J. Kay, ed. (1999): UM99 User Modeling: Proceedings of the Seventh International Conft
Wien New York: Springer Verlag, 45-54

User-Tailored Plan Generation

Detlef Kupper, Alfred Kobsa

GMD FIT, German Nat'l Research Center for Information Technology, D-53754 St. Augustin, Germany

Abstract. The output of advice-giving systems can be regarded as plans to be executed by
the user. Such plans are fairly useless if the user is not capable of executing some of the
involved plan steps, or if he does not know them. We propose a two-phase process of
user-tailored plan generation and plan presentation to produce advice that enables a user
to reach his goals. This paper reports the first phase, the generation of a plan under the
constraints of the user's capabilities. The capabilities are represented as a hierarchy of
plan concepts. System assumptions about user capabilities form a part of the user model,
but are separate from assumptions about the user's knowledge, goals etc. With this repre-
sentation, we can re-use the techniques for collecting assumptions about the user's
conceptual knowledge for inferring his capabilities as well. We show an example of plan
generation for users with different capabilities.

1 Introduction

Adapting system responses to users is a central area of user modeling. However, the question of
whether or not such responses really enable a user to reach his goals did not receive much atten-
tion so far. For advice-giving systems like online help and assistance systems this is however a
crucial issue. We take the view that advice for a user is a proposed plan that the user should exe-
cute. The user must understand the system's advice and must be capable of executing the plan in
order to reach the intended goals. We propose a two-phase process for creating such advice. The
first phase generates a plan according to the user's capabilities. This plan is then the starting point
for the second phase which creates a presentation of that plan taking the user's knowledge into
account. Our approach to the problem of user-tailored plan generation will be illustrated within the
context of a help system for a typical computerized office environment. There we assume a het-
erogeneous network of computers with different operating systems and users with various
capabilities.

This paper describes the first phase in generating a user-tailored plan. We first describe the ex-
tent to which Al research on plan generation considers user-tailored planning. Then we define the
notion of capabilities as we use it in this approach and discuss how a user model may represent
such capabilities. We employ the user modeling shell system BGP-MS' (Kobsa and Pohl, 1995) to
represent user models and demonstrate example user models for five different users. The partial
order planner UCPOP (Penberthy and Weld, 1992) then generates plans for an example goal,
taking the capabilities of these users into account.

' We use a slightly extended version of release 2.2. It provides means for the definition of new modalities
and allows stereotypes for all defined modalities (Pohl and Hohle, 1997).

kobsa
J. Kay, ed. (1999): UM99 User Modeling: Proceedings of the Seventh International Conference. Wien New York: Springer Verlag, 45-54

2 Planning

In the field of user modeling, plan processing mainly deals with plan libraries for plan recognition
(e.g. Carberry, 1990, Kautz, 1991, Bauer, 1996). Only very few help systems generate plans (e.g.,
Breuker, 1990), however not user-specific ones. Plan libraries are assumed to contain all mean-
ingful plans in an application domain. This approach, however, does not scale up very well when a
large number of possible plans must be considered, or when plans have many variants. Unfortu-
nately the number of potential plans increases exponentially with the number of tools that an agent
may use.

Plan libraries also presume that the domain remains fairly static so that changes in the plan li-
braries do not occur very often. We therefore prefer plan generation (planning) over plan libraries,
even though it is computationally expensive (Bylander, 1991, Erol et al., 1995). A static plan
library approach even seems meaningless for user-tailored planning since it must not only contain
plans for every possible goal but also plan variants for each possible combination of relevant user
capabilities.

For an assessment of whether or not Al planning might extend to plan generation for a user, we
take a short look at its main ideas. Planning means searching for a sequence of plan steps - the
solution or the plan - that achieves the goal by executing the plan steps in a required order pro-
vided that the execution begins in a start situation. A plan step is an instance of a plan operator; it
is defined by its precondition and its effect. Planning systems require goals, situations, precondi-
tions and effects to be described by a restricted first order logic expression - usually a conjunction
of literals. Even though today's view of plan generation is quite different?, the following descrip-
tion may still give a rough idea of what happens when a plan is being executed. Executing a plan
step in a situation s changes the situation by adding all literals of the step's effect and deleting all
literals of s that contradict them. A plan step may only be executed in a situation that fulfills its
precondition. We may imagine that reaching the goal by executing a plan means changing the start
situation step by step until we finish with the last step in an end situation that fulfills the goal. A
correct plan guarantees the precondition of each step to hold just before its execution.

