
A Connector-
Centric Approach
to Architectural
Access Control

Jie Ren
Department of Informatics

University of California, Irvine

Overview 2January 20, 2006

Outline
Overview
– Architecture and Security
– Software connectors
– Hypotheses, approach, validation, contribution

Architectural Access Control
– Model: Subject, Principal, Resource, Privilege, Safeguard,

Policy
– Language: xADL, XACML, and Secure xADL
– Contexts: neighborhood, type, container, architecture
– Algorithm: interface access and privilege propagation

Advanced concepts
– RBAC, trust, content-based, architectural execution

Tool support
Case studies
Conclusion

Overview 3January 20, 2006

Security Incidents
Reported to CERT

Incidents

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

1995 1996 1997 1998 1999 2000 2001 2002 2003

Overview 4January 20, 2006

Re-architecting boosts
security!

Wing, IEEE Security & Privacy, 2003

Overview 5January 20, 2006

Problem
Architectural Access Control:
– How can we describe and check access

control issues at the software
architecture level?

Overview 6January 20, 2006

Main Goal
Integrate security and software
architecture
– Integrate
– Security: integrity through access

control
– Architecture level: abstraction
– Software engineering perspective: how

to express, check, and enforce

Overview 7January 20, 2006

Security Overview
Security
– confidentiality, integrity, availability

Security policy, model, mechanism
Reference Monitor and Trusted
Computing Base
– Anderson 1972

Overview 8January 20, 2006

Classic Discretionary
Access Control

Lampson 1971
Subject
Object
Privilege

Overview 9January 20, 2006

Component and
Architecture Security

Component-based Software Engineering
– Computer Security Contract, Khan 2001
– cTLA Contract, Herrmann 2003

Software Architecture
– ASTER, Bidan and Issarny 1997
– System Architecture Model, Deng et al. 2003
– SADL, Moriconi et al. 1997
– Law-Governed Architecture, Minsky 1998

Mostly cryptography, insufficient access
control

Overview 10January 20, 2006

Connectors
Why connectors
– Model the fundamental communication issue

Should they be first class citizens?
– Capture and reuse

Existing work
– Taxonomy: Mehta 2000
– Assembly Language: Mehta 2004
– Constructions: Lopes 2003
– Transformation: Spitznagel 2001

Shortcoming: insufficient access control
– Dependability: Spitznagel 2004

Overview 11January 20, 2006

Hypotheses
Hypothesis 1: An architectural connector may
serve as a suitable construct to model
architectural access control
Hypothesis 2: The connector-centric approach
can be applied to different types of
componentized and networked software
systems
Hypothesis 3: With connector propagating
privileges, the access control check algorithm
can check the suitability of accessing interfaces
Hypothesis 4: In an event-based architecture
style, connectors can route events in
accordance with the secure delivery
requirements

Overview 12January 20, 2006

Approach
A connector-centric approach to describe
and enforce Architectural Access Control
– Combine software architecture and security

research
– Adopt an integrated access control model:

classic, role-based, trust management
– Secure xADL, based on xADL and XACML
– Architectural contexts
– Architectural execution
– Connector-centric description and

enforcement
– Tool support

Overview 13January 20, 2006

Validation
Algorithm analysis
– Based on graph reachability

Four case studies
– Development of secure coalition

Connector for secure message delivery
– Development of Impromptu

Composite connector among heterogeneous
components

– Modeling of Firefox component security
Algorithm to check critical path with the connector

– Modeling of DCOM security
Connectors for networked components

Overview 14January 20, 2006

Contributions
A novel approach to the design and
analysis of the access control property for
software architectures
A usable formalism for modeling and
reasoning about architectural access
control
An algorithm for checking whether the
architectural model maintains proper
access control at design-time
A suite of usable tools to design and
analyze secure software

Architectural Access Control 15January 20, 2006

Architectural Access Control
Basic concepts, applied in architecture
– Subject, Principal, Resource,

