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Abstract Methods for identifying biologically sig-
nificant k-mers by exhaustive evaluation (k ≤ 10)
are applied to the pooled Upstream Regions (USR)
of all 4289 E. coli ORFs. Instances of the Shine-
Dalgarno (SD) site are readily identified using these
methods. Using these motif instances as start-
ing points, two motif representations and training
methods, probability and weight matrices, are ap-
plied to characterize the complete SD motif. De-
spite using different representations and objective
functions, both methods yield approximately the
same motif characterization, providing evidence for
the robustness of the result and the effectiveness of
the methods. By these measures, about 1/4 of the
ORFs have no better than random SD sites.
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1 The Ribosome Binding Site

Protein synthesis is a two-step process. First
the DNA is transcribed to mRNA by an RNA
polymerase complex, and second the mRNA is
translated to protein by a ribosome, which is
a complex of proteins and rRNA. In order to
initiate translation, the ribosome must bind to
the mRNA at the start codon (typically AUG)
which demarcates the boundary between the
translated (coding) region and the transcribed
but untranslated region just upstream of it.
This area is known as the ribosome binding
site ([1]). In most bacteria, the ribosome rec-
ognizes this site based on two sequences in the
mRNA: the start codon and a region of about

7 bases approximately 13 bases upstream of it.
While highly variable, this 7-base region is ap-
proximately complementary to, and is recog-
nized by binding to the 3’ tail of the 16s rRNA.
It is known as the Shine-Dalgarno (SD) site
([2]). Translation is possible without an SD
site([3],[4]), but most genes in E. coli have an
identifiable SD sequence in the expected loca-
tion. On the other hand, up to a quarter of E.
coli genes do not appear to have one.

Based on the 3’ tail sequence of the 16s
rRNA, the optimum SD sequence is TAAG-
GAG, and the degree of match is positively cor-
related with the rate of translation ([5]). The
central subsequence AGGA is the most highly
conserved part ([6]), but the entire 7-mer se-
quence shows some conservation.

The SD motif has a number of appealing
features as a motif-learning test set, namely:
1) There are approximately 4,289 ORFs in E.
coli, most of which have an identifiable SD site.
Thus, although the “correct” answer is not pre-
cisely known, it stands a good chance of being
characterized with a high degree of precision;
2) Many bacteria have related SD sites, provid-
ing additional test cases; 3) E. coli is well stud-
ied so there is a great deal of biological data to
complement the statistical data; 4) The most
frequent k-mer is complementary to a recogni-
tion sequence in the ribosome, which provides
a reasonable hypotheses for the optimum SD
sequence and the potential for computing k-
mer binding strength, information that is not
necessarily available when considering DNA-
protein binding interactions; 5) The SD site



is highly localized in the USR, providing an
additional and independent check on the accu-
racy of motif detection; 6) Progressively larger
USRs can be analyzed, making the problem in-
creasingly harder, in order to compare different
techniques across a range of problem difficulty;
7) The data is easily available on the Internet;
8) The answer is non-trivial, being highly de-
generate and appearing to decay continuously
into the statistical background. This last prop-
erty means that it is difficult to make a simple
categorical test as to whether a particular k-
mer is an SD site or not. Instead we favor
representations that a) are prototypically cen-
tered on the consensus sequence TAAGGAG,
b) are highly-localized in the right region of the
USR, and c) have a high signal-to-background
ratio, as measured by the ratio of number of
SD sites (the signal) identified in USRs ver-
sus those identified in scrambled sequences (the
background). It is assumed that for two ma-
trices that match the same number of sites in
the real data, the one that matches the fewer
random sites is preferable.

