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Abstract Several methods for identifying individual

motif instance by exhaustive evaluation of k-mers (k ≤

10) are applied to the pooled Upstream Regions (USR)

of all 4289 Escherichia coli ORFs. Instances of the

Shine-Dalgarno (SD) site are readily identified using

these methods. Using these motif instances as start-

ing points, various motif representations and training

methods, including several new algorithms, are applied

to characterize the complete SD motif. Motif repre-

sentation languages of increasing power give increas-

ingly better characterizations of the SD motif, permit-

ting more SD sites to be reliably identified. In particu-

lar, matrix representation is better than IUPAC which

is better than k-mer prototype. However, overly pow-

erful representation also results in suboptimal charac-

terization. A variety of matrix techniques using dif-

ferent representations, objective functions and learn-

ing methods yield approximately the same motif, pro-

viding evidence for the robustness of the result and

the effectiveness of the methods. By these measures,

about 1/4 of the ORFs have no better than random SD

sites. More biologically realistic motif representation

languages might further reduce that fraction.

Keywords: ribosome binding site, shine-dalgarno, probability

& weight matrices

1. Introduction: The Ribosome Binding Site

Protein synthesis is a two-step process. First the DNA
is transcribed to mRNA by an RNA polymerase com-
plex, and second the mRNA is translated to protein by
a ribosome, which is a complex of proteins and rRNA.
The rates of both steps are controlled by patterns in
the Upstream Region of each gene. In order to initiate
translation, the ribosome must bind to the mRNA at
the start codon (typically AUG) which demarcates the
boundary between the translated (coding) region and the
transcribed but untranslated region just upstream of it.
This area is known as the ribosome binding site (Lewin,
2000). In most bacteria the ribosome recognizes this site
based on two sequences in the mRNA: the start codon

and a region of about 7 bases approximately 13 bases
upstream of it. While highly variable, this 7-base region
is approximately complementary to, and is recognized
by binding to the 3’ tail of the 16S rRNA. It is known as
the Shine-Dalgarno (SD) site (Shine, 1974). Translation
is possible without an SD site (O’Donnell, 2001; Fargo,
1998) but most genes in E. coli have an identifiable SD
sequence in the expected location. On the other hand,
up to a quarter of E. coli genes do not appear to have
one.

Based on the 3’ tail of the E. coli 16S rRNA, the
complementary, and presumed optimum SD sequence
is TAAGGAG. The central subsequence AGGA is the
most highly conserved part (Tompa, 1999; Schultz, 2001;
Lukashin, 1998; Besemer, 2001) but the entire 7-mer se-
quence shows some conservation. The degree of match
to that sequence is positively correlated with the rate of
translation (Karlin, 2000; Sakai, 2001) and is also cor-
related to frequency of occurrence, so that over all, the
most effective motif instances are also the most frequent.

The SD motif has a number of appealing features as
a motif-learning problem: 1) There are approximately
4,289 ORFs in E. coli, most of which have an identi-
fiable SD site. Thus, although the “correct” answer is
not precisely known, it stands a good chance of being
characterized with a high degree of precision; 2) Many
bacteria have SD sites, providing a range of related test
cases; 3) E. coli is well studied so there is a great deal
of biological data to complement the statistical data; 4)
The most frequent k-mer is complementary to a recog-
nition sequence in the ribosome, which provides a rea-
sonable hypotheses for the optimum SD sequence and
the potential for calculating k-mer binding strength; 5)
The SD site is highly localized in the USR, providing
an additional and independent check on the accuracy
of motif detection; 6) Progressively larger USRs can be
analyzed, making the problem realistically harder, in or-
der to compare different techniques across a range of
problem difficulty; 7) The data is easily available on the
Internet; 8) The answer is non-trivial, being highly de-
generate and appearing to decay continuously into the



statistical background.
The DNA binding sites of transcription-regulating

proteins are generally treated as categorical, but this
may be in part because the strongest examples have
been identified first. Further analysis may eventually
show that the continuous-through-background variabil-
ity of the SD motif is a common phenomena in regulatory
binding sites.

This property means that it is difficult to make a sim-
ple categorical test as to whether a particular k-mer is
an SD sequence or not. Instead we favor representations
that a) are prototypically centered on the consensus se-
quence TAAGGAG, b) are localized in the right region
of the USR, and c) have a high signal/background ratio,
as measured by the ratio of number of SD sites identified
in USRs versus those identified in scrambled sequences.
It is assumed that for two motifs that match the same
number of sites in the real data, the one that matches
the fewer random sites is preferable.

2. Motif evaluation

Despite its obvious appeal and popularity, it has been
observed that there is no actual evidence that matrix
representation is better than more restricted motif rep-
resentation languages (Pevzner, 2002). Here we address
that issue in the context of the SD site and find that
matrix representation has clear advantages.

A good motif characterization should have both high
coverage (high true positive matches) and high speci-
ficity (low false positive matches). Converage and speci-
ficity are often inversly related. A more accurate mea-
sure might also consider the degree of match, but cat-
egorical classification is convenient and more standard.
The SD site appears to grade continuously into the ran-
dom background, so any threshold for binary classifica-
tion is somewhat arbitrary, but we have chosen a specific
comparison point of matching 2000 USRs since there are
at least that many relatively well-defined SD sites. Thus,
for comparison purposes, coverage is fixed and motifs are
evaluated by specificity. Comparison at higher and lower
coverage (eg 3000 or 1000 matches) results in lower and
higher specificity, but gives qualitatively similar results
and is not presented here. In addition, discussing matrix
results at 2000 does not preclude using the same motifs
to detect a larger or smaller number of instances simply
by changing the threshold.

All motif-discovery approaches rely on the fact that
the frequency of motif instances in a set of co-regulated
USRs is greater than their expected background occur-
rence rate. This can be explicitly computed as k-mer
over-representation or indirectly included as a require-
ment that a motif match a large fraction of the USRs.
This approach has proved effective in a wide range of
applications, including the SD site. Here we use over-
representation to identify individual motif instance, op-

timize motifs within a representation language, and com-
pare motifs across different representation languages.

