
An LDAP-Based User Modeling Server
and its Evaluation*

Alfred Kobsa

Donald Bren School of Information
and Computer Sciences
University of California

Irvine, CA, U.S.A.
kobsa@uci.edu

Josef Fink
Department of Computer
and Engineering Sciences

University of Applied Sciences
Frankfurt, Germany

jfink@fb2.fh-frankfurt.de

Abstract

Representation components of user modeling servers have been traditionally based on simple file
structures and database systems. We propose directory systems as an alternative, which offer
numerous advantages over the more traditional approaches: international vendor-independent
standardization, demonstrated performance and scalability, dynamic and transparent management of
distributed information, built-in replication and synchronization, a rich number of pre-defined types
of user information, and extensibility of the core representation language for new information types
and for data types with associated semantics. Directories also allow for the virtual centralization of
distributed user models and their selective centralized replication if better performance is needed.
We present UMS, a user modeling server that is based on the Lightweight Directory Access Protocol
(LDAP). UMS allows for the representation of different models (such as user and usage profiles, and
system and service models), and for the attachment of arbitrary components that perform user
modeling tasks upon these models. External clients such as user-adaptive applications can submit and
retrieve information about users. We describe a simulation experiment to test the runtime
performance of this server, and present a theory of how the parameters of such an experiment can be
derived from empirical web usage research. The results show that the performance of UMS meets the
requirements of current small and medium websites already on very modest hardware platforms, and
those of very large websites on an entry-level business server configuration.

Keywords: user modeling server, directory server, LDAP, architecture, evaluation, performance,
scalability

* The UMUAI managing editor for this paper was Sandra Carberry, University of Delaware.

Alfred Kobsa
To appear in User Modeling and User-Adapted Interaction: The Journal of Personalization Research

2

1 Introduction and Overview

For nearly twenty years, researchers have been developing generic user modeling systems
(which have been called ‘user modeling shell systems’ and more recently ‘user modeling
servers’ [Kobsa 2001]). Such systems facilitate the development of user-adaptive applications
through ‘built-in’ core user modeling functionality that these applications can utilize for
providing user-adaptive services. In addition to these research prototypes, a number of
commercial systems have been recently put on the market (and a far larger number advertised on
short-lived websites) that aim at providing such functionality for a specific kind of user-adaptive
applications, namely web-based customer relationship management systems [Fink and Kobsa
2000; Kobsa et al. 2001].

Early user modeling shell systems were for the most part developed in the area of Artificial
Intelligence. Quite in its tradition, user models were generally stored in simple flat files, or in so-
called knowledge representation systems which themselves were implemented in (indexed) files
or databases. More recent user modeling servers predominantly use database systems for storing
information about users, and the recent commercial systems store user models in fairly
sophisticated database management systems.

In this paper, we will present a user modeling server that is based on a very different type of data
repository, namely directory systems. The use of directories for user modeling systems has
already been considered, and dismissed, by [Kummerfeld and Kay 1997]. We will however
argue that the reasons for their rejection do not hold true any more today. Rather, directory
systems offer a number of significant advantages over database systems that should make them
the data storage of choice for user modeling servers in the currently prevailing application
scenarios for user modeling.

In Section 2 of this paper, we will give a brief review of knowledge and data base management
systems that have traditionally served as data repositories of generic user modeling systems.
Section 3 introduces the alternative concept of directory systems, and specifically the
Lightweight Directory Access Protocol (LDAP). We discuss five dimensions along which
directory systems excel over database systems for user modeling purposes, as well as their
derivative ability to implement so-called virtually centralized distributed user models. We will
also describe a sixth dimension along which databases fare better than directories, but this is (at
least for now) not very relevant for user modeling. Section 4 presents the architecture of UMS,
an LDAP-based user modeling server that was used successfully in two different application
domains. The proposed architecture also includes solutions for scalability (to a user population
size that is realistic for contemporary web applications), and for user modeling with intermittent
network connectivity such as in user-adaptive mobile systems. In Section 5, we describe a
simulation experiment to test the performance and scalability of our user modeling server in real-
world application scenarios. We propose a theory of how such experiments should be conducted,
based on available client-side usage data (and not server logs that have been exclusively used so
far). Section 6, finally, summarizes the contributions and the resulting conclusions.