2 Identifying Motif instances

Our methods rely on a few simple statistics.
We define M0 as the set of k-mers in the data
that exactly match a particular k-mer. M1 is
defined as those k-mers in the data that match
a given k-mer with exactly one mismatch. M2
is defined similarly. In addition we define C0
as the size of M0, C1 as the size of M1, etc.
We have found that the ratio C0/C1 is quite
effective in identifying over-represented, bio-
logically significant k-mers ([7]). When ap-
plied to the 100 base USRs of 4289 ORFs in
E. coli, C0/C1 identifies a number of highly
over-represented strings, many with distinctive
patterns of localization. Many of these ap-
pear to be SD sites since they are variations
on the 7-mer TAAGGAG and are highly local-
ized in a narrow hill centered about 13 bases
upstream. Sorting on C0 alone identifies some
of these strings, but is not particularly selec-
tive for them. However, by narrowing the win-

dow to a 20-base USR, C0 alone is effective in
identifying these k-mers, and based on a visual
inspection of their localization in the USR, at
least 98 of the top 100 7-mers fall in this cat-
egory. Localization could be used as part of
the SD site definition, but here it is used only
as an independent check on motif definitions
based on sequence analysis. Specifically, if a
sequence motif shows high specificity for the
SD region, it is assumed to be detecting real
SD sites.

3 Motif Representation

Motif instances are easily identified in this case,
but the ultimate goal is generally to give a suc-
cinct characterization of the complete motif.
Motifs can be characterized in various ways,
but here we focus on two methods: probability
matrices and weight matrices.

Probability matrices are a popular represen-
tation language for motifs. If all motif in-
stances are aligned, the frequency of each base
can be measured at each position. This 4 x k
table is a statistical summary of the instances
and is the optimal generating model for those
instances, assuming the position probabilities
are independent of each other. With the ad-
dition of a threshold, a probability matrix can
be used as a detector. The space of matrices
is effectively continuous, so exhaustive search
is not feasible. Various forms of iterative im-
provement are generally used to discover local
optima. Alternatively, exhaustive k-mer tech-
niques might be used to find most or all motif
instances, which are then combined in a single
summary table.

A weight matrix, like a probability table,
uses a 4 x k table of real numbers. However,
rather than summarizing the frequency of each
feature, the weight reflects importance for clas-
sification purposes. Thus, rather than opti-
mally generating motif instances, the goal is
to optimally detect them. An (at least x of
k) k-mer prototype can be viewed as a weight
matrix of 0s with one 1 in each column and
a variable threshold. An IUPAC motif allows



any number of 1s and has a threshold of k.
Allowing the threshold to vary produces a pro-
totypic IUPAC representation. An arbitrary
weight matrix allows all values to be variable
and continuous.

A weight matrix can be viewed as a model
of binding energy between a sequence and its
recognition site, which in turn should be mono-
tonically related to the biological effectiveness
of the sequence. Each base makes some posi-
tive, negative or neutral contribution to bind-
ing stability. If the sum of these contributions
is greater than some threshold, the binding
complex can be considered stable enough to
be functional. Binding strength can thus be
thought of as the “real” biological motif defini-
tion, and optimizing a weight matrix for k-mer
classification may approximate that function.
In this context, negative weights are not unrea-
sonable, which would obviously not occur in a
probability matrix. Likewise, the four weights
at a given position in a weight matrix can all
be zero or any constant if the position is ir-
relevant, while probabilities approximate the
first-order background and must sum to 1.0.
However, a weight matrix is not intrinsically
more powerful since any weight matrix can be
converted to an equivalent one that conforms
to the constraints of a probability matrix (all
values positive, columns sum to 1.0). Given
an accurate model of binding energy, a opti-
mum weight matrix might in theory be pre-
dicted based on the complementary ribosome
sequence. However it is not necessarily the
case that binding energy can be accurately esti-
mated as the independent contribution of each
base in the sequence.

If the base frequencies at each position are
reasonably independent, feature frequency and
feature importance for classification are quite
close. However, feature frequency can be var-
ied by changing instance frequency without
changing the underlying importance. In prac-
tice the two are generally sufficiently close that
a probability table can be used as a classifier
or an estimate of binding energy ([8]), but the
representations are not equivalent. Finding the
optimum weight matrix suffers from the same

search issues as probability matrices.

4 Probability Matrices

Probability matrices provide a powerful mo-
tif representation language, able to capture
much of the variability in bases in SD sites.
The central problem in producing a probabil-
ity table is producing an aligned set of mo-
tif instances. Various hill-climbing techniques
have been used to find a set of k-mers in a
data set which can be plausibly explained by
their resulting probability matrix. However,
like hill-climbing in general, they suffer from
the problems of multiple local optima and are
often rather slow. Because of this, some sim-
ply cannot be applied to large data sets. In
addition, any motif evaluation metric incorpo-
rates certain, possibly inaccurate, assumption
about the nature of the answer (eg minimum
entropy, maximum over-representation, expec-
tation maximization), so even the global opti-
mum may not optimally characterize the bio-
logical process.