Permission/Privilege/Safeguard, Policy
Secure xADL
– xADL
– XACML
– Language design

Contexts
– Neighborhood, type, container, architecture

Check algorithm
Central role of connectors

Architectural Access Control 16January 20, 2006

Running Example: Coalition

Message from

US

Message from

France

Architectural Access Control 17January 20, 2006

Concepts: Subject
A subject is the user on whose behalf
software executes
Missing from traditional software
architecture:
– All of its components and connectors execute

under the same subject
– The subject can be determined at design-time
– It generally will not change during runtime,

either inadvertently or intentionally
– Even if there is a change, it has no impact on

the software architecture

Architectural Access Control 18January 20, 2006

Concepts: Principal
A subject can take multiple
principals, which encapsulate the
credentials that a subject possesses
to acquire permissions
Different types of principals
Summary credentials and concrete
credentials
Missing from previous architectures

Architectural Access Control 19January 20, 2006

Concepts: Resource
A resource is an entity whose
access should be protected
Passive: files, sockets, etc.
Active: components, connectors,
interfaces
– Relevant to architecture

Architectural Access Control 20January 20, 2006

Concepts: Privilege
Permissions describe a possible
operation on an object
Privilege describes what permissions a
component possesses depending on the
executing subject
Privilege escalation vulnerabilities
Two types of privileges:
– Traditional: read file, open sockets, etc.
– Architectural: access, instantiation, connection,

message routing, introspection, etc.

Architectural Access Control 21January 20, 2006

Concepts: Safeguard
Safeguards are permissions that are
required to access the interfaces of
the protected components and
connectors
Architectural access control check

Architectural Access Control 22January 20, 2006

Concepts: Policy
A policy specifies what privileges a
subject, with a given set of principals,
should have to access resources
protected by safeguards
Numerous existing studies in the
security community
We focus on software engineering
applicability for architectural modeling

Architectural Access Control 23January 20, 2006

Overview of xADL
XML-based extensible architecture
description language
Component and connector
Types
Signatures and interfaces
Sub-architecture
Design-time and run-time
Tool support: ArchStudio
Extensible: configuration, execution

Architectural Access Control 24January 20, 2006

Overview of XACML
Conceptual framework for access control models
– Based on set theory and first order logic

Extensible
Formal semantics
Matching rule for request
– Policy Enforcement Point (PEP) and Policy Decision

Point (PDP)
– PolicySet, Policy, Rule
– Match on Subject, Resource, Action

Combining algorithms
Open Standard from OASIS

Architectural Access Control 25January 20, 2006

Secure xADL
The first effort to model these security
concepts directly in an architectural
description language
Viewed from XACML: a profile for the
software architecture domain
Viewed from xADL: a new schema
with elements necessary for access
control

Architectural Access Control 26January 20, 2006

Syntax of Secure xADL
<complexType name="SecurityPropertyType">
<sequence>
<element name="subject" type="Subject"/>
<element name="principals" type="Principals"/>
<element name="privileges" type="Privileges"/>
<element name="policies" type="Policies"/>

</sequence>
<complexType>
<complexType name="SecureConnectorType">
<complexContent>
<extension base="ConnectorType">
<sequence>
<element mame="security"

type="SecurityPropertyType"/>
</sequence>

</extension>
<!-- similar constructs for component,
structure, and instance -->

Architectural Access Control 27January 20, 2006

Rationales for Language Design

Concepts
– Architecture, access control

Extensibility
– xADL, XACML

XACML flexible in combining policies
Tool support
– ArchStudio
– Evaluation engine and editor

Architectural Access Control 28January 20, 2006

The Larger Contexts
Access control decisions might be
based on entities other than the
decision maker and the protected
resource. These relationships are the
contexts.
XACML’s combining algorithms
supply a framework to combine these
contexts

