A Connector-
Centric Approach
to Architectural
Access Control

Jie Ren
Department of Informatics
University of California, Irvine

Outline

* QOverview

— Architecture and Security

— Software connectors

— Hypotheses, approach, validation, contribution
» Architectural Access Control

— Model: Subject, Principal, Resource, Privilege, Safeguard,
Policy

— Language: xADL, XACML, and Secure xADL
— Contexts: neighborhood, type, container, architecture
— Algorithm: interface access and privilege propagation

» Advanced concepts
— RBAC, trust, content-based, architectural execution

» Tool support
Case studies
* Conclusion

»*

January 20, 2006 Overview

Security Incidents
Reported to CERT

Incidents

140,000

120,000 -

100,000 -

80,000 -]

60,000 -

40,000 —

20,000] —

0 /i T /i T o T I:I T D T T T T
1995 1996 1997 1998 1999 2000 2001 2002 2003

January 20, 2006 Overview

Re-architecting boosts
security! P

Table 1. Secure by design. /

POTENTIAL PROBLEM PROTECTION MECHANISM DESIGN PRINCIPLES
The underlying d11 (ntdll.dll) Code was made more conservative during Check precondition
was not vulnerable because... the Security Push.

Even if it were vulnerable... Internet Information Services (IIS) 6.0 is Secure by default

not running by default on Windows Server 2003.
Even if it were running... 115 6.0 does not have WebDAV enabled by default. | Secure by default -
Even if Web-based Distributed Authoring The maximum URL lengthin 15 6.0 is 16 Kbytes | Tighten precondition, secure by

and Versioning (WebDAV) had been enabled... | by default (> 64 Kbytes needed for the exploit). default

Even if the buffer were large enough... The process halts rather than executes malicious Tighten postcondition, check
code due to buffer-overrun detection code precondition
inserted by the compiler.

Even if there were an exploitable It would have occurred in w3wp.exe, which is Least privilege

buffer overrun... running as a network service (rather than
as admininstrator). (Data courtesy of David Aucsmith.)

Wing, IEEE Security & Privacy, 2003
January 20, 2006 Overview 4

Problem

* Architectural Access Control:

— How can we describe and check access
control iIssues at the software
architecture level?

January 20, 2006 Overview

Main Goal

» Integrate security and software
architecture

— Integrate

— Security: integrity through access
control

— Architecture level: abstraction

— Software engineering perspective: how
to express, check, and enforce

January 20, 2006 Overview

Security Overview

»* Security
— confidentiality, integrity, availability
» Security policy, model, mechanism

* Reference Monitor and Trusted
Computing Base

— Anderson 1972

January 20, 2006 Overview

Classic Discretionary
Access Control

,-? Tl
» Lampson 1971 =

* SUbJeCt cccccc rights that
. Objects 5 ShastoO:[S,0]
» Object ~
* Privilege /
S =
2 / .;"'

January 20, 2006 Overview 8

Component and
Architecture Security

» Component-based Software Engineering
— Computer Security Contract, Khan 2001
— CTLA Contract, Herrmann 2003

» Software Architecture
— ASTER, Bidan and Issarny 1997
— System Architecture Model, Deng et al. 2003
— SADL, Moriconi et al. 1997
— Law-Governed Architecture, Minsky 1998 1
» Mostly cryptography, insufficient access A A
control 2%

_— 0

January 20, 2006 Overview 9

Connectors

» Why connectors
— Model the fundamental communication issue

» Should they be first class citizens?
— Capture and reuse

» EXisting work
— Taxonomy: Mehta 2000
— Assembly Language: Mehta 2004
— Constructions: Lopes 2003
— Transformation: Spitznagel 2001
» Shortcoming: insufficient access control
— Dependability: Spitznagel 2004

January 20, 2006 Overview

Hypotheses

» Hypothesis 1: An architectural connector may
serve as a suitable construct to model
architectural access control

»* Hypothesis 2: The connector-centric approach
can be applied to different types of
componentized and networked software
systems

» Hypothesis 3: With connector propagating
privileges, the access control check algorithm
can check the suitability of accessing interfaces

»* Hypothesis 4: In an event-based architecture
style, connectors can route events in
accordance with the secure delivery
requirements

January 20, 2006 Overview

Approach

* A connector-centric approach to describe
and enforce Architectural Access Control

— Combine software architecture and security
research

— Adopt an integrated access control model:
classic, role-based, trust management