Clearly a traditional planning process presumes the acting agent to be capable of executing all
plan steps - otherwise the execution of the plan would fail. The fixed set of operators that the plan-
ner uses for generating plans defines the activity potential of the agent. For an artificial agent like a
robot, this set is defined by the functional interface of the agent. We may likewise think of model-
ing the activity potential of users by sets of plan operators.

An example of one such operator is open a file with text processor of type X (open-file-tpx).
We describe it with the syntax of the planner UCPOP:

(:operator open-file-tpx
:parameters (?app ?f)
:precondition (and (tpx-file ?f) (local-fs-object ?f)
(tpx ?app) (launched ?app))
ceffect (active ?app ?f))

% See e.g. (Russell and Norvig, 1995) for an overview of planning, (McDermott and Hendler, 1995) for an
overview of the evolution of the view of planning, and (Weld, 1994) for extensions of precondition and
effect descriptions and their consequences.

The meaning of this expression is that the agent may execute the operator if there is a local file
(local-fs-object) that is appropriate for text processor X (tpx-file) and a launched text processor
of type X (launched a tpx). After the execution of this operator, this file is the active file of that
text processor. Names of variables are marked by the prefix "?".

This example directly leads to the question of what is an adequate level of abstraction for this
set of all operators. Here we have to distinguish between plan presentation and plan generation.
The central task of plan presentation is to choose a level of abstraction that does not exhibit redun-
dant and possibly misleading details, but on the other hand provides sufficient information
enabling the user to recognize the intended plan (see, e.g. Young, 1996). In the field of plan gen-
eration, hierarchical task network (HTN) planning (Sacerdoti, 1977, Erol et al., 1994) deal with
abstraction. They exploit several levels of abstraction for improving the efficiency of the planning
process. At the end of the day, however, a plan must include all details because otherwise correct-
ness cannot be guaranteed. This means that plan generation has to use the most detailed operators.
But what most detailed operators means differs between the users, due to the different level of
system's knowledge about users (see chapter 5 for an example).

3 Users’ Abilities and Knowledge

The user's activity potential in a domain is mainly determined by his abilities and his authorization.
The ability to climb stairs or to hit a special key combination on a computer keyboard are exam-
ples of the former. While normal users are able to perform such actions, some handicaps may
prevent people from carrying them out. Examples of actions that usually depend on authorization
are: reading mail (the user needs, e.g., an account), open a fip connection (e.g., the user needs to
pass a firewall), printing on an expensive printer (e.g., the user needs an account).

For plan generation, it makes no difference why a user is assumed to be capable of some ac-
tion. We may define plan operators for all kinds of actions a user is capable of. This leads to a
definition of the term activity potential of a user for the purpose of our approach:

The activity potential of a user is the set of plan operators that the user is in principle
able and authorized to execute.

The proviso in principle has been added since we also consider plan operators that users cur-
rently cannot execute due to lack of knowledge or due to unfulfilled preconditions. The above
definition may be extended to arbitrary agents by replacing ‘user’ with ‘agent’.

Some terminological remarks: Several researchers distinguish between the user's knowledge
(which must be true) and his beliefs (which may be wrong). Since we do not need an explicit rep-
resentation of this distinction we employ the terms interchangeably. Also, we will use the shorter
term capabilities as a synonym for activity potential in the remainder of this paper. This should not
be confused with inferential capabilities of users, which are investigated in text planning (e.g.
Horacek, 1997, Zukerman and McConachy, 1993).

It is important to note that the user's capabilities should not be mixed up with the user's beliefs
about plans. In our system, we strictly separate (system assumptions about) the user's capabilities
from (system assumptions about) his beliefs - especially his beliefs about plan operators. Most
real-world actions require both. For instance, users may not know how to reboot a DOS-PC, even
if they are physically capable of hitting the famous key combination. On the other hand, some

users, such as those who are handicapped, may not be able to hit these keys even when they have
the required knowledge.