Architectural Access Control 29January 20, 2006

Neighborhood Context

Architectural Access Control 30January 20, 2006

Four Types of Contexts
1. The nearby components and

connectors of the component and
the connector

2. The type of the component and the
connector

3. The explicitly modeled sub-
architecture that contains the
component and the connector

4. The global architecture

Architectural Access Control 31January 20, 2006

Coalition with Two Connectors

Same TypeSame Type

32January 20, 2006

<connectorType id="SecureC2Connector_type" xsi:type="SecureConnectorType">
<principal>NATO</principal>
<PolicySet PolicySetId="InstantiateConnectorType"

PolicyCombiningAlgId="deny-overrides">
<Policy RuleCombiningAlgId="deny-overrides">
<Rule Effect="Deny">

<SubjectMatch MatchId="string-equal">
<AttributeValue>SecureManagedSystem
<AttributeDesignator>subject-id

<ActionMatch MatchId="string-equal">
<AttributeValue>AddBrick<AttributeDesignator>action-id

<Condition FunctionId="not">
<Apply FunctionId="string-is-in">

<AttributeValue>NATO</AttributeValue>
<AttributeDesignator>principal

Type
Policy

<connector id="UStoFranceConnector" xsi:type="SecureConnector">
<principal>US</principal>
<PolicySet PolicyCombiningAlgId="deny-overrides">
<Policy RuleCombiningAlgId="deny-overrides">
<Rule Effect="Deny">

<SubjectMatch MatchId="string-equal">
<AttributeValue>SecureManagedSystem

<ActionMatch MatchId="string-equal">
<AttributeValue>AddBrick<AttributeDesignator>action-id

<Condition FunctionId="not">
<Apply FunctionId="string-is-in">

<AttributeValue>US</AttributeValue>
<AttributeDesignator>principal

<PolicySetIdReference>InstantiateConnectorType

Instance
Policy

Architectural Access Control 33January 20, 2006

Algorithm to Check
Architectural Access

Given a secure software architecture
description written in Secure xADL, if
a component A wants to access
another component B, should the
access be allowed?
Applying situations
– Currently design-time, possibly run-time
– Global, not local
– Connector propagates privileges

Architectural Access Control 34January 20, 2006

Algorithm 1
Input: an outgoing interface,

Accessing, and an incoming
interface, Accessed

Output: grant if the Accessing can
access the Accessed, deny if
the Accessing cannot access
the Accessed

Begin
if (there is no path between
Accessing and Accessed)
return deny;

if (Accessing and Accessed are
connected directly)

DirectAccessing = Accessing;
else
DirectAccessing = the constituent

nearest to Accessed in the path;
Get AccumulatedPrivileges for
DirectAccessing from the owning
component, the type, the containing
sub-architecture, the complete
architecture, and the connected
constituents;

Get AccumulatedSafeguards for
Accessed from the owning
constituent, the type,
the containing
sub-architecture, and the
complete architecture;

Get AccumulatedPolicy for
Accessed from
similar sources;

if (AccumulatedPolicy exists)
if (AccumulatedPolicy

grants access)
return grant;

else
return deny;

else
if (AccumulatedPrivileges

contains
AccumulatedSafeguards)

return grant;
else
return deny;

End

Architectural Access Control 35January 20, 2006

Applying Algorithm: Firefox

Accessing

Accessed

1. Find path
between accessing
and accessed

Architectural Access Control 36January 20, 2006

Applying Algorithm: Firefox
Privilege: Content

2. Get privileges
for accessing

Architectural Access Control 37January 20, 2006

Applying Algorithm: Firefox

Privilege: Content

3. Propagate privileges
along the path

Architectural Access Control 38January 20, 2006

Applying Algorithm: Firefox

Privilege: Content

4. Propagation is
subject to
connector policy

Architectural Access Control 39January 20, 2006

Applying Algorithm: Firefox

Privilege: Content

Architectural Access Control 40January 20, 2006

Applying Algorithm: Firefox

Privilege: Content

Safeguard: Chrome
5. Decide whether
privileges are
sufficient for safeguards

Architectural Access Control 41January 20, 2006

Algorithm 2
Input: an outgoing interface, Accessing, and

an incoming interface, Accessed

Output: grant if the Accessing can access the Accessed,
deny if the Accessing cannot access the Accessed