— Secure XADL, based on xADL and XACML
— Architectural contexts
— Architectural execution

— Connector-centric description and
enforcement

— Tool support

January 20, 2006 Overview

Validation

» Algorithm analysis
— Based on graph reachability

* Four case studies
— Development of secure coalition
» Connector for secure message delivery

— Development of Impromptu

» Composite connector among heterogeneous
components

— Modeling of Firefox component security
» Algorithm to check critical path with the connector

— Modeling of DCOM security
* Connectors for networked components

January 20, 2006 Overview

Contributions

» A novel approach to the design and
analysis of the access control property for
software architectures

* A usable formalism for modeling and
reasoning about architectural access
control

* An algorithm for checking whether the
architectural model maintains proper
access control at design-time

» A suite of usable tools to design and
analyze secure software

January 20, 2006 Overview

» Basic concepts, applied in architecture

— Subject, Principal, Resource,
Permission/Privilege/Safeguard, Policy

»* Secure xADL

— XADL

— XACML

— Language design
» Contexts

— Neighborhood, type, container, architecture
» Check algorithm

» Central role of connectors

January 20, 2006 Architectural Access Control

ation control points 2 and 3.

Reconfigure Flight Path

LWIAHNING: Alr Defense Missile detected between avi

=10 x|

Message

France

from

Message

US

from

January 20, 2006

Architectural Access Control

Concepts: Subject

» A subject is the user on whose behalf
software executes

» Missing from traditional software
architecture:

— All of its components and connectors execute
under the same subject

— The subject can be determined at design-time

— It generally will not change during runtime,
either inadvertently or intentionally

— Even if there Is a change, it has no impact on
the software architecture

January 20, 2006 Architectural Access Control

Concepts: Principal

» A subject can take multiple
principals, which encapsulate the
credentials that a subject possesses
to acquire permissions

» Different types of principals

» Summary credentials and concrete
credentials

»* Missing from previous architectures

January 20, 2006 Architectural Access Control

Concepts: Resource

» A resource Is an entity whose
access should be protected

* Passive: files, sockets, etc.

» Active: components, connectors,
Interfaces

— Relevant to architecture

January 20, 2006 Architectural Access Control

Concepts: Privilege

» Permissions describe a possible
operation on an object

» Privilege describes what permissions a
component possesses depending on the
executing subject

» Privilege escalation vulnerabilities

» Two types of privileges:
— Traditional: read file, open sockets, etc.

— Architectural: access, instantiation, connection,
message routing, introspection, etc.

January 20, 2006 Architectural Access Control

Concepts: Safeguard

o
» Safeguards are permissions that are
required to access the interfaces of

the protected components and
connectors

* Architectural access control check

January 20, 2006 Architectural Access Control 21

Concepts: Policy

» A policy specifies what privileges a
subject, with a given set of principals,
should have to access resources
protected by safeguards

» Numerous existing studies in the
security community

» We focus on software engineering
applicability for architectural modeling

January 20, 2006 Architectural Access Control

Overview of XADL

*» XML-based extensible architecture
description language

» Component and connector

* Types

» Signatures and interfaces

»* Sub-architecture

» Design-time and run-time

» Tool support: ArchStudio

» Extensible: configuration, execution

January 20, 2006 Architectural Access Control

Overview of XACML

»* Conceptual framework for access control models
— Based on set theory and first order logic

» EXxtensible
» Formal semantics

»* Matching rule for request

— Policy Enforcement Point (PEP) and Policy Decision
Point (PDP)

— PolicySet, Policy, Rule
— Match on Subject, Resource, Action

» Combining algorithms
»* Open Standard from OASIS

January 20, 2006 Architectural Access Control

Secure xXADL

» The first effort to model these security
concepts directly in an architectural
description language

»* Viewed from XACML.: a profile for the
software architecture domain

»* Viewed from XADL: a new schema
with elements necessary for access
control

January 20, 2006 Architectural Access Control

Syntax of Secure xXADL

<complexType name="'SecurityPropertyType'>
<sequence>
<element name="'subject"™ type="'Subject'' />
<element name=""principals' type="Principals'/>
<element name=""privileges" type="Privileges'/>
<element name="policies" type="Policies'/>
</sequence>

<complexType>
<complexType name="SecureConnectorType'>
<complexContent>
<extension base="ConnectorType'>
<sequence>

<element mame="'security"
type="'SecurityPropertyType'/>
</sequence>
</extension>
<I-- similar constructs for component,
structure, and instance -->

January 20, 2006 Architectural Access Control

Rationales for Language Design __.