Over-representation can be calculated in different
ways depending on the choice of background models and
the statistical method of computing over-representation
(Hampson, 2002). For example, as a background model,
a k-mer’s frequency in the data set might be compared
to average k-mer frequency in the data set, its frequency
in a different but related data set (eg the 20-40 base
USR region), or its frequency in a scrambled version
of the data. K-mer counts in scrambled data can be
predicted by a first-order Markov Model (MM1) of the
data, so actual randomization and counting is not re-
quired. Comparing to a first-order model also suggests
further possibilities using higher-order statistics for the
background model. Likewise, given a choice of back-
ground models, over-representation can be computed in
different ways such as ratios, z-scores or binomial prob-
abilities. All of these methods give reasonable and of-
ten similar results (Hampson, 2002), so for simplicity we
use the ratio of real matches (about 2000 in this case,
which can be verified by localization) to matches in a
randomized (first-order) version of the data. For a fixed
coverage, ratios, z-scores and probabilities are all mono-
tonically related to the number of background matches,
so the choice of over-representation function is not im-
portant. When applied to probability matrices, the sig-
nal/background ratio is correlated with relative entropy,
which is a standard matrix comparison metric when a
separate background set is not available (Stormo, 2000).
Both measure the degree of departure from a first-order
model, but the signal/background ratio is also applica-
ble to non-matrix representations and can easily utilize
alternative background models.

An even simpler specificity measure is simply to count
the number of distinct k-mers classified as positive. For
a given coverage, the motif with the smallest positive k-
mer set is probably the most specific. This is less sensi-
tive than measuring the number of matches in an explicit
background model, but gives useful information. These
counts are also reported when comparing motifs.

An additional issue should be considered in evaluating
motif representations: while it may be possible to define
a good motif over known instances, it may not perform as
well over unknown instances. It is possible for a classifier
to over-fit the data. This issue is seldom addressed in
motif evaluation. Our treatment is deferred until the
final section on k-mer lists, but the general approach
is to divide the data in half, construct a classifier for
one half (the training set) and see how well it performs
on the other half (the test set). The general result is
that all motif representation languages except k-mer lists
perform equally well on the training and test tests, while
k-mer lists demonstrate significant over-fitting.
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3. Identifying Motif instances

Our methods rely on a few simple statistics. We define
M0 as the set of k-mers in the data that exactly match
a particular k-mer. M1 is defined as those k-mers in the
data that match a given k-mer with exactly one mis-
match. M2 is defined similarly. In addition we define C0
as the size of M0, C1 as the size of M1, etc. Only non-
overlapping occurrences of a k-mer are counted. C1/3k
can be viewed as an nearest-neighbor (M1) estimate of
C0.

Given a set of USRs, it is generally assumed that over-
represented k-mers of sufficient statistical significance are
also of biological significance. Over-representation can
be measured in a number of ways but we have focused
on two methods that yield similar, subjectively desirable
results. One method is to sort k-mers on the ratio C0/C1
where C0 is the number of times the k-mer occurs exactly
and C1 is the number of times it occurs with a single
mismatch. The other method is to sort k-mers on the
probability of observing C0 or more instances based on a
Markov model of the data set, which we denote by P(C0
≥ MMn). A scrambled version of the data is frequently
used as a comparison set and is equivalent to using a
first-order model (MM1). However, we have found that
models of order around k/2 give results that are most
similar to C0/C1. Both methods are empirically effective
in identifying over-represented, biologically significant k-
mers (Hampson, 2002), but because of their different
biases it is often productive to try both.

When applied to the 100-base USRs of 4289 ORFs in
E. coli, both C0/C1 and P(C0 ≥ MM4) identify a num-
ber of highly over-represented k-mers, many with dis-
tinctive patterns of localization. Many of these appear
to be SD instances since they are variations on the pre-
dicted optimum 7-mer TAAGGAG and are highly local-
ized in a narrow hill centered about 13 bases upstream.
Because of this tight localization, these k-mers can also
be identified by sorting on location variance, which has
been quite effective in identifying biologically significant
k-mers (Hampson, 2002). Sorting on C0 alone identifies
some of these strings, but is not particularly selective for
them. However, by narrowing the window to a 20-base
USR, C0 alone is effective in identifying these k-mers
(Table 1), and based on a visual inspection of their lo-
calization in the USR (eg Figure 1), at least 98 of the
top 100 7-mers fall in this category. Localization could
be used as part of the SD site definition, but here it is
used only as an independent check on motif definitions
based on sequence analysis. Specifically, if a sequence-
based motif shows high specificity for the SD region, it
is assumed to be detecting real SD sites.

Table 1: Top 20 7-mers sorted on C0 in the 20 base USR.
C0/C1 normalized by multiplying by 3k.

C0 C1 C0/C1 E0 C0/E0
taaggag 110 530 4.36 8 13.75
aaggaga 98 575 3.58 11 8.91
ttaagga 90 456 4.15 8 11.25
aaaagga 82 531 3.23 14 5.86
caggaga 82 457 3.77 6 13.67
aggagaa 81 590 2.88 11 7.36
ataagga 79 536 3.10 10 7.90
aaggagt 76 497 3.21 8 9.50
taaggaa 76 446 3.57 10 7.60
acaggag 74 447 3.48 6 12.33
aaaggag 71 547 2.73 11 6.46
tcaggag 67 470 3.00 4 16.75
aaggaat 66 408 3.40 10 6.60
aacagga 65 409 3.34 8 8.13
aaggaaa 60 529 2.38 14 4.29
aggaata 59 363 3.41 10 5.90
aggataa 59 383 3.24 10 5.90
aggagag 58 389 3.13 8 7.25
acaagga 56 371 3.17 8 7.00
caggagt 56 379 3.10 4 14.00
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The average 7-mer would be expected to occur about
(4289 ∗ (1 + 20 − 7))/47 = 3.7 times in this data set, so
these k-mers are all highly over-represented. The base
frequency in the 20-base USR is not uniform, (ATGC
= 33 24 25 18), so it is also useful to compare a k-mer’s
frequency to its expected frequency in a first-order model
of the data. The expected first-order counts and the ratio
of observed to expected counts are also shown in Table 1.
SD k-mers are highly over-represented by this measure
as well, but in a different order. The average C1 value
for random k-mers is about 3k times the average C0,
or 77, providing additional, independent evidence that
these k-mers are exceptional.