Begin
if (Accessing and Accessed belong to the same architecture structure)
container = the architecture structure

else if (use top level architecture)
container = top level architecture

else
container = least common container

if (container contains other architecture structures) {
replace constituents of subarchitectured types with

the sub-architecture;
rename the constituents of the sub-architectures if there

are multiple instances of them;
connect the outer signatures and the inner interfaces

as privilege preserving
}
calculate the reachability closure of the expanded

container interface graph
return Algorithm1(Accessing, Accessed)

End;

Architectural Access Control 42January 20, 2006

Check with
Subarchitecture

Accessing

Accessed
•Find container

•Flatten and rename

•Privilege preserving

Architectural Access Control 43January 20, 2006

Validity of the Algorithm
Reachability of a privilege graph
– A privilege of an outgoing interface
– A safeguard of an incoming interface
– Connectors decide edges

Sources of privileges and safeguards
– Architectural contexts

Assumptions
– A single, loop-free path between the interfaces
– Need manual help from architects in other

cases

Advanced Modeling Concepts 44January 20, 2006

Advanced Modeling Concepts
Four areas:
– Handling large scale access through

roles
– Handling heterogeneous access

through trust management
– Handling content-based access
– Handling architectural execution

All can be modeled with the language
and checked with the algorithm

Advanced Modeling Concepts 45January 20, 2006

Role-based Access Control

Advanced Modeling Concepts 46January 20, 2006

Roles in Secure xADL
Roles as in the XACML RBAC Profile
– Role Policy Set: restrict subject
– Permission Policy Set: restrict resource

and action
– PolicySetIdReference

Roles as principals
– RPS and PPS
– UA

Advanced Modeling Concepts 47January 20, 2006

Trust Management
Handle authentication and authorization in
a decentralized environment
PolicyMaker, KeyNote, SD3
A local decision maker makes a decision
based on a credential presented by a
remote party
The credential is generally a certificate
signed by the local decision maker
A local policy is uniformly treated as a
signed credential

Advanced Modeling Concepts 48January 20, 2006

Role-based Trust Management
Ninghui Li 2003
Based on set theory and logic
Basic rule: R1.D1 R2.D2

Trust as Roles
– A foreign role can behave like a local role

A natural extension to RBAC
– Role equivalence similar to role

inheritance

Advanced Modeling Concepts 49January 20, 2006

An Integrated Access
Control Model

Classic Access Control
– Subject, object, privilege

Role-based Access Control
– Use a role as an indirection

Role-based Trust Management
– Trust relationship between roles of

different domains

Advanced Modeling Concepts 50January 20, 2006

Content-based Access
Interface-level access does not
always provide enough information
Inspecting content passing through
interfaces could be necessary
Event-based interfaces
– Top and bottom
– Request and notification

Advanced Modeling Concepts 51January 20, 2006

Architectural Execution
Architectural Instantiation
– Style neutral

Architectural Connection
– Style neutral

Message Routing
– Style specific

Advanced Modeling Concepts 52January 20, 2006

Coalition with One Connector

Advanced Modeling Concepts 53January 20, 2006

<connector id="USFranceConnector" xsi:type="SecureConnector">
<principal>France</principal>
<principal>US</principal>
<policies>
<PolicySet PolicySetId="InternalRouting"

PolicyCombiningAlgId="permit-overrides">
<Policy RuleCombiningAlgId="permit-overrides">
<Rule Effect="Deny" />