» Concepts
— Architecture, access control

» Extensibility
— xXADL, XACML

» XACML flexible in combining policies

* 100l support Y
— ArchStudio AT
— Evaluation engine and editor

January 20, 2006 Architectural Access Control 27

The Larger Contexts

» Access control decisions might be
based on entities other than the
decision maker and the protected
resource. These relationships are the
contexts.

» XACML’s combining algorithms

contexts

January 20, 2006 Architectural Access Control

A Coalition Forces - [file:/c:/java/PCConnector. - |E||1|
Architecture Edit View Test
ald .
ol —
A

PC Connectaor 1

=

i 3
: :|
0
: =}
B ‘
o i
3

L
L=

PC Connectar 2

=

(L) =

=

C

M| El

= K [i]]
'.'.I' Zoom: ‘1!]0% ‘v‘

January 20, 2006 Architectural Access Control

Four Types of Contexts

.
1. The nearby components and

connectors of the component and
the connector

2. The type of the component and the
connector

3. The explicitly modeled sub-
architecture that contains the 2N,
component and the connector A A

4. The global architecture

January 20, 2006 Architectural Access Control 30

A Coalition Forces - [file:/C:/Documents and Settings/Jie Ren/My Documents/My Research/

_|ol x|
Architecture Edit Wiew Test Access Control
[Archipelago ; é o =
> Structureg US Radar French Radar
@' Coaliion Forces| Fiter Fitter
o B Types ConrEEi Gonnector
: I=1
‘. France to
| Filter US to France France to US France Filter
§§ nent Connector Connector Componen
=L
3 LIS Filter and
| command&Contral French Filter and
: Connector Command&Contral Connector
Il IDE i 3 E
IS A4 [n] [»]
S Zoom; [80% b4

January 20, 2006 Architectural Access Control

<connectorType 1d="'SecureC2Connector_type' Xxsi:type="SecureConnectorType’
<principal>NATO</principal>
<PolicySet PolicySetld="InstantiateConnectorType"
PolicyCombiningAlgld="deny-overrides'>
<Policy RuleCombiningAlgld="deny-overrides'>
<Rule Effect="Deny"> e
<SubjectMatch Matchld="'string-equal''> -FS/F)EE -
<AttributeValue>SecureManagedSystem PO' | Cy /
<AttributeDesignator>subject-id
<ActionMatch Matchld="string-equal'>
<AttributeValue>AddBrick<AttributeDesignator>action-id
<Condition Functionld="not">
<Apply Functionld="'string-is-in'>
<AttributeValue>NATO</AttributeValue>
<AttributeDesignator>principal

<connector id="UStoFranceConnector" xsi:type="SecureConnector'>_.
<principal>US</principal>
<PolicySet PolicyCombiningAlgld="deny-overrides'>
<Policy RuleCombiningAlgld="deny-overrides'>
<Rule Effect="Deny">
<SubjectMatch Matchld="string-equal">

<AttributeValue>SecureManagedSystem
|f1§;t€%f](:€3 <ActionMatch Matchld="string-equal'>
FD()||(:)/ <AttributeValue>AddBrick<AttributeDesignator>actiqy

<Condition Functionld="not">
<Apply Functionld="string-is-in'>
<AttributeValue>US</AttributeVvalue>
<AttributeDesignator>principal
January 20, 2006 <PolicySetldReference>InstantiateConnectorType 32

Algorithm to Check
Architectural Access

* Glven a secure software architecture
description written in Secure XADL, if
a component A wants to access
another component B, should the
access be allowed?