Because of the large size of the SD data set,
one particularly simple approach for produc-
ing a probability table can be used: given a
known strong motif instance, assume all of its
M1 neighbors are also motif instances. With
this assumption, plus the previous assump-
tion that the position probabilities are inde-
pendent, each position can be varied and the
frequency of each base measured. Applying
this to TAAGGAG provides an estimate of the
probability table over all instances (Table 1).
For a randomly chosen central k-mer, the re-
sulting probability table will be close to the
first-order distribution of the data set. The
first row gives the total number of patterns
over all settings at each position and the num-
bers below that give the frequency of each base
at that position. Thus, using the first column
for example, the number of occurrences of the
base string TAAGGAG is .42∗262 = 110, since
there are 110 exact matches. This probabil-
ity table provides a possible characterization of
the SD motif. Similar base strings yield similar



Table 1: Probabilities matrix based on M1
neighbors of TAAGGAG

262 218 148 149 135 146 242
a .27 .50 .74 .11 .11 .75 .31
t .42 .03 .11 .08 .04 .07 .16
g .13 .16 .06 .74 .81 .14 .45
c .18 .31 .09 .07 .04 .04 .08

M1 tables.
The M1 table based on the presumed pro-

totypic sequence TAAGGAG is easy to com-
pute, but is only an estimate of the proba-
bility table over all SD instances. More com-
plex techniques can provide more accurate esti-
mates. One standard approach is to iteratively
improve a probability table over the complete
data set by using an initial table to identify
possible motif instances, which then produce a
new table, etc. Generalization can be forced by
assuming there is a binding site in each USR
and defining the probability table over the best
match in each USR. This is often a reasonable
assumption, but degrades with the number of
USRs without a motif instance. Various ad hoc
methods have been used to choose the best set
of matches. The SD data set has a reasonably
high fraction of USRs containing a SD site (at
least 3/4) so the issue is not crucial, although
including 1/4 non-SD sites is obviously not de-
sirable.

The motif was slid across each USR and each
position’s match score computed by using the
current probability table as a weight vector and
computing either an additive score, by the ap-
propriate dot product, or a multiplicative score,
corresponding to an estimated probability. Re-
sults were similar so only multiplicative ones
are reported here. Only best matches that were
fully contained in the 20-bp USR were used
since those are more apt to be real SD sites.
Starting at TAAGGAG and using its M1 prob-
ability table as the initial estimate, this process
converged on Table 2 in a few seconds. This ta-
ble is based on 3996 matches and shows good

Table 2: Iterative probability matrix based on
3966 matches

a .36 .43 .54 .08 .00 .72 .29
t .33 .08 .16 .10 .01 .17 .19
g .13 .22 .17 .76 .97 .00 .44
c .18 .28 .13 .06 .02 .10 .08

localization in the USR. Starting from differ-
ent initial k-mers similar to TAAGGAG and
allowing either 0 or 1 mismatch in the initial
probability table gave similar results.

There are at least 2000 ORFs with well-
defined SD sites, so as point of comparison be-
tween representation, a threshold was set to
classify approximately that many as positive
instances. With this setting, the probability
table produced 2102 matches in 2076 ORFs.
In scrambled data (a first-order model) it pro-
duced 812 matches for a signal-to-background
ratio of about 2.6. Beyond 3000 matches, the
number of matches in the real data and the
scrambled data are approximately the same,
indicating that nearly 1/4 of the ORFs do not
have SD sites in the 0 to 20 USR that are dis-
tinguishable from the background.