<PolicySet PolicySetId="PPS:France"
PolicyCombiningAlgId="permit-overrides">

<Policy RuleCombiningAlgId="permit-overrides">
<Rule Effect="Permit">

<SubjectMatch MatchId="string-equal">
<AttributeValue>USFranceConnector
<AttributeDesignator>subject-id

<ResourceMatch MatchId="string-equal">
<AttributeValue>RouteMessage
<AttributeDesignator>resource-id

<ActionMatch MatchId="string-equal">
<AttributeValue>xadl:action:RouteMessage
<AttributeDesignator>action-id

<Condition FunctionId="string-equal">
<AttributeValue>Air Defense Missile
<AttributeSelector RequestContextPath=

"//context:ResourceContent/security:routeMessage/
messages:namedProperty[messages:name='type']/
messages:value/text()"/>
<PolicySet PolicySetId="PPS:US" PolicyCombiningAlgId="permit-overrides">

Content-based
Routing

Role-based
Access Control

Advanced Modeling Concepts 54January 20, 2006

Central Role of Connectors
Propagate privileges in architectural access check
Route messages according to established policies
Participate in deciding architectural connections
Decide what subjects the connected components
are executing for
Regulate whether components have sufficient
privileges to communicate through the connectors
Provide secure interaction between insecure
components

Tool Support 55January 20, 2006

Tool Support
Evaluation Engines
Extending ArchStudio
– Design-time support

Editors
Analyzer

– Run-time support
PDP and PEP
c2.fw.secure
Secure Architecture Controller
Instantiation, connection, messaging

Tool Support 56January 20, 2006

Policy Editor

Tool Support 57January 20, 2006

Static Analysis

Tool Support 58January 20, 2006

Instantiation and
Connection Exceptions

Case Studies 59January 20, 2006

Case Studies
Coalition
– Developed, fully supported by

ArchStudio
Impromptu
– Developed, reusing third party

components
Firefox Component Security
DCOM Security

Case Studies 60January 20, 2006

Case Study: Impromptu

Case Studies 61January 20, 2006

Impromptu Components
and Connectors

Case Studies 62January 20, 2006

First Secure Connector
Roles: me, other
WebDAV connector
Use IP address to separate me from
other

Case Studies 63January 20, 2006

Second Composite
Connector

Standard compliant
Composite
– HTTP Digest Authentication
– web.xml authorization on HTTP

methods
– WebDAV ACL authorization on

permissions
Enable all types of files, with the
WebDAV file system driver support

Case Studies 64January 20, 2006

Case Study: Firefox

Case Studies 65January 20, 2006

Firefox Platform
XPCOM
– Cross platform component model

JavaScript
– Browser and extension

XPConnect
– Bidirectional bridge between XPCOM

components and JavaScript objects

Case Studies 66January 20, 2006

Trust Boundaries
The boundary between chrome and
content
The boundary between contents from
different origins
– Same origin: scheme, host, port

Case Studies 67January 20, 2006

Principals
Subject principal and object principal
System principal, null principal

Case Studies 68January 20, 2006

Container and Node
Document Object Model
Document and Frame
– Principal based on origin

Node
– Inherit principal

Components collection

Case Studies 69January 20, 2006

Script Security Manager
Part of XPConnect
Discover object principals and
subject principals
Architectural Access Control
– DOM access

Check subject principal and object principal
– Instantiation by Creation
– Instantiation by LoadURI

70

<component id="ChromeCode">
<subject>ChromeCode</subject>
<principal>Chrome</principal>

<component id="ContentCode">
<subject>URI</subject>
<principal>Content</principal>

<component id="SignedContentCode">
<subject>SignedURI</subject>
<principal>Chrome</principal>

<connector id="XPConnectSecurityManager" xsi:type="SecureConnector">
<PolicySet PolicySetId="PPS:Chrome" PolicyCombiningAlgId="permit-overrides">
<Policy RuleCombiningAlgId="permit-overrides">
<Rule Effect="Permit">
<Subjects>
<Subject><SubjectMatch MatchId="string-equal">