It should be noted that even though C1 for these k-
mers is highly over-represented, C0 is even more so, pro-
ducing a high C0/C1 ratio. Likewise for C1 and C2. For
the prototypic string TAAGGAG, the average C0 in its
M0, M1 and M2 sets is 110, 25, and 9, all in excess of
the average value of 3.7. As seen in this and other statis-
tical measures, k-mer frequency is reasonably correlated
with similarity to the prototypic SD sequence. This is
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Table 2: Context of AGGA: base probability and relative
entropy

a 32 47 100 0 0 100 29
t 37 2 0 0 0 0 16
g 16 21 0 100 100 0 45
c 15 30 0 0 0 0 10
RE 0.1 0.2 1.1 1.4 1.4 1.1 0.1

why the C0/C1 ratio selectively identifies prototypic k-
mers even for the highly degenerate SD motif. However,
this need not be the case since, for example, the best
SD sites need not occur at all. Also note that while the
best instances (TAAGGAG and its M1 set) are the most
frequent, they are present in less than 15% of the USRs.
Thus while the presumed best SD sequences are indi-
vidually the most frequent, the majority of SD sites are
distinctly sub-optimum.
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Figure 1: Distribution of 1374 matches for AGGA

The subsequence AGGA is highly conserved and lo-
calized (Figure 2), but is not in itself adequate to define
the SD site since it occurs only 1374 times in 1340 USRs.
AGGA does serve however as a convenient anchor point
to measure the size of the SD site. Specifically, its con-
text can be investigated for conserved bases. Base fre-
quency and relative entropy is computed with respect
to the first-order distribution for three positions before
and after AGGA. The results are reasonably straight-
forward: only two bases before and one base after the
AGGA sequence are noticeably different from the first-
order background (Table 2). They demonstrate a consid-
erable degree of variability, but the most frequent base
at each position matches the prototypic sequence TAAG-
GAG, and since they are based on over 1000 examples,
should be reasonably accurate. Assuming the choice of
AGGA for the central positions does not unduly bias
the base frequencies at the other positions, the frequen-
cies at the three context positions should reflect their
over-all probabilities in the SD motif. There is only a
weak preference for T at the first position and by most
measures that position is almost irrelevant. That po-
sition pairs with the 3’ terminal of the ribosome RNA
sequence, so no significant positions before the T would
be expected. Note that, as expected, the most frequent

base at the second position is A (47%), but C (30%) is
actually more informative when compared to their back-
ground frequencies (33% and 18%, respectively). This is
reflected in Table 1, where TCAGGAG has a higher sig-
nal/background ratio (16.75) than TAAGGAG (13.75).
An additional G at the end is often stated to be part of
the SD site, but does not appear to be favored in this
analysis. This is not proof that the SD site for E. coli
is functionally 7 bases long, but it is convenient and not
unreasonable to treat it as such. Analysis at lengths 6
and 8 gave compatible results.

4. Motif Representation

Motif instances are easily identified in this case, but
the ultimate goal is generally to give a succinct charac-
terization of the complete motif. Motifs can be repre-
sented in various ways, including the following:

1) k-mer prototype 2) IUPAC representation 3) prob-
ability matrices 4) weight matrices 5) k-mer list

A k-mer prototype gives a central, prototypic k-mer
and the number of mismatches (0-k) that are permitted.
If all features are independent and equally important,
this can concisely summarize a large set of minor vari-
ants on a central theme. The resulting (at least x of k
features) prototype is a simple model of the true struc-
ture of the motif. There are only k ∗ 4k possible motifs
in this language, so like the set of all 4k k-mers, it can
be evaluated exhaustively for k up to 10 on current work
stations. In practice it is only useful to consider M =
0,1,2 settings for k ≤ 10.

An IUPAC representation permits arbitrary disjunc-
tions at each position, which allows for the fact that some
positions may vary in specific ways, while other positions
cannot vary at all. All variant features are of equal im-
portance. There are 15k IUPAC motifs, so exhaustive
evaluation is only possible for small k. If desired, IU-
PAC representation can be combined with the previous
prototypic representation by adding a variable mismatch
threshold.

Probability matrices are a popular representation lan-
guage for motifs. If all motif instances are aligned, the
frequency of each base can be measured at each position.
This 4 x k table is a statistical summary of the instances
and is the optimal generating model for those instances,
assuming the position probabilities are independent of
each other. With the addition of a threshold, a proba-
bility matrix can also be used as a detector. The space of
matrices is effectively continuous, so exhaustive search is
not feasible. Various forms of iterative improvement are
generally used to discover local optima. Alternatively,
exhaustive k-mer techniques might be used to find most
or all motif instances, which are then combined in a sin-
gle summary table.

A weight matrix, like a probability table, uses a 4 x k
table of real numbers. However, rather than summariz-
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ing the frequency of each feature, the weight reflects im-
portance for classification purposes. Thus, rather than
optimally generating motif instances, the goal is to opti-
mally detect them. An (x of k) prototype can be viewed
as a weight matrix of 0s with one 1 in each column and a
variable threshold. An IUPAC motif allows any number
of 1s and has a threshold of k. Allowing the threshold to
vary produces a prototypic IUPAC representation. An
arbitrary weight matrix allows all values to be variable
and continuous.

A weight matrix can be viewed as a model of binding
energy between a sequence and its recognition site, which
in turn should be related to the biological effectiveness of
the sequence. Each base makes some positive, negative
or neutral contribution to binding stability. If the sum
of these contributions is greater than some threshold,
the binding complex can be considered stable enough
to be functional. Binding strength can thus be thought
of as the “real” biological motif definition, and optimiz-
ing a weight matrix for k-mer classification may approx-
imate that function. In this context, negative weights
are not unreasonable, which would obviously not occur
in a probability matrix. Likewise, the four weights at a
given position in a weight matrix can all be zero or any
constant if the position is irrelevant, while probabilities
approximate the first-order background and must sum to
1.0. However, a weight matrix is not intrinsically more
powerful since any weight matrix can be converted to
an equivalent one that conforms to the constraints of a
probability matrix (all values positive, columns sum to
1.0). Given an accurate model of binding energy, a opti-
mum weight matrix might in theory be predicted based
on the complementary ribosome sequence. However it
is not necessarily the case that binding energy can be
accurately estimated as the independent contribution of
each base in the sequence, and the best current methods
for calculating RNA-RNA binding energy utilize neigh-
boring base pairs. In addition, structural issues can in-
fluence the relative importance of the various positions.