* Applying situations
— Currently design-time, possibly run-time N
— Global, not local]
— Connector propagates privileges v &

_— 0

January 20, 2006 Architectural Access Control 33

Algorithm 1

Input: an outgoing interface,
Accessing, and an 1ncoming

interface, Accessed Get AccumulatedSafeguards for

Accessed from the owning =,
constituent, the type, /
the containing
sub-architecture, and the
complete architecture;

Get AccumulatedPolicy for
Accessed from
similar sources;

iIT (AccumulatedPolicy exists)
1T (AccumulatedPolicy

grants access)
return grant;

Output: grant if the Accessing can
access the Accessed, deny if
the Accessing cannot access
the Accessed

Begin
iIT (there 1s no path between
Accessing and Accessed)
return deny;
IT (Accessing and Accessed are
connected directly)

DirectAccessing = Accessing; else
olse return deny;
N . . Ise
DirectAccessing = the constituent els -
g iIT (AccumulatedPrivileges

nearest to Accessed iIn the path;
Get AccumulatedPrivileges for
DirectAccessing from the owning
component, the type, the containing
sub-architecture, the complete
architecture, and the connected
constituents;

contains _
AccumulatedSafeguards)
’
return grant; ’ﬂ"f
else
return deny;
End

January 20, 2006 Architectural Access Control 34

A Firefox Component Security Architecture - [file:/C:/Documents and Settings/Jie Ren/My Documents/My Researd
Architecture Edit View Test Access Control

Archipelago
%? Structures

[oM Content Cont{
[Firefox Cormpanent

E:"T\,rpes

Find pa
betwee
and ac

1
¥

D

AL

<D

hd;
Frame
Chrome iner
JavaScript %EE
L B——

th
n accessing
>essed

| »

January 20, 2006

Architectural Access Control

=10]x]
DOM fi % in2 |
[/ DOM Content Cornlg romings
B Firefox Corpanent
b o L
Tvpes e Do Dom
Chrome ntainer DOoM DOM
JavaScript CL& ﬁ’ﬁ Mode 1 Mode 2 Mode 1 MNaode 2
e il — l s
=
XPConnect
2. Get privileges
L] - XPCOM
for accessing Comporeni
5;5‘;5“ I --..| [» i N -
< LT Zoom: [100% v
|

January 20, 2006 Architectural Access Control

=10/ x|

Archipelagn
'ﬁ‘ Structures :
BF DOM Content Corts ©

B Firefox Component|
Types :

| »

IV
DOM from Origin 2

DowM DOM
Mode 1 MNaode 2

3
=l

XPConnect

3. Propagaéte privileges
along the path o

Components

] | T D

{ v [] =

[

Zoom: [100% hd

January 20, 2006

Architectural Access Control

_|of x|
Architecture Edit View Test Access Control
Archipelago { =l
B0 Structures ' A v @
B i DOM from Trigin 2

B Dow Content Cont 55 DOM from Drigin 1]

B Firefox Corpanent
Types ; _

Frame
Chrome Cﬂnﬂirﬁr DOM DOM DOM DOM
JavaScript Mode 1 Mode 2 Mode 1 MNaode 2

gL

DE

4D

=l

XPConnect
4. Propagation is
subject to carporen
connector policy

L d

4l

[

Zoom: [100% hd

January 20, 2006

Architectural Access Control

A Firefox Component Security Architecture - [file:/C:/Documents and Settings/Jie Ren/My Documents/My Researd -10] x|
Architecture Edit View Test Access Control
Archipelann i =
B0 Structures ' A v %
i i DOM from Trigin 2
B DOM Cantent Cant 55 DOM from Drigin 1]
B Firefox Companent| -
Types ; _
: Frame
: Chrome Cﬂnﬂirﬁr DO M DoM DOM DO M
JavaScript Mode 1 Mode 2 Mode 1 MNaode 2
1F LT I l ol

KPCOM
Components

Dl B
4] L] [»]

2T Zoom: [100% v

January 20, 2006 Architectural Access Control

Architecture Edit View Test Access Control

=10/ x|

Archipelagn

'ﬁ‘ Structures i
B/l DOM Content Contg
B Firefox Companent| -

Types :

1
F

| »

5. Decide \évhether

privileges are

sufficient for safeguards

JL] DE

A L |
DOM from Trigin 1 DOM from Trigin 2
— " "l
Frame Frame
Chrome iner DOM DomM Cantainer DOM DOM
Javaseript BHE Nade 1 Nade 2 S Node 1 Node 2
b b TF F— L = bl

L d

4

[

4D

Zoom: [100% hd

January 20, 2006

Architectural Access Control

Algorithm 2

Input: an outgoing interface, Accessing, and
an incoming interface, Accessed

Output: grant 1T the Accessing can access the Accessed, /
deny 1T the Accessing cannot access the Accessed

