
A Secure Software 
Architecture 

Description Language 

Jie Ren, Richard N. Taylor
Department of Informatics

University of California, Irvine

Software Security Assurance Tools, Techniques, and Metrics
November 7, 2005



A Secure Software Architecture Description Language 2

http://www.isr.uci.edu/

Outline
Background and insight
– Architecture and Security
– Software connectors

Secure xADL
– xADL
– Access control models
– XACML-based policy

Case study: secure coalition
Conclusion and future work



A Secure Software Architecture Description Language 3

http://www.isr.uci.edu/

Main Goal
Integrate security and software 
architecture 
– Integrate
– Architecture level
– Security: integrity through access control
– Software engineering perspective: how to 

express, check, and enforce



A Secure Software Architecture Description Language 4

http://www.isr.uci.edu/

Re-architecting boosts 
security!

Wing, IEEE Security & Privacy, 2003



A Secure Software Architecture Description Language 5

http://www.isr.uci.edu/

Traditional SA
Component-based Software 
Engineering
Software Architecture
– Structure
– Behavior

Process algebra (Wright), labeled transition 
system (Darwin)



A Secure Software Architecture Description Language 6

http://www.isr.uci.edu/

Connectors
Should they be first class citizens?
– Capture and reuse

Existing work
– Taxonomy: Mehta 2000
– Assembly Language: Mehta 2004
– Constructions: Lopes 2003
– Transformation: Spitznagel 2001

No rich security
– Dependability: Spitznagel 2004



A Secure Software Architecture Description Language 7

http://www.isr.uci.edu/

Our Approach
Describe and enforce Architectural 
Access Control
– Combine software architecture and 

security research 
– Based on the extensible xADL language
– Adopt an integrated access control 

model: classic, role-based, trust 
management

– Utilize XACML



A Secure Software Architecture Description Language 8

http://www.isr.uci.edu/

Overview of xADL
XML-based extensible architecture 
description language
Component and connector
Types
Signatures and interfaces
Sub-architecture
Design-time and run-time
Tool support: ArchStudio
Extensible: configuration, execution



A Secure Software Architecture Description Language 9

http://www.isr.uci.edu/

Unified Access Control
Classic Access Control
– Subject, object, operation

Role-based Access Control
– Use role as an indirection

Role-based Trust Management
– Trust management: attributes
– Inspired by Professor Ninghui Li’s work 
– Trust relationship between roles of different 

domains



A Secure Software Architecture Description Language 10

http://www.isr.uci.edu/

Secure xADL
Concepts for Architectural Access 
Control
– subject, principal, resource, privilege, 

safeguard, and policy
Integrate with xADL
The first effort to model these security 
concepts directly in an architectural 
description language



A Secure Software Architecture Description Language 11

http://www.isr.uci.edu/

Subject
A subject is the user on whose behalf 
software executes.
Missing from traditional software 
architecture:
– All of its components and connectors execute 

under the same subject, 
– The subject can be determined at design time, 
– It will not change during runtime, either 

advertently or intentionally
– Even if there is a change, it has no impact on the 

software architecture.



A Secure Software Architecture Description Language 12

http://www.isr.uci.edu/

Principal
A subject can take multiple principals, 
which are possessed credentials.
Classic access control: subjects
RBAC: roles
Trust management: keys, certificates, 



A Secure Software Architecture Description Language 13

http://www.isr.uci.edu/

Resource
A resource is an entity whose access 
should be protected.
Passive: files, sockets, etc.
Active: components, connectors



A Secure Software Architecture Description Language 14

http://www.isr.uci.edu/

Privilege
Permissions describes a possible operation 
on an object.
Privilege describes what permissions a 
component possess depending on the 
executing subjects.
Privilege escalation vulnerabilities
Two types of privileges:
– Traditional: read file, open sockets, etc.
– Architectural: instantiation, connection, message 

routing, introspection



A Secure Software Architecture Description Language 15

http://www.isr.uci.edu/

Safeguard
Safeguards are permissions that are 
required to access the interfaces of the 
protected components and connectors.
Architectural access control check



A Secure Software Architecture Description Language 16

http://www.isr.uci.edu/

Policy
A policy specifies what privileges a subject should 
have to access resources protected by safeguards.
Numerous existing studies in the security 
community.
We focus on software engineering applicability for 
architectural modeling. 
XACML
– XML-based
– Extensible: RBAC profile
– Tool support



A Secure Software Architecture Description Language 17

http://www.isr.uci.edu/

Contexts for Architectural Access 
Control

Access control decisions might be based on entities 
other than the decision maker and the protected 
resource. These relationships are the context.
Four types of context
– The nearby components and connectors of the component 

and the connector
– The explicitly modeled sub-architecture that contains the 

component and the connector
– The type of the component and the connector, 
– The global architecture.

XACML’s combining algorithms supply a framework 
to combine these contexts



A Secure Software Architecture Description Language 18

http://www.isr.uci.edu/

Syntax of Secure xADL
<complexType name=”SecurityPropertyType">
<sequence>

<element name="subject“ type="Subject"/>
<element name="principal“ type="Principals"/>
<element name="privilege“type="Privileges"/>
<element ref="xacml:PolicySet"/>

</sequence>
<complexType>
<complexType name="SecureConnectorType">
<complexContent>

<extension base="ConnectorType">
<sequence>
<element mame="security“

type="SecurityPropertyType"/>
<sequence>

<extension>
<complexContent>

</complexType>
<!-- similar constructs for component, structure, and 

instance -->



A Secure Software Architecture Description Language 19

http://www.isr.uci.edu/

Case Study: Secure Coalition



A Secure Software Architecture Description Language 20

http://www.isr.uci.edu/

Secure Connector



A Secure Software Architecture Description Language 21

http://www.isr.uci.edu/

Architectural Policy: Routing
<connector id="UStoFranceConnector">
<security type="SecurityPropertyType">
<subject>US</subject>
<Policy RuleCombiningAlgId="permit-overrides">
<Rule Effect="Permit">
<Target>
<Subject><AttributeValue>USToFranceConnector
<AttributeDesignator AttributeId="subject-id"/>

<Resource><AttributeValue>RouteMessage
<AttributeDesignator AttributeId="resource-id"/>

<Action><AttributeValue>RouteMessage
<AttributeDesignator AttributeId="action-id"/>

<Condition FunctionId="string-equal">
<AttributeValue>Aircraft Carrier
<Apply>
<AttributeSelector RequestContextPath = 

"//context:ResourceContent/security:routeMessage/
messages:namedProperty[messages:name='type']/
messages:value/text()"/>

<Rule RuleId="DenyEverythingElse" Effect="Deny"/>



A Secure Software Architecture Description Language 22

http://www.isr.uci.edu/

Conclusion
Background and insight
– Combine security and software architecture
– Architectural Access Control

Approach
– Extend xADL
– A unified access control model
– Subject, principal, resource, privilege, safeguard, and policy
– XACML as the base policy syntax

Case study: secure coalition
Future work
– Algorithm for architectural access control algorithm
– Tool support


	A Secure Software Architecture Description Language
	Outline
	Main Goal
	Re-architecting boosts security!
	Traditional SA
	Connectors
	Our Approach
	Overview of xADL
	Unified Access Control
	Secure xADL
	Subject
	Principal
	Resource
	Privilege
	Safeguard
	Policy
	Contexts for Architectural Access Control
	Syntax of Secure xADL
	Case Study: Secure Coalition
	Secure Connector
	Architectural Policy: Routing
	Conclusion