Feature frequency and feature importance for classi-
fication are generally quite close, although even under
optimum conditions (independent, uniform feature prob-
ability) a probability table over the positive instances of
a weight matrix does not necessarily produce the same
classification as the weight matrix (Hampson, 1986). In
addition, feature frequency can be varied by changing
instance frequency without changing the underlying im-
portance. A probability table over positive instances can
be used as a classifier or an estimate of binding energy
(Stormo, 1998; Benos, 2000) but the representations are
not equivalent. Finding the optimum weight matrix suf-
fers from the same search issues as probability matrices.

When used for binary classification, all motif repre-
sentations define a set of positive k-mers. Restrictions

Table 3: Similarity to TAAGGAG

0 1 2 3 4 5 6 7
1 21 189 945 2835 5103 5103 2187
110 530 1697 4992 12465 19060 15778 5396
8 146 1136 4891 12558 19222 16241 5842
110 25.23 8.98 5.28 4.40 3.74 3.09 2.47
8 6.95 6.01 5.18 4.43 3.77 3.18 2.67
110 525 1414 1657 554 28 1 0

Row 1: Number of mismatches
Row 2: Number of distinct 7-mers
Row 3: Number of matches
Row 4: Number of matches from first-order model
Row 5: Average number of matches per k-mer
Row 6: Average number of matches, first-order model
Row 7: Number of USRs whose best match matches by x

on the representation language restrict the space of pos-
sible sets. A k-mer list also defines a positive k-mer set,
but makes no assumptions about the underlying struc-
ture of the motif and places no restrictions on the motif
representation. However, motif strength or biological ef-
fectiveness are generally not quantified, so even a com-
prehensive list is not in itself a complete characterization
of the motif. In addition, a list can be quite unwieldy for
long, highly degenerate motifs. Too powerful a represen-
tation language also increases the dangers of over-fitting
the available data.

5. K-mer prototype (x of k) representation

TAAGGAG is expected to be the prototypic E. coli SD
site based on the complementary ribosome sequence, and
statistically that appears to be the case. However, there
are numerous variations on the theme and the SD site is
sometimes simply described as “having some similarity
to the sequence TAAGGAG”. A simple formalization of
this is “matching at least x positions of TAAGGAG”.
The coverage and specificity of this motif for all values
of m is shown in Table 3, which gives the number of dis-
tinct k-mers with m mismatches

(

(k
m)∗3m

)

, and the total

and average number of matches for that set of k-mers.
The total and average number of matches in a first-order
model is also shown. Last, the number of USRs whose
best match with TAAGGAG has exactly m mismatches
is shown.

As previously noted, there are 110 exact matches of
TAAGGAG, which is greatly in excess of the expected
number of matches for a random 7-mer (3.7) or the ex-
pected matches based on its first-order base composition
(8). It is quite diagnostic of the SD site with a sig-
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nal/background ratio of 110/8 = 13.7. If one mismatch
is allowed, there are C0 + C1 = 640 (potentially over-
lapping) matches in 635 USRs using 22 different 7-mers,
but the ratio drops to 4.3. If two mismatches are al-
lowed, there are 2337 matches in 2049 USRs using 211
different 7-mers with a ratio of 1.8. If three mismatches
are allowed, there are 7329 matches in 3706 USRs us-
ing 1156 7-mers with a ratio of 1.2. With exactly three
mismatches, C3 = 4992 while 4891 would be expected
by chance, indicating that there is no better than ran-
dom selectivity for the SD site in the M3 set. Even if
these M3 instances can function as SD sites, they are
indistinguishable from the random background.

At the other extreme, over 500 USRs can match no
better than three positions of the prototypic sequence,
which is less than expected by chance. It is tempting to
speculate that ORFs with especially strong or weak SD
sites are distinctive in other ways. One speculation was
that the presence or absence of SD sites would correlate
with operon structure. The expectation was that the
initial ORF of an operon would have a strong SD site
and than ORFs without identifiable SD sites would nec-
essarily be interior to operons. Somewhat surprisingly,
no correlation was found in either case. Apparently the
setting of each ORF’s SD “rheostat” is completely inde-
pendent of operon structure.

Clearly, covering a large fraction of the USRs with
a k-mer prototype leads to an uncomfortably high ran-
dom hit rate. This is in part because a significant frac-
tion of USRs appear to have no better than random SD
sites, but also results from the limitations of the mo-
tif representation language. The k-mer prototype (at
least 5 of TAAGGAG) has good localization of 2107 non-
overlapping matches (Figure 3) in 2049 USRs, using 211
different 7-mers and has a signal/background ratio of 1.8.
Using a C at the second position also gives good results:
1998 matches in 1833 USRs with a ratio of 2.1, although
the two are not strictly comparable since a smaller num-
ber of matches generally results in a higher specificity.
Because of the low information content at the first po-
sition, a left-shifted version (5 of CAGGAGA) is also
reasonable (2132 matches in 1831 USRs, with a ratio of
1.9). An exhaustive search of all (5 of 7) k-mer proto-
types did not find any with the coverage of TAAGGAG
and a better signal/background ratio, but it is not the
only reasonable (x of k) prototype for the SD motif.