Begin
IT (Accessing and Accessed belong to the same architecture structure)
container = the architecture structure
else 1T (use top level architecture)
container = top level architecture
else
container = least common container
iIT (container contains other architecture structures) {
replace constituents of subarchitectured types with
the sub-architecture;
rename the constituents of the sub-architectures 1t there
are multiple instances of them;
connect the outer signatures and the inner iInterfaces
as privilege preserving - ’
3 ,g#’f ’

calculate the reachability closure of the expanded
container iInterface graph
return Algorithml(Accessing, Accessed)
End;

January 20, 2006 Architectural Access Control 41

Check with
Subarchitecture

A Firefox Component Security Architecture - [file:/C:/Documents and Settings /Jie Ren/My Documents /My Research/we

Architecture Edit View Test Access Control

= Ard !
3
: Ld! -
- BH: - DOM from DOM from bTigin 2
Frame
Container
DomM MNod DomM Mod
Chrome JavasScript =) DOM1N°C‘9 4 ode 4 ode
i v} il

Find container

HPCZOM Components

eFlatten and renam

*Privilege preserviny

[»]
Zoom: |125%| | -~ |

January 20, 2006 Architectural Access Control 42

Validity of the Algorithm

» Reachabillity of a privilege graph
— A privilege of an outgoing interface
— A safeguard of an incoming interface
— Connectors decide edges
» Sources of privileges and safeguards
— Architectural contexts
» Assumptions
— A single, loop-free path between the interfaces

— Need manual help from architects in other
cases

January 20, 2006 Architectural Access Control

Advanced Modeling Concept

» Four areas:

— Handling large scale access through
roles

— Handling heterogeneous access
through trust management

— Handling content-based access
— Handling architectural execution

» All can be modeled with the language
and checked with the algorithm

January 20, 2006 Advanced Modeling Concepts

Role-based Access Contro‘j,_
/]

(RH)
Role Hierarchy

(UA) ; ; (PA)
User Assign- Permission

ssignment

ment

user
SessIons

session_roles

January 20, 2006 Advanced Modeling Concepts 45

Roles In Secure xXADL

* Roles as in the XACML RBAC Profile

— Role Policy Set: restrict subject

— Permission Policy Set: restrict resource
and action

— PolicySetldReference
* Roles as principals _

— RPS and PPS P -

— UA 1

_— 0

January 20, 2006 Advanced Modeling Concepts 46

Trust Management

*» Handle authentication and authorization in
a decentralized environment

» PolicyMaker, KeyNote, SD3

» A local decision maker makes a decision
based on a credential presented by a
remote party

» The credential is generally a certificate
signed by the local decision maker

» A local policy is uniformly treated as a
signed credential

January 20, 2006 Advanced Modeling Concepts

» Ninghui Li 2003
» Based on set theory and logic
» Basic rule: R,.D, € R,.D,
» Trust as Roles
— A foreign role can behave like a local role

* A natural extension to RBAC

— Role equivalence similar to role
iInheritance

January 20, 2006 Advanced Modeling Concepts

An Integrated Access
Control Model

* Classic Access Control
— Subject, object, privilege

* Role-based Access Control
— Use a role as an indirection

»* Role-based Trust Management

— Trust relationship between roles of
different domains

January 20, 2006 Advanced Modeling Concepts

Content-based Access

s
* Interface-level access does not
always provide enough information

* Inspecting content passing through
Interfaces could be necessary

» Event-based interfaces
— Top and bottom |
— Request and notification] 4

January 20, 2006 Advanced Modeling Concepts 50

Architectural Executio

»* Architectural Instantiation
— Style neutral

» Architectural Connection
— Style neutral

* Message Routing
— Style specific

January 20, 2006 Advanced Modeling Concepts

A Coalition Forces - [file:/C:/Documents and Settings/Jie Ren/My Documents/My Research/ - |EI|5|
Architecture Edit Wiew Test Access Control
[Archipelago ; é et =
> Structureg : US Radar French Radar
@ Coalition Forces | Fiter Fitter
o B Types ConERil Connector
H 4 a

France _to

LI5-France Connectar

LIS Filter and .
Command&Cantral French Filter and
Connector Command&Control Connector
] DE i 1 ~|
o4l L] vl