This result was achieved with a number of
starting patterns, but there was some variabil-
ity. One possible factor in the amount of vari-
ation in results is that the motif is being opti-
mized to fit a significant amount of noise, which
by itself produces a large number of different
but equally good local optima. Using the best
match in all USRs is reasonable, but if a signif-
icant fraction of the USRs do not contain iden-
tifiable SD sites then only those with the best
matches should be used. Consequently, the
algorithm was modified so that only the best
2000 USRs were used in defining the probabil-
ity table on each cycle. A number of slightly
different local maxima, with slightly less vari-
ability were produced using this method (eg
Table 3), with a signal-to-background ratio of
about 2.9. This is probably a slightly better
characterization of the SD motif.



Table 3: Iterative probability matrix based on
best 2000 matches

a .37 .46 .83 .00 .00 .78 .32
t .39 .00 .11 .00 .00 .11 .13
g .12 .22 .00 1.0 1.0 .11 .50
c .12 .32 .05 .00 .00 .00 .05

5 Weight Matrices

In previous work we extended the basic idea
of k-mer over-representation ([9]) to groups of
k-mers such as the M1 and M2 shells of a k-
mer, IUPAC and weight matrix motif represen-
tations ([10],[11]). Over-representation can be
calculated in different ways depending on the
background model and the statistical method
of computing over-representation. For exam-
ple, as a background model, a k-mer’s C0 in
the data set might be compared to average k-
mer frequency in the data set, the frequency
of the k-mer in a different but related data set
(eg the 20-40 base region), or the frequency of
the k-mer is a scrambled version of the data
set. Comparing to a scrambled version is the
same as comparing to a first-order Markov
Model of the data, which can be computed
directly rather than actually scrambling the
data. This suggests further possibilities using
higher-order MMs for the background model.
Likewise, given a choice of background models,
over-representation can be computed in differ-
ent ways such as ratios, z-scores or binomial
probabilities. For convenience, we use z-scores
here. Non-overlapping matches can be tallied
by sliding the motif over the data set, but po-
tentially overlapping matches can be computed
more rapidly from the set of k-mers and their
C0 counts. It is not obvious which is more bio-
logically correct, but for the SD site they give
similar answers, so the later method is used for
speed.

For the SD problem, there is no obvious way
to choose a region that is the same as the 0-20
region but without SD sites, so the simple ex-
pedient of using a first-order background model

was employed. Higher-order models were tried
but did not appear to be beneficial.

The goal is to adjust a weight matrix so as
to identify a set of k-mers with maximum over-
representation, starting from a single motif in-
stance. While the instance itself can be used as
the starting matrix, better results are generally
achieved with a better starting matrix, such as
its M1 probability table. This improved results
on the average, although the best results of
the two initialization methods were about the
same. However it is created, the initial weight
matrix is incrementally improved by adjust-
ing the weights to include/exclude boundary k-
mers from the positive set. Boundaries k-mers
are those closest to the hyperplane defined by
the current weight matrix and a threshold.

Various methods of adjusting the weight ma-
trix to reclassify a boundary point were inves-
tigated and the single best method was to try
all single-base adjustments to include/exclude
the given k-mer. If including/excluding a point
improved the over-representation score of the
positive set, the change was accepted and the
boundary points recomputed. This was re-
peated until no further improvements were
possible. The 100 closest positive and nega-
tive points were considered for adjustment. In-
creasing the number of boundary patterns con-
sidered improves hill-climbing, but takes more
time. At some point, this time is better spend
on multiple restarts. A single hill-climbing
episode takes about 15 seconds.

Almost every hill-climbing sequence termi-
nates at a slightly different local maximum.
This provides another opportunity to improve
the starting matrix. Rather than using the mo-
tif instance itself, or its M1 probability table,
the start matrix can be set to the sum of pre-
vious local maxima. This does not guarantee
finding the global optimum, but it does con-
verge on a very high value that is only infre-
quently found using other initialization tech-
niques. As before, this initialization strategy
increased the average local optima score, but
not the maximum value found.

Table 4 shows the final weight matrix af-
ter being converted to probability matrix con-



Table 4: Weight matrix and resulting proba-
bility table based on 1302 matches

a .25 .32 .45 .15 .16 .51 .25
t .34 .00 .24 .15 .15 .13 .17
g .19 .28 .07 .54 .55 .21 .43
c .22 .40 .24 .15 .15 .15 .14

Threshold = 2.84
a .29 .42 .81 .00 .00 .97 .23
t .47 .00 .11 .00 .00 .00 .07
g .11 .15 .00 1.0 1.0 .02 .66
c .13 .43 .08 .00 .00 .01 .04

straints and the resulting probability table over
its positive instances. Using a multiplicative
similarity rule, the probability table can be
used to classify all 7-mers giving the same re-
sults as the weight matrix. In other cases an
additive rule worked while multiplicative did
not. There was no clear preference between
multiplicative or additive scoring.