6. Probability Matrices

Probability matrices provide a powerful motif repre-
sentation language, able to capture much of the variabil-
ity in bases in SD sites. The central problem in pro-
ducing a probability table is producing an aligned set of
motif instances. Various hill-climbing techniques have
been used to find a set of k-mers in a data set which
can be plausibly explained by their resulting probability
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Figure 2: Distribution of 2107 matches for (at least 5 of
TAAGGAG)

Table 4: Probability matrix based on M1 neighbors of
TAAGGAG

262 218 148 149 135 146 242
a 27 50 74 11 11 75 31
t 42 3 11 8 4 7 16
g 13 16 6 74 81 14 45
c 18 31 9 7 4 4 8

matrix. However, like hill-climbing in general, they suf-
fer from the problems of multiple local optima and are
often rather slow. Because of this, some simply cannot
be applied to large data sets.

However, because of the large size of the SD data set,
one particularly simple approach for producing a proba-
bility table can be used: given a known strong motif in-
stance, assume its M1 neighbors are also motif instances.
With this assumption, plus the assumption that the po-
sition probabilities are independent, each position can
be varied and the frequency of each base measured. Ap-
plying this to TAAGGAG provides an estimate of the
probability table over all instances (Table 4). For a ran-
domly chosen central k-mer, the resulting probability ta-
ble will be close to the first-order distribution of the data
set. The first row gives the total number of patterns over
all settings at each position and the numbers below that
give the frequency of each base at that position. Thus,
for example, with a T in the first position the number of
occurrences of the string TAAGGAG is .42 ∗ 262 = 110,
since there are 110 exact matches. This M1 matrix pro-
vides a possible characterization of the SD motif. Similar
base strings (e.g. TCAGGAG) yield similar M1 tables.

The M1 table based on the prototypic sequence
TAAGGAG is easy to compute, but is only a small-
sample estimate of the probability table over all SD in-
stances. More complex techniques can provide more ac-
curate estimates. One standard approach is to iteratively
improve a probability table over the complete data set
by using an initial table to identify possible motif in-
stances, which then produce a new table, etc (Stormo,
2000). Generalization can be forced by assuming there
is a binding site in each USR and defining the proba-
bility table over the best match in each USR. This is
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Table 5: Iterative probability matrix based on 4058 USR
matches

a 36 38 66 0 13 59 34
t 35 5 19 2 6 16 20
g 12 26 0 97 77 16 38
c 17 31 15 1 4 9 8

often a reasonable assumption, but degrades with the
number of USRs without a motif instance. Various ad
hoc methods have been used to choose the best set of
matches. The SD data set has a reasonably high frac-
tion of USRs containing a SD site (at least 3/4) so the
issue is not crucial, although including 1/4 random sites
is obviously not desirable.

The motif was slid across each USR and each posi-
tion’s match score computed by using the current prob-
ability table as a weight vector and computing either an
additive score by the appropriate dot product, or a mul-
tiplicative score, corresponding to an estimated probabil-
ity. Results were similar so only multiplicative ones are
reported here. Only best matches that were fully con-
tained in the 20-bp USR were used since those are more
apt to be real SD sites. Starting at TAAGGAG and us-
ing its M1 probability table as the initial estimate, this
process converged on Table 5 in a few seconds. This ta-
ble is based on 4058 instances. Starting from different
initial k-mers similar to TAAGGAG and allowing either
0 or 1 mismatch in the initial probability table gave sim-
ilar results.

This table is defined over about 4000 instances, but
if the threshold is set to match approximately 4000
USRs, localization is very poor (Figure 4) producing
5394 matches in 4058 USRs using 1884 different k-mers
with a signal/background ratio of 1.2. Again, it is dif-
ficult to cover a large fraction of the USRs without a
large number of random matches. If the threshold is set
to detect approximately 2000 USRs, localization is much
better (Figure 5) producing 2079 matches in 2045 USRs
using 126 k-mers and a signal/background ratio of 2.7 -
noticeably better than (x of k) representation. Beyond
3000 USRs, localization declines rapidly and the number
of matches in the real data and scrambled data are ap-
proximately the same, indicating that nearly 1/4 of the
USRs do not have SD sites that are distinguishable from
a random background.

This result was achieved with a number of starting
patterns, but there was also some variability in the final
results. One possible factor in the amount of variation
in results is that the motif is being trained to fit a signif-
icant amount of noise, which by itself produces a large
number of different but equally good local optima. Using
the best match in all USRs is reasonable, but if a sig-
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Figure 3: Distribution of 5394 matches for Table 5
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Figure 4: Distribution of 2079 matches for Table 5

nificant fraction of the USRs do not contain identifiable
SD sites then only those with the best matches should
be used. Consequently, the algorithm was modified so
that only the best 2000 USRs were used in defining the
probability table on each cycle. A number of slightly
different local maxima, with slightly less variability were
produced using this method (eg Table 6), in this case
with 2025 well-localized matches in 2002 USRs using 113
different 7-mers and with a signal/background ratio of
3.1. Again, beyond 3000, SD sites could not be distin-
guished from the random background.

A related, but computationally distinct method is to
require a certain number of k-mer matches rather than
USR matches. For example, assuming that at least
2000 USRs have distinguishable SD sites, all k-mers are
ranked by similarity to an initial k-mer or its M1 prob-
ability table and the threshold adjusted so the summed
C0 values of the positive k-mer set is about 2000. The
resulting set of matched k-mers produces a new prob-
ability table etc. The computational advantage of this
approach is that it is independent of the size of the data
set since it can be implemented based entirely on the
k-mer set and their C0 counts. For the current analysis,
requiring 2000 k-mer matches is very similar to requiring
2000 USR matches, but for motifs with multiple occur-
rences per USR, the results could be quite different.

A potential disadvantage is that counted motif in-

Table 6: Iterative probability matrix based on best 2002
USR matches

a 37 46 83 0 0 79 32
t 39 0 11 0 0 10 12
g 12 22 0 100 100 11 51
c 12 32 6 0 0 0 5
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Figure 5: Distribution of 2025 matches for Table 6

Table 7: Iterative probability matrix based on best 2003
k-mer matches

a 35 44 79 6 0 88 31
t 36 0 14 0 0 0 13
g 17 22 0 94 100 12 51
c 12 34 7 0 0 0 5

stances can overlap in the USRs. It is not obvious when
or if these should be counted as separate binding sites.
This is not a significant issue for the SD motif when
starting with TAAGGAG, but it can be for other mo-
tifs and other starting instances. Furthermore, there is
no bias for maximum USR coverage, which is generally
beneficial. Again, in this case it is not a significant issue,
but can be under some circumstances.

