Validation

» Algorithm analysis
— Based on graph reachability

* Four case studies
— Development of secure coalition
» Connector for secure message delivery

— Development of Impromptu

» Composite connector among heterogeneous
components

— Modeling of Firefox component security
» Algorithm to check critical path with the connector

— Modeling of DCOM security
* Connectors for networked components
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Contributions

» A novel approach to the design and
analysis of the access control property for
software architectures

* A usable formalism for modeling and
reasoning about architectural access
control

* An algorithm for checking whether the
architectural model maintains proper
access control at design-time

» A suite of usable tools to design and
analyze secure software
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» Basic concepts, applied in architecture

— Subject, Principal, Resource,
Permission/Privilege/Safeguard, Policy

»* Secure xADL

— XADL

— XACML

— Language design
» Contexts

— Neighborhood, type, container, architecture
» Check algorithm

» Central role of connectors
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Concepts: Subject

» A subject is the user on whose behalf
software executes

» Missing from traditional software
architecture:

— All of its components and connectors execute
under the same subject

— The subject can be determined at design-time

— It generally will not change during runtime,
either inadvertently or intentionally

— Even if there Is a change, it has no impact on
the software architecture
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Concepts: Principal

» A subject can take multiple
principals, which encapsulate the
credentials that a subject possesses
to acquire permissions

» Different types of principals

» Summary credentials and concrete
credentials

»* Missing from previous architectures
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Concepts: Resource

» A resource Is an entity whose
access should be protected

* Passive: files, sockets, etc.

» Active: components, connectors,
Interfaces

— Relevant to architecture
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Concepts: Privilege

» Permissions describe a possible
operation on an object

» Privilege describes what permissions a
component possesses depending on the
executing subject

» Privilege escalation vulnerabilities

» Two types of privileges:
— Traditional: read file, open sockets, etc.

— Architectural: access, instantiation, connection,
message routing, introspection, etc.
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Concepts: Safeguard

o
» Safeguards are permissions that are
required to access the interfaces of

the protected components and
connectors

* Architectural access control check

January 20, 2006 Architectural Access Control 21



Concepts: Policy

» A policy specifies what privileges a
subject, with a given set of principals,
should have to access resources
protected by safeguards

» Numerous existing studies in the
security community

» We focus on software engineering
applicability for architectural modeling
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Overview of XADL

*» XML-based extensible architecture
description language

» Component and connector

* Types

» Signatures and interfaces

»* Sub-architecture

» Design-time and run-time

» Tool support: ArchStudio

» Extensible: configuration, execution
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Overview of XACML

»* Conceptual framework for access control models
— Based on set theory and first order logic

» EXxtensible
» Formal semantics

»* Matching rule for request

— Policy Enforcement Point (PEP) and Policy Decision
Point (PDP)

— PolicySet, Policy, Rule
— Match on Subject, Resource, Action

» Combining algorithms
»* Open Standard from OASIS
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Secure xXADL

» The first effort to model these security
concepts directly in an architectural
description language

»* Viewed from XACML.: a profile for the
software architecture domain

»* Viewed from XADL: a new schema
with elements necessary for access
control
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Syntax of Secure xXADL

<complexType name="'SecurityPropertyType'>
<sequence>
<element name="'subject"™ type="'Subject'' />
<element name=""principals' type="Principals'/>
<element name=""privileges" type="Privileges'/>
<element name="policies" type="Policies'/>
</sequence>

<complexType>
<complexType name="SecureConnectorType'>
<complexContent>
<extension base="ConnectorType'>
<sequence>

<element mame="'security"
type="'SecurityPropertyType'/>
</sequence>
</extension>
<I-- similar constructs for component,
structure, and instance -->
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Rationales for Language Design __.

» Concepts
— Architecture, access control

» Extensibility
— xXADL, XACML

» XACML flexible in combining policies

* 100l support Y
— ArchStudio AT
— Evaluation engine and editor
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The Larger Contexts

» Access control decisions might be
based on entities other than the
decision maker and the protected
resource. These relationships are the
contexts.

