
Utilizing Commercial 
Object Libraries 
within Loosely-
Coupled, Event-
Based Systems

Jie Ren, Richard Taylor
Institute for Software Research
University of California, Irvine



Outline
Motivation
Background
– Event-based systems
– Commercial object library: COM

Accidental and essential Issues
An integration framework
Validating the framework
Conclusion



Motivation
Software Architecture, Components, and 
Connectors
Many benefits of event-based connectors
But the majority of software is still based on 
procedure calls
Need to bridge
– Integrate
– Evolve
– Explore



Event-based Systems
Components send events to each other
Connectors provide messaging 
infrastructure
Benefits
– Heterogeneous components
– Loosely-coupling
– Easy evolution

Sample systems: SIENA, KnowNow, C2



A Commercial Object 
Library: COM

The dominant communication 
mechanism: DCE RPC, CORBA, 
COM(+), RMI, Web Service
COM’s basic concepts
– Interface
– Class
– Object
– Apartment



Issues in Integration
Accidental and essential difficulties
Accidental issues
– Platforms: process, machine, OS, protocol
– Programming Languages: JIntegra

Essential issues: architectural difference
– Lack of explicit reference

References of different forms: naming, binding

– Asynchrony
Architectural and implementation asynchrony



Limitations of Built-in 
Integration

COM’s newer functionalities 
– Stubs for asynchronous calls
– Event Service, MSMQ

No dynamic events
No event routing



A bridging framework
COM-compatible interfaces describing 
concepts in event-based systems
IEvent
IComponent
IConnector
Classes implementing these interfaces



Key interface: 
IConnector

Interface IConnector {
HRESULT HandleEvent(IEvent *);
HRESULT Attach(IComponnet *);
HRESULT Detach(IComponent *);
HRESULT Attach(IConnector *);
HRESUTL Detach(IConnector *);
HRESULT Publish(IEvent *evt, IComponent *pub);
HRESULT Subscribe(IEvent *pt, IComponent *sub);

}

Route events
Configure components and connectors
Publish and subscribe events



References and 
Asynchrony

No explicit references between 
components
– Only connectors know the neighboring 

components and connectors
Sending event is non-blocking
– SendAndWait is provided for 

convenience



Evaluation: Visio for 
ArchStudio

Using the 
framework to 
integrate 
Microsoft Visio as 
the graphical 
frond-end of 
ArchStudio



Conclusion
Integrating event-based systems and 
object libraries is important
The challenge lies in the essential 
architectural differences: explicit 
reference and synchronous operation
An initial bridging framework
Future work: model and security


	Utilizing Commercial Object Libraries within Loosely-Coupled, Event-Based Systems
	Outline
	Motivation
	Event-based Systems
	A Commercial Object Library: COM
	Issues in Integration
	Limitations of Built-in Integration
	A bridging framework
	Key interface: IConnector
	References and Asynchrony
	Evaluation: Visio for ArchStudio
	Conclusion