3

2 Traditional Data Repositories of Generic User Modeling Systems1

This section gives an overview of how user models have been stored in major generic user
modeling systems that have been developed to date.

GUMS [Finin and Drager 1986; Finin 1989] allowed programmers of user-adaptive systems the
definition of simple stereotype hierarchies and, for each stereotype, of Prolog clauses
describing stereotype members and rules prescribing the system’s reasoning about them. The
system was implemented in CProlog [Pereira 1996]. A ‘flat’ set of Prolog clauses contained
all assertions about the current user and stereotypes, as well as definitions of all Prolog
predicates that prescribed the system’s inference processes. In the spirit of Prolog, the
authors refer to the set of these clauses as a ‘data base’. They were all maintained in Prolog’s
in-core, native store of clauses though, and the system’s assumptions about the user were not
separated from its other clauses.

BGP-MS [Kobsa 1990; Kobsa and Pohl 1995; Pohl 1998] allowed assumptions about the user
and stereotypical assumptions about user groups to be represented in a first-order predicate
logic. A subset of these assumptions could be stored in a terminological logic. Inferences
across different assumption types (i.e., types of modals) could be defined in a first-order
modal logic. All knowledge of the system was encoded in a ‘flat’ list of clauses for the
theorem prover OTTER [McCune 1994], and was read into OTTER from one or more input
files. Alternatively, terminological knowledge and instantiated ground clauses could be
expressed in a KL-ONE-like language [Kobsa 1991]. All system knowledge including all
user models were maintained in the ASCON network storage [Bosch 1988] which was fairly
efficient due to extensive hashing, and stored persistently in a single file.

PROTUM [Vergara 1994] was implemented in IF Prolog and represented user model content as
a list of constants, each with associated type (i.e., observed, derived from stereotype, default)
and confidence factor. User models were stored in separate files per user and could also be
imported from the BGP-MS user model repository. They were kept in main memory during
runtime.

UMT [Brajnik and Tasso 1994] allowed the user model developer the definition of hierarchically
ordered user stereotypes, and of rules for user model inferences and contradiction detection.
UMT models were objects within the memory space of the Lisp process, and were
collectively read from and saved to a text file.

TAGUS [Paiva and Self 1994; Paiva and Self 1995] represented assumptions about the user in
first-order formulas, with meta-operators expressing the assumption types. It allowed for the
definition of a stereotype hierarchy, a library of misconceptions, and a number of user
models. The system was programmed in Prolog and Gödel [Hill and Lloyd 1993]. Each user
model was stored in a separate file that could be loaded anytime during runtime, and was
maintained in main memory during execution.

um [Kay 1995] was a user modeling toolkit that represented assumptions about users’
knowledge, beliefs, preferences and other characteristics as attribute-value pairs. Each piece

1 The authors would like to thank Guido Bosch, Giorgio Brajnik, Tim Finin, Judy Kay, Joseph Konstan, Ana Paiva, and John

Riedl for clarifications regarding the storage of user models in their respective user modeling systems.

4

of information (aka ‘component’) was accompanied by an indication of its source, a list of
evidence for its truth and falsehood, and other data. Partial models kept related components
together and organized them into hierarchies. The system was written in C and used the
UNIX directory system to store and organize the user models, with each partial model being
a directory. Standard UNIX permissions were used for access control. The persistent form of
a user model was stored in text files that were intended to be readable by users. More recent
user modeling servers from the same lab, Personis [Kay et al. 2002] and PersonisLite
[Carmichael et al. 2005], store components and evidence in two separate databases. They
were stored in Berkeley DB, which is not fully relational but very fast for large databases.