<AttributeValue>ChromeCode<AttributeDesignator>subject-id
<Subject><SubjectMatch MatchId="string-equal">

<AttributeValue>SignedURI<AttributeDesignator>subject-id
<AnyResource />
<AnyAction />

<PolicySet PolicySetId="PPS:Content" PolicyCombiningAlgId="deny-overrides">
<Policy RuleCombiningAlgId="deny-overrides">
<Rule Effect="Permit">
<SubjectMatch MatchId="string-equal"><AttributeValue>URI

<AttributeDesignator>subject-id
<ResourceMatch MatchId="string-equal"><AttributeValue>URI

<AttributeDesignator>resource-id
<ActionMatch MatchId="string-equal"><AttributeValue>AccessDOM

<AttributeDesignator>action-id
<Rule Effect="Deny">

Firefox
Security Policy

Case Studies 71January 20, 2006

XPConnect:
Architectural Connector

Conclusion 72January 20, 2006

Summary
Problem: Architectural Access Control
– How can we describe and check access control issues

at the software architecture level?
Approach:
– A unified access control model: classic, role, trust
– Subject, Principal, Resource, Privilege, Safeguard, and

Policy
– Contexts
– Algorithm to check access control
– Content-based access
– Architectural execution
– Connector-centric: propagation, connection, messaging
– Tool support

Conclusion 73January 20, 2006

Contributions
A novel approach to the design and
analysis of the access control property for
software architectures
A usable formalism for modeling and
reasoning about architectural access
control
An algorithm for checking whether the
architectural model maintains proper
access control at design-time
A suite of usable tools to design and
analyze secure software

Conclusion 74January 20, 2006

Future Work
Different types of connectors
Different mechanisms to construct
connectors
Security as an aspect
Reflective architectural model
Dynamic architecture
Policy conflict resolution

	A Connector-Centric Approach to Architectural Access Control
	Outline
	Security Incidents Reported to CERT
	Re-architecting boosts security!
	Problem
	Main Goal
	Security Overview
	Classic Discretionary Access Control
	Component and Architecture Security
	Connectors
	Hypotheses
	Approach
	Validation
	Contributions
	Architectural Access Control
	Running Example: Coalition
	Concepts: Subject
	Concepts: Principal
	Concepts: Resource
	Concepts: Privilege
	Concepts: Safeguard
	Concepts: Policy
	Overview of xADL
	Overview of XACML
	Secure xADL
	Syntax of Secure xADL
	Rationales for Language Design
	The Larger Contexts
	Neighborhood Context
	Four Types of Contexts
	Coalition with Two Connectors
	Type �Policy
	Algorithm to Check Architectural Access
	Algorithm 1
	Applying Algorithm: Firefox
	Applying Algorithm: Firefox
	Applying Algorithm: Firefox
	Applying Algorithm: Firefox
	Applying Algorithm: Firefox
	Applying Algorithm: Firefox
	Algorithm 2
	Check with Subarchitecture
	Validity of the Algorithm
	Advanced Modeling Concepts
	Role-based Access Control
	Roles in Secure xADL
	Trust Management
	Role-based Trust Management
	An Integrated Access Control Model
	Content-based Access
	Architectural Execution
	Coalition with One Connector
	Content-based�Routing
	Central Role of Connectors
	Tool Support
	Policy Editor
	Static Analysis
	Instantiation and Connection Exceptions
	Case Studies
	Case Study: Impromptu
	Impromptu Components and Connectors
	First Secure Connector
	Second Composite Connector
	Case Study: Firefox
	Firefox Platform
	Trust Boundaries
	Principals
	Container and Node
	Script Security Manager
	Firefox �Security Policy
	XPConnect: Architectural Connector
	Summary
	Contributions
	Future Work