This separation of users' beliefs from their capabilities is not very common in Al systems. This
is not surprising since a distinction is not really necessary in their application domains. Planning
systems, for instance, usually generate plans for robots, and not for people. The capabilities of
robots are determined by their functional interface. Therefore, the commands they accept as an
input define exactly what they can do. A separation of beliefs (whatever this might be for a robot)
from capabilities makes no sense when planning for robots. The same holds true for plan recogni-
tion systems that recognize user plans based on their actions. Such systems only see those actions
that the user both knows and is able to perform.

In contrast, advice-giving systems that want to enable users to reach their goals do need to
separate capabilities and knowledge. Lack of knowledge is far less critical than lack of capabilities
since it can be overcome by instruction. This leads to the two-phase process for advice generation
mentioned above. The first phase generates a plan from the operators of the user's activity poten-
tial, disregarding any assumptions about the user's beliefs. The presentation phase then generates
an explanation of those plan steps that are unknown to the user. If we were to restrict plan genera-
tion to those operators only that are both in the user’s activity potential and known by him, we
would find less plans and specifically lose the opportunity of explaining plan steps to the user
which he is capable to perform. The benefit of such help systems would be rather limited.

Although this paper does not deal with plan presentation, we should note that this two-phase
process is not unidirectional. For instance, if a candidate plan generated in the first phase requires
lengthy explanations in the presentation phase because many plan steps are unknown to the user,
the presentation component may request the generation of an alternative plan.

Our model presumes easily changeable beliefs of the user, while his capabilities are assumed to
be constant. We assume that the capabilities of a user do not change during the interaction with the
system, nor during the execution of an advised plan. However this does not mean that the system's
assumptions about the user's capabilities cannot change. In our system, updating the assumptions
about the user's capabilities is done by the same techniques as updating assumptions about the
user's beliefs.

4 Representation of concepts and plans

The user's beliefs about domain concepts form a significant part of his knowledge. Many user
models represent this as an abstraction hierarchy of concepts with a terminological knowledge
representation system (e.g., Sleeman, 1985, McCoy, 1989, Sarner and Carberry, 1992, Kobsa et
al., 1994). In our system, we use SB-ONE (Kobsa, 1991) for this purpose, which forms part of the
user modeling shell BGP-MS. SB-ONE fits loosely into the KL-ONE-paradigm (Brachman and
Schmolze, 1985). With this approach a concept may be defined by its superconcepts and its attrib-
ute descriptions, i.e. its relations to other concepts (these relations are called roles). We adopt this
approach for also representing beliefs about plan operators in conceptual abstraction hierarchies
since we want to exploit the rich research experience in this area (e.g., for explaining concepts to
the users and gathering conceptual knowledge of the user) and also take advantage of the inferen-
tial services of terminological representation systems (e.g., inferences over subsumption and
disjointness relationships).

The same arguments hold true for assumptions about the user's capabilities. Therefore we repre-
sent capabilities and beliefs in a uniform way. We call the terminological representation of a plan
operator a plan concept.

Some representations of plans in abstraction hierarchies disregard preconditions and effects
(Kautz, 1991, Weida, and Litman, 1992). While this is often sufficient for the purposes of plan
recognition, it is insufficient for the generation and explanation of plans. This view is also found in
(Devanbu and Litman, 1996). We extend their approach to provide plan operators with variables.
This leads to a different view of what preconditions and effects are. Devanbu and Litman model
them as situations (sets of predicates that are expected to be true). We model preconditions as
objects that are needed before, and effects as objects that are available after the execution of plan
operators. We represent the relation of these objects to their plan concepts by roles with a number
restriction of exactly one. Properties of the objects are represented by value restrictions on these
roles, and relations between the objects are expressed by role-value-maps. Since plan operators
change properties, we cannot use identical objects for preconditions and effects. Therefore we
distinguish between object descriptions for preconditions and for effects.

eff_app
pre_f

(tpx—file & local-fs-object

tpx & launched

pre_app

eff f

Figure 1. Terminological representation of the operator open-file-tpx in SB-ONE.

Figure 1 shows the terminological representation of the operator open-file-tpx in SB-ONE.
The roles pre_app and pre_f specify that this plan concept needs two objects as preconditions:
one of type tpx that is launched (a text processor of type X), and one that satisfies the conditions
of a local-fs-object and a tpx-file (a local file that is appropriate for text processor X). The effects
of the plan concept are expressed by roles eff_app and eff_f, and a role-value-map eff_f C
eff_app - active. They specify that the execution of the plan does not introduce additional type
constraints on the objects since the chosen type is the most general concept THING. A relation
active between the two objects is however introduced which expresses that the active document of
the application will be identical to the document that becomes opened by open-file-tpx.