> T Zoom: [B0% -

January 20, 2006 Advanced Modeling Concepts

<connector i1d="USFranceConnector' xsi:type="SecureConnector'>
<principal>France</principal>
<principal>US</principal> Role-based
<policies>
<PolicySet PolicySetld="InternalRouting" ACCESS Control ‘
PolicyCombiningAlgld="permit-overrides'> —
<Policy RuleCombiningAlgld="permit-overrides'> '
<Rule Effect=""Deny" />
<PolicySet PolicySetld="PPS:France"
PolicyCombiningAlgld="permit-overrides'>
<Policy RuleCombiningAlgld=""permit-overrides'>
<Rule Effect="Permit'>
<SubjectMatch Matchld="'string-equal''>
<AttributeValue>USFranceConnector
<AttributeDesignator>subject-id
<ResourceMatch Matchld="'string-equal'>
<Attributevalue>RouteMessage (Content-based
<AttributeDesignator>resource-id -
<ActionMatch Matchld="string-equal"> FQ()LJt|r1g;
<AttributeValue>xadl :action:RouteMessage
<AttributeDesignator>action-id
<Condition Functionld="string-equal">
<AttributeValue>Air Defense Missile
<AttributeSelector RequestContextPath=
"'//context:ResourceContent/security:routeMessage/
messages:namedProperty[messages:name="type"]/
messages:value/text()'/>
<PolicySet PolicySetld="PPS:US" PolicyCombiningAlgld="permit-overridg

January 20, 2006 Advanced Modeling Concepts 53

Central Role of Connectorgf)’
Propagate privileges in architectural access check
Route messages according to established policies

Participate in deciding architectural connections

Decide what subjects the connected components
are executing for

»* Regulate whether components have sufficient
privileges to communicate through the connectors

* Provide secure interaction between insecure
components

»* M kW

January 20, 2006 Advanced Modeling Concepts 54

Tool Support

» Evaluation Engines

» Extending ArchStudio

— Design-time support
» Editors
»* Analyzer

— Run-time support
» PDP and PEP
» c2.fw.secure
» Secure Architecture Controller
* |[nstantiation, connection, messaging

January 20, 2006 Tool Support

A Coalition Forces - [file:/C:/ Documents and Settings/Jie Ren/My Documents{My Research/workspacefarchstudiof; -0l =]
Architecture Edit View Test Access Control
[T Archipelago : Edit Security Poli
? T structures 3 Palicy Document ;
[Coalition Forces 9 [<PolicySet - InstantiateConnectarUss= | -
@ Tyes [<Description/

o= °F <Target=

[»

“* Functionld:
9 [CJ =Policy : Instantiate ConnectarS= :
D =Description/=

IC

|urn:uasis:names:lc:xacml:1.l]:funt:

* Required

|| rList of Applies

o=] «PolicyDefaults= :

o= TF =Target-

¢ [=Rule : AddBrickF arUStoFrancy -
LIS to France . ¢ =Target-

Connector o @ «Subjects=

o 3 =5ubjects
o < =Resourcess
o= [=Actions=

¢] =Condition=

List of Simple Expresions
o= [T =Apply : um:oasisinami | | <attributeValues>
D =PolicySetidReferencel> <ResourcedttributeDesignator : urnzxadl:principal»
(| I [DEm I [DN
o £
a L] I
SNV LT Zoom: |100% v|
January 20, 2006 Tool Support

Architecture Edit View Test Access Control

=18l

[Archipelago
9 %‘ Structures

o E:"Tvpes

& coalition Forces | -

1
b

D

France to France
Filter Component

itter US to France France to US
ggant Connector Connector
iry|
Edit Description...
Edit Direction...

Edit Interface-to-Signature Link
Clear Interface-to-Signature Link

Filter and Command&Contral

Connector

Highlight Type
Goto Type
Clear Tyne

Remove

Promote to Optional
Make Mandatory
Make Optional/Edit Guard...

&Contral

[

Promote to Security

Safequards

Accessing: US to France Connector Bottom Interface

Accessed: Filter and Command&Control Connector Top Interface
Check Access Control

Clear

[4]

[+]

- 100% hd

January 20, 2006

Tool Support

Instantiation and
Connection Exceptions ’

A Tron - ArchStudio 3 Analysis Framework - 0] x|
Development
‘ O Test Al “) Test Document.. v ‘
¢ 3 Tron | I35ue Found Document
o= [... thesis-weldxml ;E|@ Rejected link: FrenchRadarFilterBus_to UUSFranceConnector _dthesis-weld xml