Starting with TAAGGAG or its M1 table and us-
ing multiplicative scoring, this method produces a large
number of similar local optima that are also similar to
the probability tables obtained by other means. For ex-
ample, Table 7 has good localization with 2003 matches
in 1978 USRs using 119 distinct 7-mers and has a sig-
nal/background ratio of 2.8. Similar starting k-mers
and/or additive scoring gave similar results.

The resultant ranking of k-mers by their “motif
strength” provides the opportunity for other forms of
analysis. For example, the 20 top ranked 7-mers
are all highly over-represented and localized, indicating
that they are good SD sites. They are distinct, non-
overlapping motif instances, unlike sorting on C0, over-
representation or location variance. Of the top 100 7-
mers, 77 occur more than 10 times and show appropriate
localization, indicating that they are real SD sites. The
top 60 7-mers are shown in Table 8. Note that while
there is some correlation between motif rank and C0, it
is far from perfect. The correlation between order and
C0 over the top 119 (the positive k-mer set) is .67. The
degree of correlation reflects how accurately the proba-
bility table models the actual instance frequency. High-
ranking k-mers with low C0 and low ranking k-mers with
high C0 may point out deficiencies of the motif repre-
sentation. Correlation is lower using additive similarity,
indicating that even though it has similar classification
accuracy, it (as expected) is not as accurate in ranking

Table 8: Top 60 7-mers for Table 7 and their counts

Top 1-20 Top 21-40 Top 41-60
taaggag 110 ccaggag 32 taaggac 20
aaaggag 71 tcaggat 15 aaaggac 17
tcaggag 67 acaggat 20 gaaggat 18
acaggag 74 gcaggaa 19 tatggaa 6
taaggaa 76 cgaggag 17 tctggag 45
aaaggaa 54 taaggtg 10 aatggaa 7
tgaggag 34 tgaggat 22 actggag 34
agaggag 16 aaaggtg 15 taaggga 16
tcaggaa 21 agaggat 21 tcagggg 11
acaggaa 46 ggaggaa 39 aaaggga 23
tgaggaa 47 tatggag 16 tacggag 13
agaggaa 29 aatggag 11 acagggg 15
gaaggag 33 taagggg 21 aacggag 24
gcaggag 43 ccaggaa 8 tgaggtg 24
caaggag 48 aaagggg 7 agaggtg 23
taaggat 36 cgaggaa 12 taaagag 17
aaaggat 35 taaggta 15 aaaagag 28
gaaggaa 23 tcaggtg 8 tgtggag 15
ggaggag 23 aaaggta 19 agtggag 12
ccaggag 32 acaggtg 7 tgagggg 8

k-mers in order of frequency.

7. IUPAC and Weight Matrices

In previous work we extended the calculation of in-
dividual k-mer over-representation to groups of k-mers
such as the M1 and M2 shells of a k-mer, IUPAC
and weight matrix motif representations (Hampson,
2000; Kibler, 2001). As previously observed, over-
representation can be calculated in different ways de-
pending on the background model and the statistical
method of computing over-representation. Ideally, as a
background model a k-mer’s frequency in the data set
could be compared to its frequency in a data set that
does not contain the motif in question but is highly sim-
ilar in all other regards. However, for the SD problem,
there is no obvious region that is the same as the 0-20
region but without SD sites, so a first-order background
model is employed. Higher-order models were tried but
did not appear to be beneficial. Over-representation is
computed using z-scores. Thus, unlike probability ma-
trices, the motif is explicitly trained to optimize an ob-
jective function much like the signal/background ratio.

As before, non-overlapping matches can be tallied by
sliding the motif over the data set, but potentially over-
lapping matches can be computed more rapidly from the
set of k-mers and their C0 counts. It is not obvious which
is more biologically correct, but for the SD site they gave
similar answers. Non-overlapping matches are used here.

Using a first-order comparison set and z-scores to cal-
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culate over-representation, a hill-climbing approach to
IUPAC optimization is used. Given an initial k-mer mo-
tif instance, all possible IUPAC codes are tried at each
position, over-representation of the resulting positive k-
mer set calculated, and the code with the biggest value
chosen. This is repeated at each position until no fur-
ther changes are possible. One complete hill-climbing
sequence takes several seconds. Randomizing the order
that positions are evaluated in often leads to different,
but generally similar local optima.

A probability table can be restricted to an IUPAC
motif by choosing the most conserved features, but the
exact choice of features is not necessarily obvious since it
also depends on background feature probability and de-
sired coverage. Optimizing for over-representation takes
background frequency into consideration but not desired
coverage.

An IUPAC motif can be viewed as a weight matrix
with feature weights of 0 or 1 and a threshold of k,
while an arbitrary weight matrix allows all values to
be variable and continuous. However, the goal is the
same: to identify a set of k-mers with maximum over-
representation, starting from a single motif instance.
While the instance itself can be used as the starting ma-
trix, better results are generally achieved with a better
starting matrix, such as its M1 probability table. This
improved results on the average, although the best re-
sults of the two initialization methods were about the
same. However it is created, the initial weight matrix
is incrementally improved by adjusting the weights to
include/exclude boundary k-mers from the positive set.
Boundary k-mers are those closest to the hyperplane de-
fined by the current weight matrix and the threshold.
Note that while positive/negative k-mers are identified
based on their degree of over-representation, the weights
are adjusted to produce the desired classification of the
points, not model their frequency.

Various methods of adjusting the weight matrix to
reclassify a boundary point were investigated and the
single best method was to try all single-base weight ad-
justments to include/exclude the given k-mer. If includ-
ing/excluding a point improved the over-representation
score of the positive set, the change was accepted and
the boundary points recomputed. This was repeated
until no further improvements were possible. The 200
closest positive and negative points were considered for
adjustment. Increasing the number of boundary pat-
terns considered improves hill-climbing, but takes more
time. At some point this time is better spent on multiple
restarts. A single hill-climbing episode takes about one
minute.