5 Structure of a User Model with Capabilities

In this section we present a representation for all ingredients of our model, namely knowledge
about plan operators and their abstraction hierarchies, system assumptions about users’ capabilities
and beliefs, and stereotypes that contain default assumptions about certain user subgroups. The

partition approach (Cohen, 1978), which is supported by BGP-MS, is an elegant means for distin-
guishing between capabilities and beliefs in the user model representation.
We will use an example that includes the following agents:

Oscar a member of staff, a typical user of office programs
Trixie a guest who is a typical Unix user

Nick askilled student

Theo aless skilled student

Sue a person that is not well known to the system

Figure 2 shows the structure of all system assumptions about the beliefs of the users, of belief
stereotypes and the system's beliefs about the domain. Rectangles denote partitions. The labels
outside of partitions are partition names. All partition names in this figure end with "B", which
marks them as belief partitions. For instance, the partition SBSueB contains the system's beliefs
(i.e., assumptions) about Sue's beliefs. Partitions that are not leaves are stereotype partitions that
are labeled with their names and the suffix "B". The labels within rectangles are abbreviations of
plan concept names that belong to the respective partition (for reasons of simplicity we only show
plan concepts). The arrows between partitions express an inheritance relation between two parti-
tions (in the opposite direction of the arrow). Inherited concepts are not shown, i.e., although
SBOscarB is empty the system assumes Oscar to know the concepts app-print, user-get,
launch and open-file-tpx. The abbreviations of plan concept names mean the following:
app-print (print the file that is active in an application), user-get (user gets an object), launch (an

SB AlIB
) app-print
app-print ftp-dn-bin ftp-bin ftp-dn user-get
user-get ftp-dn-txt ftp-txt dnload-file launch
launch ftp-open ftp-cd mount-win open-file

open-file ftp-close ftp-lcd mount-ux
NetExpB
WinExpB
UxB ftp-dn

ftp-dn mount-ux ftp-dn-bin ftp-bin mount-win
ftp-open ftp-dn-txt ftp-txt
ftp-close ftp-open ftp-cd
ftp-cd ftp-close ftp-led
NetNovB \ / \ /
dnload-file rem-copy
SBSueB SBOscarB SBTheoB SBTrixieB SBNickB

Figure 2. Structure of the belief part of the example user model.

application), open-file-tpx (open a file with text processor of type X), ftp-download-file-bin
(download file with ftp in binary mode), ftp-download-file-txt (the same in text mode), ftp-open
(open ftp connection), ftp-close, ftp-bin (change ftp-mode to binary), ftp-txt (change ftp-mode to
text), ftp-cd (change remote directory of ftp), ftp-lcd (change local directory of ftp),
ftp-download-file (download file with ftp disregarding file type), download-file (abstract down-
load of a file), mount-win (mounting a directory with windows), mount-ux (the same with Unix),
remote-copy (copy from or to a different host).

The example shows the assumed beliefs of the mentioned agents and several stereotypes for
beliefs about different aspects of computer know-how in the areas of operating systems and net-
working. Partition SBTheoB contains beliefs that the system does not share. Agent Theo is as-
sumed to believe in the existence of plan concept remote-copy that allows arbitrary copy
operations from other computers. The system does not hold this belief.

The next figure shows the system's assumptions about the agents' capabilities. All labels of ca-
pability partitions have the suffix "C". As we separate the assumptions about capabilities of users
from their beliefs, we also need a separate set of stereotypes for capabilities.

While the belief stereotypes of our example represent assumptions about typical beliefs of cer-
tain user subgroups, the corresponding capability stereotypes represent typical permissions in the
example domain. Staff members have unlimited permissions, guest staff have no access to the
Internet (via ftp), and students have no access to other computers of the local network (via mount).

SDomB

AlIC

app-print

user-get

launch

open-file

HStaffC \Guest StudC
mount-win mount-win ftp-dn-bin ftp-bin
ftp-dn-bin ftp-bin ftp-dn-txt ftp-txt
ftp-dn-txt ftp-txt ftp-open ftp-cd
ftp-open ftp-cd ftp-close ftp-led
ftp-close ftp-lcd

SBOscarC SBTrixieC SBNickC SBTheoC

dnload-file mount-win

Figure 3. Structure of the capability part of the example user model.