Schematron: |dle

Test Results LSchematmn |

| Rejected link:
FrenchRadarFilterBus_to_USFranceConnector

:| r1ssue Info

Cannat add insecure weald

Document: . fthesis-weld.xml
5@ Tool: SecureManagedSystem

‘ @'Fncus Editor: Element v‘

January 20, 2006

Tool Support

/

58

Case Studies

» Coalition

— Developed, fully supported by
ArchStudio

* Impromptu

— Developed, reusing third party
components

» Firefox Component Security
» DCOM Security

January 20, 2006 Case Studies

Case Study: Imprompt

Impromptu Shared Workspace - EI
File View Options Security Help

S, ZoomOut @ +° Refresh Change color.. Save SYG...

surveydoc
L, Ofer paers can sea cangathis

prop files to the outside of the pie or your slice of the pie

January 20, 2006 Case Studies

Impromptu Components
and Connectors

Local Impromptu Remate Impromiptu

. lefty Weh Server Jetty Web Server

Pie GLI G mpramptu --¢ Impromptu Proxy &---o--HF :u=:u' -—g Impromptu Proxy o---

GUI_mpramgiu
Conneciar

Fie GLI

s i
301 g

Slide WebDAY

Senlet

Slide WebDAY Senvlet

e

e

g e

i i

i i

i i

! 1

i i

i i

i i
1 = il =
=] =1 =1
k]]]]
=l =l =1 =1

Yancees

January 20, 2006 Case Studies 61

First Secure Connector “

-
*» Roles: me, other

* WebDAYV connector

»* Use |IP address to separate me from
other

January 20, 2006 Case Studies 62

Second Composite
Connector

» Standard compliant

» Composite
— HTTP Digest Authentication

—web.xml authorization on HTTP
methods

—WebDAV ACL authorization on
permissions
» Enable all types of files, with the
WebDAV file system driver support

January 20, 2006 Case Studies

Case Study: Firefox

Computer Operating System

Overlay ¥BL
database definitions
Preferences Typa
libraries
Digital Mozilla
Certificates registry
\] RDFIib
7 — i— — Overlays —— XBL — Templates
g * * * ROF RDF
— p — Components — WaG OTDs
R standards
o *| . e Defautt — -
= = = = J £Ss
] 2 E — XPConnect —| E z Dom
& 8 4 g \ - —
) skins Y ke
- Pluging — Framas Events
JavaSeript s JavaScript GUI Fonts
toolkits
NM - odl— \ / \ /
N/ L=\ =4
Jslib Widgets Taxt Keycodes Gestures
N/
Desktop
themes Screen \\‘/‘%
Class XPIDL — .
libraries definitions A _ Keybourd —Mouse

January 20, 2006 Case Studies

Firefox Platform

* XPCOM
— Cross platform component model

» JavaScript
— Browser and extension

» XPConnect

— Bidirectional bridge between XPCOM
components and JavaScript objects

January 20, 2006 Case Studies

Trust Boundaries

» The boundary between chrome and
content

»* The boundary between contents from
different origins

— Same origin: scheme, host, port

January 20, 2006 Case Studies

Principals

» Subject principal and object principal
»* System principal, null principal

January 20, 2006 Case Studies

Container and Node

» Document Object Model

* Document and Frame

— Principal based on origin
* Node

— Inherit principal
» Components collection

January 20, 2006 Case Studies

ScCript Security I\/Ianage[;“ 3
» Part of XPConnect =
» Discover object principals and

subject principals
* Architectural Access Control

— DOM access
»* Check subject principal and object principal

— Instantiation by Creation s

— Instantiation by LoadURI

January 20, 2006 Case Studies 69

<component i1d=""ChromeCode"'"> -
<subject>ChromeCode</subject> F I refOX
<principal>Chrome</principal>
<component i1d="ContentCode"> - -
<subject>URI</subject> S e C U r I ty P O I I Cy
<principal>Content</principal> P
<component i1d="SignedContentCode"> /
<subject>SignedURI</subject>
<principal>Chrome</principal>
<connector 1d=""XPConnectSecurityManager" xsi:type="'SecureConnector'>
<PolicySet PolicySetld="PPS:Chrome" PolicyCombiningAlgld=""permit-overriges
<Policy RuleCombiningAlgld="permit-overrides'> :
<Rule Effect="Permit'>
<Subjects>
<Subject><SubjectMatch Matchld="'string-equal'>
<AttributeValue>ChromeCode<AttributeDesignator>subject-id
<Subject><SubjectMatch Matchld="'string-equal'> ”
<AttributeValue>SignedURI<AttributeDesignator>subject-id
<AnyResource />
<AnyAction />
<PolicySet PolicySetld="PPS:Content”™ PolicyCombiningAlgld="'deny-overrig
<Policy RuleCombiningAlgld="'deny-overrides'>
<Rule Effect="Permit''> -
<SubjectMatch Matchld="string-equal"><AttributeValue>URI ,ﬂ"f #
<AttributeDesignator>subject-id g
<ResourceMatch Matchld="'string-equal'><AttributeValue>URI
<AttributeDesignhator>resource-id
<ActionMatch Matchld="'string-equal"><AttributeValue>AccessDOM
<AttributeDesignator>action-id
<Rule Effect="Deny">

