A Secure Software
Architecture
Description Language

Jie Ren, Richard N. Taylor
Department of Informatics
University of California, Irvine

Software Security Assurance Tools, Techniques, and Metrics
November 7, 2005

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Outline _

» Background and insight
— Architecture and Security
— Software connectors

* Secure xADL
— XADL
— Access control models
— XACML-based policy

» Case study: secure coalition
» Conclusion and future work

A Secure Software Architecture Description Language 2

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Main Goal _

» Integrate security and software
architecture

— Integrate
— Architecture level
— Security: integrity through access control

— Software engineering perspective: how to
express, check, and enforce

A Secure Software Architecture Description Language 3

I S mﬁggtg (f:g_ll;(g&f'tlx\mre Research
Re-architecting boosts
security! —

Table 1. Secure by design.

POTENTIAL PROBLEM PROTECTION MECHANISM DESIGN PRINCIPLES
The underlying d11 (ntdll.dl1l) Code was made more conservative during Check precandition
was not vulnerable because... the Security Push.
Even if it were vulnerable... Internet Information Services (lIS) 6.0 is Secure by default
not running by default on Windows Server 2003.
Even if it were running... 115 6.0 does not have WebDAV enabled by default. | Secure by default
Even if Web-based Distributed Authoring The maximum URL length in IS 6.0 is 16 Kbytes Tighten precondition, secure by
and Versioning (WebDAV) had been enabled... | by default (> 64 Kbytes needed for the exploit). default
Even if the buffer were large enough... The process halts rather than executes malicious Tighten postcondition, check
code due to buffer-overrun detection code precondition
inserted by the compiler.
Even if there were an exploitable It would have occurred in w3wp.exe, which is Least privilege
buffer overrun... running as a network service (rather than
as admininstrator). (Data courtesy of David Aucsmith.)

Wing, IEEE Security & Privacy, 2003

A Secure Software Architecture Description Language 4

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE
Traditional SA —

» Component-based Software
Engineering
»* Software Architecture

— Structure

— Behavior

* Process algebra (Wright), labeled transition
system (Darwin)

A Secure Software Architecture Description Language 5

IS R Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Connectors _

» Should they be first class citizens?
— Capture and reuse

» EXisting work
— Taxonomy: Mehta 2000
— Assembly Language: Mehta 2004
— Constructions: Lopes 2003
— Transformation: Spitznagel 2001
» No rich security
— Dependability: Spitznagel 2004

A Secure Software Architecture Description Language 6

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE
Our Approach —~

* Describe and enforce Architectural
Access Control

— Combine software architecture and
security research

— Based on the extensible XxADL language

— Adopt an integrated access control
model: classic, role-based, trust
management

— Utilize XACML

A Secure Software Architecture Description Language 7

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Overview of xXADL

* XML-based extensible architecture
description language

» Component and connector

* Types

» Signhatures and interfaces

»* Sub-architecture

» Design-time and run-time

» Tool support: ArchStudio

» EXxtensible: configuration, execution

A Secure Software Architecture Description Language 8

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Unified Access Control -

* Classic Access Control
— Subject, object, operation

* Role-based Access Control
— Use role as an indirection

» Role-based Trust Management
— Trust management: attributes
— Inspired by Professor Ninghui Li's work

— Trust relationship between roles of different
domains

A Secure Software Architecture Description Language 9

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Secure xXADL _

» Concepts for Architectural Access
Control

— subject, principal, resource, privilege,
safeguard, and policy

» Integrate with xADL

» The first effort to model these security
concepts directly in an architectural
description language

A Secure Software Architecture Description Language 10

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE
Subject —

» A subject Is the user on whose behalf
software executes.

» Missing from traditional software
architecture:

— All of its components and connectors execute
under the same subject,

— The subject can be determined at design time,

— It will not change during runtime, either
advertently or intentionally

— Even if there is a change, it has no impact on the -
software architecture.

A Secure Software Architecture Description Language 11

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Principal —

» A subject can take multiple principals,
which are possessed credentials.

» Classic access control: subjects
* RBAC: roles
» Trust management: keys, certificates,

A Secure Software Architecture Description Language 12

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Resource _

» A resource Is an entity whose access
should be protected.

* Passive: files, sockets, etc.
» Active: components, connectors

A Secure Software Architecture Description Language 13

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Privilege —

» Permissions describes a possible operation
on an object.

* Privilege describes what permissions a
component possess depending on the
executing subjects.

» Privilege escalation vulnerabillities

» Two types of privileges:
— Traditional: read file, open sockets, etc.

— Architectural: instantiation, connection, message
routing, introspection

A Secure Software Architecture Description Language 14

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Safeguard —~

» Safeguards are permissions that are
required to access the interfaces of the
protected components and connectors.