» XACML’s combining algorithms

contexts
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Four Types of Contexts

.
1. The nearby components and

connectors of the component and
the connector

2. The type of the component and the
connector

3. The explicitly modeled sub-
architecture that contains the 2N,
component and the connector A A

4. The global architecture
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<connectorType 1d="'SecureC2Connector_type' Xxsi:type="SecureConnectorType’
<principal>NATO</principal>
<PolicySet PolicySetld="InstantiateConnectorType"
PolicyCombiningAlgld="deny-overrides'>
<Policy RuleCombiningAlgld="deny-overrides'>
<Rule Effect="Deny"> e
<SubjectMatch Matchld="'string-equal''> -FS/F)EE -
<AttributeValue>SecureManagedSystem PO' | Cy /
<AttributeDesignator>subject-id
<ActionMatch Matchld="string-equal'>
<AttributeValue>AddBrick<AttributeDesignator>action-id
<Condition Functionld="not">
<Apply Functionld="'string-is-in'>
<AttributeValue>NATO</AttributeValue>
<AttributeDesignator>principal

<connector id="UStoFranceConnector" xsi:type="SecureConnector'>_.
<principal>US</principal>
<PolicySet PolicyCombiningAlgld="deny-overrides'>
<Policy RuleCombiningAlgld="deny-overrides'>
<Rule Effect="Deny">
<SubjectMatch Matchld="string-equal">

<AttributeValue>SecureManagedSystem
|f1§;t€%f](:€3 <ActionMatch Matchld="string-equal'>
FD()||(:)/ <AttributeValue>AddBrick<AttributeDesignator>actiqy

<Condition Functionld="not">
<Apply Functionld="string-is-in'>
<AttributeValue>US</AttributeVvalue>
<AttributeDesignator>principal
January 20, 2006 <PolicySetldReference>InstantiateConnectorType 32




Algorithm to Check
Architectural Access

* Glven a secure software architecture
description written in Secure XADL, if
a component A wants to access
another component B, should the
access be allowed?

* Applying situations
— Currently design-time, possibly run-time N
— Global, not local ]
— Connector propagates privileges v &

_— 0
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Algorithm 1

Input: an outgoing interface,
Accessing, and an 1ncoming

interface, Accessed Get AccumulatedSafeguards for

Accessed from the owning =,
constituent, the type, /
the containing
sub-architecture, and the
complete architecture;

Get AccumulatedPolicy for
Accessed from
similar sources;

iIT (AccumulatedPolicy exists)
1T (AccumulatedPolicy

grants access)
return grant;

Output: grant if the Accessing can
access the Accessed, deny if
the Accessing cannot access
the Accessed

Begin
iIT (there 1s no path between
Accessing and Accessed)
return deny;
IT (Accessing and Accessed are
connected directly)

DirectAccessing = Accessing; else
olse return deny;
N . . Ise
DirectAccessing = the constituent els -
g iIT (AccumulatedPrivileges

nearest to Accessed iIn the path;
Get AccumulatedPrivileges for
DirectAccessing from the owning
component, the type, the containing
sub-architecture, the complete
architecture, and the connected
constituents;

contains _
AccumulatedSafeguards)
’
return grant; ’ﬂ"f
else
return deny;
End
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Architecture Edit View Test Access Control

=10/ x|

Archipelagn

'ﬁ‘ Structures i
B/l DOM Content Contg
B Firefox Companent| -

Types :

1
F

| »

5. Decide \évhether

privileges are

sufficient for safeguards

JL ] DE

A L |
DOM from Trigin 1 DOM from Trigin 2
— " "l
Frame Frame
Chrome iner DOM DomM Cantainer DOM DOM
Javaseript BHE Nade 1 Nade 2 S Node 1 Node 2
b b TF F— L = bl

L d

4

[

4D

Zoom: [100% hd

January 20, 2006

Architectural Access Control




Algorithm 2

Input: an outgoing interface, Accessing, and
an incoming interface, Accessed

Output: grant 1T the Accessing can access the Accessed, /
deny 1T the Accessing cannot access the Accessed