70

XPConnect:

Architectural Connector’
/]

A Firefox Component Security Architecture - [file:/C:/Documents and Settings/Jie Ren/My Documents/My Reses -10] x|
Architecture Edit View Test Access Control
Archipelago { =l
B0 Structures ' A v @

B i DOM from Trigin 2

B Dow Content Cont 55 DOM from Drigin 1]
B Firefox Companent| -

Types : m

: Frame

: Chrome Cﬂnﬂirﬁr DO M DoM DOM DO M

JavaScript Mode 1 Mode 2 Mode 1 MNaode 2
1F LT I l ol
"
£
XPConnect
XPCOM i
Components ,/' "
i | F
| [*]: ~
A4l L] Dy

= Zoom: [100% v

January 20, 2006 Case Studies 71

Summary

* Problem: Architectural Access Control
— How can we describe and check access control issues
at the software architecture level?
» Approach:
— A unified access control model: classic, role, trust

— Subject, Principal, Resource, Privilege, Safeguard, and
Policy

— Contexts

— Algorithm to check access control

— Content-based access

— Architectural execution

— Connector-centric: propagation, connection, messaging
— Tool support

January 20, 2006 Conclusion

Contributions

» A novel approach to the design and
analysis of the access control property for
software architectures

* A usable formalism for modeling and
reasoning about architectural access
control

* An algorithm for checking whether the
architectural model maintains proper
access control at design-time

» A suite of usable tools to design and
analyze secure software

January 20, 2006 Conclusion

Future Work

» Different types of connectors

» Different mechanisms to construct
connectors

» Security as an aspect

» Reflective architectural model
» Dynamic architecture

» Policy conflict resolution

January 20, 2006 Conclusion

	A Connector-Centric Approach to Architectural Access Control
	Outline
	Security Incidents Reported to CERT
	Re-architecting boosts security!
	Problem
	Main Goal
	Security Overview
	Classic Discretionary Access Control
	Component and Architecture Security
	Connectors
	Hypotheses
	Approach
	Validation
	Contributions
	Architectural Access Control
	Running Example: Coalition
	Concepts: Subject
	Concepts: Principal
	Concepts: Resource
	Concepts: Privilege
	Concepts: Safeguard
	Concepts: Policy
	Overview of xADL
	Overview of XACML
	Secure xADL
	Syntax of Secure xADL
	Rationales for Language Design
	The Larger Contexts
	Neighborhood Context
	Four Types of Contexts
	Coalition with Two Connectors
	Type �Policy
	Algorithm to Check Architectural Access
	Algorithm 1
	Applying Algorithm: Firefox
	Applying Algorithm: Firefox
	Applying Algorithm: Firefox
	Applying Algorithm: Firefox
	Applying Algorithm: Firefox
	Applying Algorithm: Firefox
	Algorithm 2
	Check with Subarchitecture
	Validity of the Algorithm
	Advanced Modeling Concepts
	Role-based Access Control
	Roles in Secure xADL
	Trust Management
	Role-based Trust Management
	An Integrated Access Control Model
	Content-based Access
	Architectural Execution
	Coalition with One Connector
	Content-based�Routing
	Central Role of Connectors
	Tool Support
	Policy Editor
	Static Analysis
	Instantiation and Connection Exceptions
	Case Studies
	Case Study: Impromptu
	Impromptu Components and Connectors
	First Secure Connector
	Second Composite Connector
	Case Study: Firefox
	Firefox Platform
	Trust Boundaries
	Principals
	Container and Node
	Script Security Manager
	Firefox �Security Policy
	XPConnect: Architectural Connector
	Summary
	Contributions
	Future Work