* Architectural access control check

A Secure Software Architecture Description Language 15

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE
Policy —

»* A policy specifies what privileges a subject should
have to access resources protected by safeguards.

* Numerous existing studies in the security
community.

»* We focus on software engineering applicability for
architectural modeling.
» XACML
— XML-based
— Extensible: RBAC profile
— Tool support

A Secure Software Architecture Description Language 16

IS

Contexts for Architectural Access

* Access control decisions might be based on entities
other than the decision maker and the protected
resource. These relationships are the context.

* Four types of context

*» XACML’s combining algorithms supply a framework

to

Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Control -

The nearby components and connectors of the component
and the connector AS

The explicitly modeled sub-architecture that contains the
component and the connector

The type of the component and the connector,
The global architecture.

combine these contexts

A Secure Software Architecture Description Language 17

ISR RIS Qiaaltare Research
Syntax of Secure xADL

<complexType name="SecurityPropertyType''> -
<sequence>
<element name="'subject* type="Subject'/>
<element name="principal“ type="Principals'/>
<element name="privilege“type="Privileges'/>
<element ref="xacml:PolicySet"/>
</sequence>
<complexType>
<complexType name="SecureConnectorType'>
<complexContent>
<extension base='"'ConnectorType''>
<sequence>
<element mame="'security*
type=""'SecurityPropertyType'/>
<sequence>
<extension>
<complexContent>
</complexType>

<!-- similar constructs for component, structure, and
instance -->

A Secure Software Architecture Description Language 18

IS

Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Ww.isr.uci.edu/

Case Study: Secure Coalition

A Coalition Forces - [file:/C:/USFrance-fredaoml] - Archipelago

o | m]
Architecture Edit View Test
3 A 5/ \E/ N
3 = >
j French Radar Filter
al oo ey
IIStolUS Filter| IUS to French French to LIS French to
Compaonent Filter Fitter French Filter
Component Component Cormponent

Connector

IS Distributed Fred

French Distributed
Fred Connector

US Local Fred
Connector

French Local Fred
Connector

US Filter and French Fitter and
Command & Control Command & Control
Connector Connector
q [in] Dl
Zoom: |Bl]% | - ‘

A Secure Software Architecture Description Language

19

IS Lnstitute &)r Softlware Research
Secure Connector

A Coalition Forces - [file:/C:/USFrance-securexml] - Archipelago -0 =]
Architecture Edit View Test

ﬁAr: _,f

=l

[»

Radar Filter Radar Filter
Connector Connector

LI

FrenchtoF rench

Us to France Connector France to US Connector Az
Component

UStallS Filter
Component

Filter and Command &Control
Connector

Filter and Command &Control
Connector

: E}\ “ff—ﬂ
n L] [¥]
| 80% |

A Secure Software Architecture Description Language 20

Lo]

Zoom:

IS Lnstitute é‘or Softlware Research
Architectural Policy: Routing

<connector i1d=""UStoFranceConnector"> '
<security type="SecurityPropertyType"> 'y ‘atgr
<subject>US</subject> P
<Policy RuleCombiningAlgld="permit-overrides'>
<Rule Effect="Permit">
<Target>
<Subject><AttributeValue>USToFranceConnector
<AttributeDesignator Attributeld="subject-id"/>
<Resource><AttributeValue>RouteMessage
<AttributeDesignator Attributeld="resource-i1d"/>
<Action><AttributeValue>RouteMessage -
<AttributeDesignator Attributeld="action-i1d"/>
<Condition Functionld="string-equal''>
<AttributeValue>Aircraft Carrier
<Apply>
<AttributeSelector RequestContextPath =
"'//context:ResourceContent/security:routeMessage/
messages:namedProperty|[messages:name="type"]/
messages:value/text()'/>
<Rule Ruleld="DenyEverythingElse'" Effect=""Deny'/>

A Secure Software Architecture Description Language 21

IS Institute for Software Research
UniversiTy oF CALIFORNIA, IRVINE

Conclusion _

* Background and insight
— Combine security and software architecture
— Architectural Access Control
» Approach
— Extend xADL
— A unified access control model
— Subject, principal, resource, privilege, safeguard, and policy
— XACML as the base policy syntax
» Case study: secure coalition

» Future work
— Algorithm for architectural access control algorithm
— Tool support

A Secure Software Architecture Description Language 22

	A Secure Software Architecture Description Language
	Outline
	Main Goal
	Re-architecting boosts security!
	Traditional SA
	Connectors
	Our Approach
	Overview of xADL
	Unified Access Control
	Secure xADL
	Subject
	Principal
	Resource
	Privilege
	Safeguard
	Policy
	Contexts for Architectural Access Control
	Syntax of Secure xADL
	Case Study: Secure Coalition
	Secure Connector
	Architectural Policy: Routing
	Conclusion