A potential problem with optimizing for
over-representation is that the classifier with
optimum over-representation need not have the
desired coverage. The classification might be
adjusted to include additional, highly over-
represented k-mers that are almost certainly
real SD instances, but might still reduce over-
representation of the group as a whole if the ad-
ditional k-mers were less over-represented than
the other positive instances. This was in fact
frequently observed to be the case. The fi-
nal optimized weight matrices (all with very
high z-scores) identified between 700 and 1300
SD instances when at least 3000 are known
to exist. The identified SD instances show
good localization, but greater coverage is de-
sired. What is really wanted is the most over-
represented set with a given coverage.

To address this issue, the algorithm was
modified in an admittedly ad hoc way. In order
to cover about 2000 ORFs, about 2200 k-mer
matches are needed, based on experience with
the previous algorithms. In order to encourage
the algorithm to find the most over-represented

set of about N matches, if the the match count
was below N, the resulting z-score was multi-
plied by match/N. This was a minimal modi-
fication to bias the evaluation metric towards
the desired set size, and worked quite well.

Weight matrix hill-climbing easily finds
weighted combinations of features that are
close to the desired coverage, and many sim-
ilar local optima are produced (eg Table 5).
This motif has a signal-to-background a ratio
of 3.2 which is marginally better than the best
probability tables. Using an additive rule, the
probability table can classify k-mers the same
as the weight matrix. The last row of this ta-
ble gives the relative entropy of each position,
demonstrating that all positions have informa-
tion value except for the first one.

In general, weight matrix results are sur-
prisingly similar to the probability table clas-
sifiers in the previous section. The fact that
a different representation and objective func-
tion yields approximately the same motif is
evidence for both the robustness of the re-
sult and the effectiveness of the optimization
methods, and in this case, a probability ta-
ble over positive instances appears to be as ef-
fective for instance classification as a weight
matrix. It is possible that weight matrix re-
sults could be improved if it was explicitly
trained on known positive and negative k-mer
instances using perceptron training or related
algorithms ([12]), but such an authoritative
classification is not currently available, and
would be problematic given that SD instances
appear to grade continuously into the random
background.

6 Discussion

If only a few dozen examples of a complex bind-
ing site are given, correspondingly little can
be deduced about its statistical properties and
even less about the true biological nature of the
motif. The E. coli SD site provides a large data
set for a non-trivial motif problem that should
permit a relatively precise quantification and
comparison of statistical and biological proper-



Table 5: Weight matrix and resulting proba-
bility table based on 2251 matches

a .21 .31 .39 .18 .13 .43 .18
t .31 .00 .21 .09 .18 .28 .25
g .25 .36 .20 .54 .49 .15 .39
c .23 .33 .20 .18 .20 .15 .18

Threshold = 2.54
a .27 .38 .76 .00 .00 .85 .19
t .38 .00 .10 .00 .00 .11 .15
g .20 .32 .07 .99 .98 .02 .60
c .15 .30 .07 .00 .02 .02 .06
RE 0.0 0.3 0.4 1.3 1.3 0.6 0.3

ties. For example, the presumed independence
of matrix feature probabilities is not true for
simple (at least x of k) categories and might
not provide an adequate model of actual bind-
ing strength. The degree of correlation be-
tween instance frequency, motif strength, ac-
tual binding strength and biological effective-
ness is of special interest. While generally as-
sumed to be the case, none of these properties
are necessarily true, so the degree of confirma-
tion or notable deviations are of equal interest.
It is remarkable that methods focussed on sum-
marizing the SD sites (probability matrices)
and those focussed on discriminating SD sites
(weight matrices) sites should yield similar re-
sults. Perhaps evolutionary pressures lead to
using a k-mer as a SD site in proportion to its
discriminating power.
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