Almost every hill-climbing sequence terminates at a
slightly different local maximum. This provides another
opportunity to improve the starting matrix. Rather than

Table 9: IUPAC probability table over 2049 matches

a 33 42 100 0 0 62 32
t 35 0 0 0 0 21 20
g 17 29 0 100 100 17 38
c 15 29 0 0 0 0 10

using the motif instance itself, or its M1 probability ta-
ble, the start matrix can be set to the sum of previous
local maxima. This does not guarantee finding the global
optimum, but it does converge on a very high value that
is only infrequently found using other initialization tech-
niques. As before, this initialization strategy increased
the average local optima score, but not the maximum
value found.

A potential problem with optimizing a motif for over-
representation is that the classifier with optimum over-
representation need not have the desired coverage. In
particular, the classification might be adjusted to include
additional, highly over-represented k-mers that are al-
most certainly real SD instances, but might still reduce
over-representation of the group as a whole if the ad-
ditional k-mers were significantly less over-represented
than the other positive instances. This was frequently
observed to be the case, and both IUPAC and weight
matrix hill-climbing produced motifs around 1000 posi-
tive instances. What is really wanted is the most over-
represented k-mer set with a given USR coverage, in this
case about 2000.

To address this issue, the algorithm was modified in
an admittedly ad hoc way. In order to encourage the
algorithm to find the most over-represented set of about
N matches, if the match count was below N, the resulting
z-score was multiplied by match/N. This was a minimal
modification to bias the evaluation metric towards the
desired set size, and worked quite well.

The granularity of IUPAC representation is much
coarser than that of a weight matrix so it is harder to
closely approximate the desired match count, but the
IUPAC motif [ATGC][AGC]AGG[ATG][ATGC] comes
close: It has good localization of 2049 matches in
2019 USRs. It uses 144 different 7-mers and has
a signal/background ratio of 2.8. The IUPAC motif
[ATGC][AGC][ATGC]GGA[ATGC] does almost as well
indicating that there are apt to be multiple, equally good
representations of the SD motif given almost any repre-
sentation language.

Weight matrix hill-climbing easily finds weighted com-
binations of features that are close to the desired cover-
age, and many similar local optima are produced. Table
10 shows a weight matrix after being converted to prob-
ability matrix constraints and the resulting probability
table over its positive instances. It has good localiza-
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tion of 2023 matches in 2001 USRs. It uses 106 different
7-mers and has a signal/background ratio of 3.6, which
is somewhat better than the best IUPAC or probability
matrices. Note that the weights are only roughly corre-
lated with feature frequencies. Nonetheless, when using
a multiplicative similarity rule, the resulting probabil-
ity table can classify all 7-mers the same as the weight
matrix, so this motif could in principle be learned by
probability matrix techniques. In some cases an addi-
tive rule worked while multiplicative did not. There was
no clear preference. Despite its higher specificity at 2000
USRs, weight matrices were still not able to distinguish
SD instances from the random background beyond 3000.

Other organisms appear to have different cut-offs. For
example, in Synechocystis 3/4 of the USRs do not have
SD sites that could be distinguished from a random back-
ground. Requiring a match to only 1/4 of the USRs
yields an SD motif at the expected location, but if one
requires matching all USRs, the motif is lost (Hayes,
1998).

It is not surprising that a weight matrix which is op-
timized for over-representation would score well in that
regard. Rather it is surprising how similar weight matrix
results are to the probability table classifiers in the previ-
ous section. The fact that a different representation and
objective function yields approximately the same motif
is evidence for both the robustness of the result and the
effectiveness of the optimization methods. All of these
results indicate that SD instances grade into the back-
ground at around 3000 USRs, leading to the suspicion
that this is close to optimum, at least when characterized
with a 4 x 7 matrix.

In addition, the resulting probability table over the
positive instances of a weight matrix is usually as effec-
tive for instance classification as the weight matrix itself,
supporting the direct use of probability tables as classi-
fies. It is possible that weight matrix results could be
improved if it was explicitly trained on known positive
and negative k-mer instances using perceptron training
or related algorithms (Hampson, 1999), but such an au-
thoritative classification is not available.

8. Extending matrix representation

Increasing representation power improves specificity
and increases the number of SD sites that can be reli-
ably identified. Despite differences in representation and
objective functions, the best matrix approaches give ap-
proximately the same result, indicating that about 1/4
of the USRs do not have better than random SD sites for
E. coli. This may well be the case, but it is also possi-
ble that more biologically realistic motif representations
could do better in detecting SD sites. Three plausible
factors were considered as possible extensions to the ma-
trix approach.

If there were more than one type of ribosome, more

Table 10: Weight matrix and resulting probability table
over 2023 matches

a 30 36 42 16 15 46 24
t 30 0 20 16 16 32 24
g 18 28 19 52 53 11 37
c 22 36 19 16 16 11 15

Threshold = -261
a 34 41 78 0 0 83 23
t 37 0 10 0 0 14 16
g 15 24 6 100 100 2 56
c 14 35 6 0 0 1 5

than one SD matrix might be required, but that does
not appear to be the case.

Localization is obviously important for the function of
the SD site and might be included as part of the motif
strength calculation. For example, it is possible that a
greater degree of degeneracy is acceptable at or near the
optimum location. This possibility was investigated by
creating separate SD probability tables for each starting
position in the USR. However, there was no obvious in-
teraction between location and the resulting probability
tables, so this option was not pursued.

A third possibility is that there are important inter-
feature dependencies that are not captured by the matrix
model, which assumes that the base frequencies at each
position in the motif are independent of each other. The
correlation between motif ranking and motif instance fre-
quency is not perfect at the 2000 USR comparison point
(.65), showing that a probability table is a less-than-
optimum generator for motif instances and significant
high-order dependencies might exist. Initial results from
comparing the M1 tables of different motif instances sug-
gested that the probabilities are reasonably independent,
but other measures are possible. To look for feature in-
teraction, a 28 x 28 probability table was constructed
for the set of motif instances identified at the 2000 USR
point. Each column in the table gives the observed fre-
quency of a base at a given motif position for each base
setting of all the other positions. If there was no feature
interaction for the given motif, all the values in a col-
umn would be the same except for sampling error. This
generally appears to be the case, with a few exceptions.