SDomB is a special partition that contains the system's beliefs® about domain concepts (i.e.
any concept that is not a plan concept). We do not show any contents of SDomB because we
restrict the figures to plan concepts, as mentioned above.

6 Planning for Users - an Example

This chapter explains how the two different models of users’ capabilities and beliefs influence the
generation of a user-tailored plan. The example goal is:

The user wants to have a printout of the file xy.doc that is located on the remote

host konstanz. More precisely, he wants to have a new paper document that shows

the contents of that file.

Note that this rather simple goal requires two different tools: a text processor and a ftp-pro-
gram (or some mounting-tool). This is beyond the scope of usual help systems and even help as-
sistants.

Let constants F-KN-xy-doc denote the file in question, and USER the user. Then we may
write this goal in Predicate Logic:

dinfo fso-contents(F-KN-xy-doc, info) A paperdoc(Dx) A pd-contents(Dx, info) A
has(USER, Dx)

The same expression according to the UCPOP syntax:
(exists (fso-contents F-KN-xy-doc ?info)
(and (paperdoc Dx) (pd-contents Dx ?info)
(has USER Dx)))

Assume further that constant DX does not denote any object of the domain before the execution
of the plan, i.e., free (Dx) is true while p (Dx) is false for any other predicate p*. After the execu-
tion, the goal expression requires DX to denote a paper document, i.e., paperdoc (Dx) is true.

With the nomenclature of the last chapter, the user must use a text processor of type X to print
the file. This requires the file to be located in the local file system of the user's computer. De-
pending on the capabilities of the different users and on whether or not konstanz exports the
relevant directory, the goal may be achieved by downloading the file (via ftp, or in an arbitrary
way for Sue) or by mounting an appropriate directory of host konstanz. The results of the plan
generation are shown in Table 1.

Except for Trixie, all users can in principle reach the goal in both situations. For plans in ital-
ics, at least one plan step is unknown to the user according to the user model. In this case, the user
needs an explanation of the steps in question or the planner has to generate an alternative plan.
Note that this is the fact even for Theo who knows ftp-download but not the required and more
special ftp-download-bin. This must be distinguished from Sue's plan. The system cannot go into
details (i.e., refine the plan) because it does not know how Sue can perform the download.

Note that in our example it is impossible to generate a common plan that would work for all
users.

* SDomB is a direct super partition of SB. For clarity, we omitted it in figure 2.

* We omit a full presentation of the extensive representation of the start situation, which contains all facts
in the situation (like that F-KN-xy-doc is a tpx-file, is located in directory /home/otto/docs on host
konstanz, etc.). A complete description is available from http://zeus.gmd.de/~kuepper/UM99I.

Table 1. The results of the plan generation.

User Directory is exported Directory is not exported
Oscar mount fip
Trixie mount fails
Nick mount ftp
Theo fip fip
Sue download download
where stands for the plan
mount launch (text processor), mount-win (appropriate directory), open-file-tpx,
app-print, user-get
ftp launch (text processor), launch (ftp program),

ftp-open-connection (to computer konstanz),
ftp-lcd & ftp-cd (appropriate directories), ftp-binary-mode, ftp-download-file-bin,
open-file-tpx, app-print, user-get

download | launch (text processor), download-file, open-file-tpx, app-print, user-get

7 Conclusion

This paper introduced plan generation for advice-giving that considers users’ capabilities and
knowledge. We used a partial order planner that obtains its working set of plan operators from a
user model. Modeling users’ plan execution capabilities in a similar way as users’ beliefs allows
one to employ standard user model acquisition techniques. We demonstrated the use of stereo-
types.

The strict separation of beliefs and capabilities allows for the generation of plans that include
steps that are unknown to the user, rather than restricting plan generation by the user's knowledge.
This separation grants advice-giving systems the option to explain unknown plan steps to the user,
and leads to the next research question of generating a system response that enables a user to reach
his goals in the domain. It seems promising to extend the ideas of M. Young (Young, 1996) for
serving the needs of various users to fit into the approach of this work.