Begin
IT (Accessing and Accessed belong to the same architecture structure)
container = the architecture structure
else 1T (use top level architecture)
container = top level architecture
else
container = least common container
iIT (container contains other architecture structures) {
replace constituents of subarchitectured types with
the sub-architecture;
rename the constituents of the sub-architectures 1t there
are multiple instances of them;
connect the outer signatures and the inner iInterfaces
as privilege preserving - ’
3 ,g#’f ’

calculate the reachability closure of the expanded
container iInterface graph
return Algorithml(Accessing, Accessed)
End;
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Check with
Subarchitecture
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Validity of the Algorithm

» Reachabillity of a privilege graph
— A privilege of an outgoing interface
— A safeguard of an incoming interface
— Connectors decide edges
» Sources of privileges and safeguards
— Architectural contexts
» Assumptions
— A single, loop-free path between the interfaces

— Need manual help from architects in other
cases
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Advanced Modeling Concept

» Four areas:

— Handling large scale access through
roles

— Handling heterogeneous access
through trust management

— Handling content-based access
— Handling architectural execution

» All can be modeled with the language
and checked with the algorithm

January 20, 2006 Advanced Modeling Concepts
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Roles In Secure xXADL

* Roles as in the XACML RBAC Profile

— Role Policy Set: restrict subject

— Permission Policy Set: restrict resource
and action

— PolicySetldReference
* Roles as principals _

— RPS and PPS P -

— UA 1

_— 0
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Trust Management

*» Handle authentication and authorization in
a decentralized environment

» PolicyMaker, KeyNote, SD3

» A local decision maker makes a decision
based on a credential presented by a
remote party

» The credential is generally a certificate
signed by the local decision maker

» A local policy is uniformly treated as a
signed credential
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» Ninghui Li 2003
» Based on set theory and logic
» Basic rule: R,.D, € R,.D,
» Trust as Roles
— A foreign role can behave like a local role

* A natural extension to RBAC

— Role equivalence similar to role
iInheritance
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An Integrated Access
Control Model

* Classic Access Control
— Subject, object, privilege

* Role-based Access Control
— Use a role as an indirection

»* Role-based Trust Management

— Trust relationship between roles of
different domains
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Content-based Access

s
* Interface-level access does not
always provide enough information

* Inspecting content passing through
Interfaces could be necessary

» Event-based interfaces
— Top and bottom |
— Request and notification ] 4
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Architectural Executio

»* Architectural Instantiation
— Style neutral

» Architectural Connection
— Style neutral

* Message Routing
— Style specific
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<connector i1d="USFranceConnector' xsi:type="SecureConnector'>
<principal>France</principal>
<principal>US</principal> Role-based
<policies>
<PolicySet PolicySetld="InternalRouting" ACCESS Control ‘
PolicyCombiningAlgld="permit-overrides'> —
<Policy RuleCombiningAlgld="permit-overrides'> '
<Rule Effect=""Deny" />
<PolicySet PolicySetld="PPS:France"
PolicyCombiningAlgld="permit-overrides'>
<Policy RuleCombiningAlgld=""permit-overrides'>
<Rule Effect="Permit'>
<SubjectMatch Matchld="'string-equal''>
<AttributeValue>USFranceConnector
<AttributeDesignator>subject-id
<ResourceMatch Matchld="'string-equal'>
<Attributevalue>RouteMessage (Content-based
<AttributeDesignator>resource-id -
<ActionMatch Matchld="string-equal"> FQ()LJt|r1g;
<AttributeValue>xadl :action:RouteMessage
<AttributeDesignator>action-id
<Condition Functionld="string-equal">
<AttributeValue>Air Defense Missile
<AttributeSelector RequestContextPath=
"'//context:ResourceContent/security:routeMessage/
messages:namedProperty[messages:name="type" ]/
messages:value/text()'/>
<PolicySet PolicySetld="PPS:US" PolicyCombiningAlgld="permit-overridg
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Central Role of Connectorgf )’
Propagate privileges in architectural access check
Route messages according to established policies

Participate in deciding architectural connections

Decide what subjects the connected components
are executing for

»* Regulate whether components have sufficient
privileges to communicate through the connectors