One possible interaction is that a G at the second po-
sition and a T at the sixth position predict each other
since the presence of one more than doubles the proba-
bility of the other. The significance of this, if any, is not
known.

A general deviation from independence is that choos-
ing a low-probability base at one position usually re-
duces the chances of choosing a low-probability base at
other positions. So, for example, the presence of T or C
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at the third position, which are low-probability, implies
that the sixth position will not be its low-probability
choices (T,G), and vice versa. This is not completely
unexpected. It is easy to imagine an (x of k) motif that
would allow one mismatch but not two, or in keeping
with the above results, two mismatches would be pos-
sible, but much less frequent than the product of their
individual probabilities. The probability table resulting
from such an instance set may well correctly classify the
instances, but cannot reflect the mutual exclusion of mis-
matches. Thus, even if the basic assumption of feature
independence is violated, a probability table may still be
a good instance classifier, even if it is poor at predicting
their actual frequency of occurrence.

9. K-mer list

The general goal is to optimally characterize the SD
site within the constraints of a given motif representa-
tion language. The limitations of this approach are ap-
parent if the language is significantly less powerful than
the biological recognition mechanism. The advantage
is that an appropriate representation language can suc-
cinctly represent the actual biological category and has
good predictive potential based on a limited number of
instances. For optimal results the representation lan-
guage should mirror the structure of the corresponding
biological recognition mechanism as closely as possible.
In this regard, the use of increasingly general weight ma-
trices seems justifiable since they have a plausible bio-
logical justification. More powerful representation lan-
guages permit further improvement in motif specificity
but are not necessarily more biologically realistic.

For example, one form of motif representation is to
simply list motif instances. This is reasonable if the
instances are biologically justified, but is computation-
ally problematic since it places no restrictions at all on
the motif representation language, which increases the
risk of over-fitting the data. In this context, the SD
recognition task simply becomes one of “set coverage”
where the goal is to cover as many USRs as possible
using as few k-mers and first-order matches as possible.
This was implemented as a point of comparison. Finding
the optimal k-mer covering set is NP-complete, but like
other optimization problems, reasonable solutions can be
constructed by hill-climbing. 7-mers were incrementally
chosen to maximize USR coverage while minimizing first-
order hits. Specifically, the k-mer with the largest value
of N/(MM1+3) was always chosen and added to the cov-
ering set where N is the number of additional USRs cov-
ered and MM1 is the number of first-order matches. In-
creasing MM1 (by 3 in this case) biases the choice toward
k-mers with large N, which seemed beneficial.

Using this approach, 2000 USRs could be covered us-
ing only 85 k-mers with a ratio of 5.13, much better
than matrix representation. Localization is good and,

not surprisingly, most of the chosen k-mers were real SD
instances. However, some were not. For example, con-
served sequences in homologous ORF families are good
for covering certain sets of USRs, but need not coincide
with the SD site. Such sequences are generally incom-
patible with a single matrix representation of real SD
instances, and so are appropriately excluded by using a
single matrix model. The k-mer list motif also shows
signs of over-fitting the data. To test for this possibility,
the data was divided into two halves. IUPAC and ma-
trix representations trained on one half perform about as
well on the other half, but a k-mer list does not. Specif-
ically, a k-mer list trained to cover 1006 USRs in one
half only covered 767 USRs in the other half. The cor-
responding values for a probability table were 1094 vs
1087, and for a weight matrix 999 vs 962. A k-mer list is
an extreme example since there are no restrictions at all
on the structure of the motif, but other representations
such as multi-level neural nets are also overly powerful
and prone to over-fitting the data (Horton, 1992).

10. Discussion

If only a few examples of a complex binding site are
given, correspondingly little can be deduced about its
statistical properties and even less about the true biolog-
ical nature of the motif. The E. coli SD site provides a
large data set for a non-trivial motif problem that should
permit a relatively precise quantification and comparison
of statistical and biological properties. For example, the
presumed independence of matrix feature probabilities
might not provide an adequate model of instance fre-
quency or actual binding strength. The degree of correla-
tion between instance frequency, motif strength, binding
strength and biological effectiveness is of special interest,
and the degree of confirmation or notable deviations are
of equal interest.

The large amount of data also facilitates comparison
of different motif representation languages. Surprisingly,
despite its theoretical appeal, there is little evidence that
matrix representation is actually better than other rep-
resentations for characterizing biological motifs. Here,
several types of motif representation were considered for
characterizing the SD motif. As a general principle, the
closer a representation language is to the actual recog-
nition mechanism, the better the expected performance,
and progressively relaxing the restrictions on a matrix
representation allows progressively better characteriza-
tion of the SD site. The prototypic k-mer (at least 5 of
TAAGGAG) does a reasonable job, (signal/background
ratio at 2000 USRs = 1.7) but IUPAC representation (eg
[AGC]AGG[ATG]) is somewhat better (ratio = 2.8), and
an unrestricted weight matrix representation appears to
be the best (ratio = 3.6). However, too few restrictions
on the representation language also leads to suboptimal
performance as seen in the non-SD instances and over-
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fitting of the k-mer list motif.
Several new techniques for motif generation are de-

scribed and compared to more standard approaches. At
the 2000 USR comparison point, a variety of matrix ap-
proaches yield similar answers, indicating that the result
is robust and that the different approaches are effective
in finding near-optimum solutions. By these measures,
when using a 4 x k matrix representation, about 1/4 of
the USRs have no better than random SD sites. Whether
this is as good as biological SD site detection remains to
be determined. More biologically realistic models may
well permit a better characterization of the SD motif.

It is remarkable that methods focussed on summariz-
ing the frequency of SD sites (probability matrices) and
those focussed on discriminating SD sites (weight matri-
ces) sites should yield such similar results. It also seems
remarkable that the probability matrices resulting from
weight-matrix classification can frequently produce clas-
sification that is identical to the original weight matrix.
Apparently evolutionary pressures lead to using a k-mer
as an SD site in proportion to its discriminating power.
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