References

Bauer, M. (1996). Acquisition of user preferences for plan recognition. In Proceedings of 5th Interna-
tional Conference on User Modeling, Kailua-Kona, HI, 105-112.

Brachman, R., and Schmolze, J. (1985). An overview of the KL-ONE knowledge representation system.
Cognitive Science 9:171-216.

Breuker, J., ed. (1990). EUROHELP: Developing Intelligent Help Systems. EC, Kopenhagen.

Bylander, T. (1991). Complexity results for planning. In Proceedings of 12th International Joint Con-
ference on Artificial Intelligence, Sidney, Australia, 274-279.

Carberry, S. (1990). Plan Recognition in Natural Language Dialogue. MIT Press, Cambridge, MA.

Cohen, P. (1978). On knowing what to say: planning speech acts. Tech.Report 118, Department of Com-
puter Science, University of Toronto, Canada.

Devanbu, P., and Litman, D. (1996). Taxonomic plan reasoning. Artificial Intelligence 84:1-35.

Erol, K., Hendler, J., and Nau, D. (1994). Semantics for hierarchical task-network planning. Tech.Report
CS-TR-3239, Computer Science Dept., University of Maryland.

Erol, K., Nau, D., and Subrahmanian, V. (1995). Complexity, decidability and undecidability results for
domain-independent planning. Artificial Intelligence 76:75-88.

Horacek, H. (1997). A model for adapting explanations to the user's likely inferences. User Modeling and
User-Adapted Interaction 7:1-55.

Kautz, H. (1991). A formal theory of plan recognition and its implementation. In Reasoning about Plans,
Allen, Kautz, Pelavin, and Tenenberg, eds., Kaufmann, San Mateo, CA. 69-126.

Kobsa, A. (1991). Utilizing knowledge: the components of the SB-ONE knowledge representation work-
bench. In Principles of Semantic Networks, Sowa, J., ed., Kaufmann, San Mateo, CA. 457-486.

Kobsa, A., Miller, D., and Nill, A. (1994). KN-AHS: an adaptive hypertext client of the user modeling
system BGP-MS. Proceedings of the 4th International Conference on User Modeling, Hyannis, MA,
99-105.

Kobsa, A., and Pohl, W. (1995). The BGP-MS user modeling system. User Modeling and User-Adapted
Interaction 4:59-106.

McCoy, K. (1989). Generating context-sensitive responses to object-related misconceptions. Artificial
Intelligence 41:157-195.

McDermott, D., and Hendler, J. (1995). Planning: what it is, what it could be. Artificial Intelligence
76:1-16.

Penberthy, J., and Weld, D. (1992). UCPOP: A sound, complete, partial order planner for ADL. In Prin-
ciples of Knowledge Representation and Reasoning - Proceedings of the 3rd International Confer-
ence KR'92, Cambridge, MA, 103-114.

Pohl, W., and Hohle, J. (1997). Mechanisms for flexible representation and use of knowledge in user
modeling shell systems. In User Modeling: Proceedings of the 6th International Conference, UM97,
Chia Laguna, Italy, 403-414.

Russell, S., and Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Prentice Hall, Upper
Saddle, River, NJ.

Sacerdoti, E. (1977). A Structure for Plans and Behavior. Elsevier/North-Holland, Amsterdam, London,
New York.

Sarner, M., and Carberry, S. (1992). Generating tailored definitions using a multifaceted user model. User
Modeling and User-Adapted Interaction 2:181-210.

Sleeman, D. (1985). UMFE: A user modelling front-end subsystem. International Journal of Man-Ma-
chine Studies 23:71-88.

Weida, R., and Litman, D. (1992). Terminological reasoning with constraint networks and an application
to plan recognition. In Principles of Knowledge Representation and Reasoning - Proceedings of the
3rd International Conference KR'92, Cambridge, MA, 282-293.

Weld, D. (1994). An introduction to least commitment planning. Al Magazine 4:27-61.

Young, M. (1996). Using plan reasoning in the generation of plan descriptions. In Proceedings of 13th
National Conference on Artificial Intelligence, Portland, OR, 1075-1080.

Zukerman, ., and McConachy, R. (1993). Generating concise discourse that addresses a user's inferences.
In Proceedings of 13th International Joint Conference on Artificial Intelligence, Chambery, France,
1202-1207.