* Provide secure interaction between insecure
components

»* M kW
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Tool Support

» Evaluation Engines

» Extending ArchStudio

— Design-time support
» Editors
»* Analyzer

— Run-time support
» PDP and PEP
» c2.fw.secure
» Secure Architecture Controller
* |[nstantiation, connection, messaging
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Instantiation and
Connection Exceptions ’
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Case Studies

» Coalition

— Developed, fully supported by
ArchStudio

* Impromptu

— Developed, reusing third party
components

» Firefox Component Security
» DCOM Security
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Case Study: Imprompt
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Impromptu Components
and Connectors
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First Secure Connector “

-
*» Roles: me, other

* WebDAYV connector

»* Use |IP address to separate me from
other
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Second Composite
Connector

» Standard compliant

» Composite
— HTTP Digest Authentication

—web.xml authorization on HTTP
methods

—WebDAV ACL authorization on
permissions
» Enable all types of files, with the
WebDAV file system driver support
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Case Study: Firefox
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Firefox Platform

* XPCOM
— Cross platform component model

» JavaScript
— Browser and extension

» XPConnect

— Bidirectional bridge between XPCOM
components and JavaScript objects
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Trust Boundaries

» The boundary between chrome and
content

»* The boundary between contents from
different origins

— Same origin: scheme, host, port
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Principals

» Subject principal and object principal
»* System principal, null principal
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Container and Node

» Document Object Model

* Document and Frame

— Principal based on origin
* Node

— Inherit principal
» Components collection
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ScCript Security I\/Ianage[;“ 3
» Part of XPConnect =
» Discover object principals and

subject principals
* Architectural Access Control

— DOM access
»* Check subject principal and object principal

— Instantiation by Creation s

— Instantiation by LoadURI

January 20, 2006 Case Studies 69




<component i1d=""ChromeCode"'"> -
<subject>ChromeCode</subject> F I refOX
<principal>Chrome</principal>
<component i1d="ContentCode"> - -
<subject>URI</subject> S e C U r I ty P O I I Cy
<principal>Content</principal> P
<component i1d="SignedContentCode"> /
<subject>SignedURI</subject>
<principal>Chrome</principal>
<connector 1d=""XPConnectSecurityManager" xsi:type="'SecureConnector'>
<PolicySet PolicySetld="PPS:Chrome" PolicyCombiningAlgld=""permit-overriges
<Policy RuleCombiningAlgld="permit-overrides'> :
<Rule Effect="Permit'>
<Subjects>
<Subject><SubjectMatch Matchld="'string-equal'>
<AttributeValue>ChromeCode<AttributeDesignator>subject-id
<Subject><SubjectMatch Matchld="'string-equal'> ”
<AttributeValue>SignedURI<AttributeDesignator>subject-id
<AnyResource />
<AnyAction />
<PolicySet PolicySetld="PPS:Content”™ PolicyCombiningAlgld="'deny-overrig
<Policy RuleCombiningAlgld="'deny-overrides'>
<Rule Effect="Permit''> -
<SubjectMatch Matchld="string-equal"><AttributeValue>URI ,ﬂ"f #
<AttributeDesignator>subject-id g
<ResourceMatch Matchld="'string-equal'><AttributeValue>URI
<AttributeDesignhator>resource-id
<ActionMatch Matchld="'string-equal"><AttributeValue>AccessDOM
<AttributeDesignator>action-id
<Rule Effect="Deny">
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XPConnect:

Architectural Connector’
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Summary

* Problem: Architectural Access Control
— How can we describe and check access control issues
at the software architecture level?
» Approach:
— A unified access control model: classic, role, trust

— Subject, Principal, Resource, Privilege, Safeguard, and
Policy

— Contexts

— Algorithm to check access control

— Content-based access

— Architectural execution

— Connector-centric: propagation, connection, messaging
— Tool support
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Contributions

» A novel approach to the design and
analysis of the access control property for
software architectures

* A usable formalism for modeling and
reasoning about architectural access
control

* An algorithm for checking whether the
architectural model maintains proper
access control at design-time

» A suite of usable tools to design and
analyze secure software
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Future Work

» Different types of connectors

» Different mechanisms to construct
connectors

» Security as an aspect

» Reflective architectural model
» Dynamic architecture

» Policy conflict resolution

January 20, 2006 Conclusion
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