DOPPELGÄNGER [Orwant 1993, 1994, 1995] was a user modeling server that accepted
information about users from hardware and software sensors, collected them in user models
that were stored on the server, and allowed learning algorithms to operate upon the sensor
data and upon user models. Each user model contained a primary model, submodels and
backup models. At the storage level, a user model was a UNIX directory, and its components
were files in this directory. In fact, DOPPELGÄNGER was based on an early version of um
(described in [Kay 1990]). The decision to use many files was made to allow many processes
the access to a given user model at the same time [Orwant 1993].

Group Lens [Tornago 2006] originally employed various collaborative filtering algorithms
[Breese et al. 1998; Herlocker et al. 1999] for predicting users’ interests, based on explicitly
provided users ratings, implicit ratings derived from users’ navigation, and transaction
histories (e.g., shopping basket operations, purchases). GroupLens stored all user ratings in a
database, but kept a correlation matrix of all ratings in cache memory during runtime. This
created memory problems and huge performance problems on the largest sites. They were
solved temporarily with reduced-size models being selected statistically (with careful
sampling, the reduced-size models did not show much quality degradation). Group Lens
eventually moved to item-item models, which can be truncated substantially without much
loss of quality [Miller et al. 2004].

With the exception of Group Lens and, recently, Personis [Kay et al. 2002] and PersonisLite
[Carmichael et al. 2005], none of the developed generic user modeling systems seemingly paid
much attention to appropriate storage mechanisms. In the simplest case, all user models were
read from secondary storage at launch time (or were already part of the program code of the user
modeling system in the first place). In the most sophisticated case, the model of the current user
was individually read from a file at the beginning of the session with the respective user, and
saved to a file thereafter. During a session with a user, the complete user model was maintained
in main memory. In many cases, user models were also tightly intertwined with the
programming language (e.g., part of the LISP or PROLOG space). It is obvious that this
approach does not scale up when the number of users increases.

This disregard of storage considerations is not surprising though since these generic systems
were either designed for single-user applications only, or never tested with a larger number of
parallel applications and users. Researchers regarded other properties of generic user modeling
systems as more important, such as generality including domain independence, representational
expressiveness, and inferential capabilities (see [Kobsa 2001]).

In the next section, we will propose directory systems as an alternative, which offer numerous
advantages over previous approaches: demonstrated performance and scalability, dynamic and

5

transparent management of distributed information, built-in replication and synchronization, a
rich number of pre-defined types of user information, international vendor-independent
standardization, and extensibility of the core representation language for new information types
and for data types with associated semantics. Directories also allow for the virtual centralization
of distributed user models and their selective centralized replication if better performance is
needed.

6

3 Directories as the Foundation of User Modeling Servers

3.1 Introduction

Directories are specialized database management systems that were originally designed for
maintaining information about people in organizations, and later extended to also include
information about devices and services on a network. They are crafted to meet the needs of a
wide range of applications and are based on international standards that guarantee
interoperability between implementations of different developers and vendors.

The first of these international standards promulgated by ITU-T and ISO in the late 1980s was
the Directory Access Protocol (DAP, [Chadwick 1996; ITU-T 2001]). DAP was intended to be
used by clients for accessing an X.500 directory service. It did not gain much popularity, mainly
because it was too complex to be implemented and deployed on the hardware that was typical for
that time.

During the following years, LDAP emerged from the X.500 protocol family as a light-weighted
alternative. LDAP removed excessive complexity from X.500 DAP, significantly reduced
resource requirements, and took advantage of the popular TCP/IP rather than the OSI protocol
stack. At the same time LDAP still preserved many strengths of X.500, including its information
model (see [Fink 2004]), its versatility, and its openness. Many commercial systems have been
developed that are largely LDAP-compliant, including network-wide address books (e.g., Lotus
Notes[IBM 2006a] and Microsoft Exchange [Microsoft 2006a]), network operating system
directories (e.g., Microsoft Active Directory [Microsoft 2006b], Novell eDirectory [Novell
2006], IBM Tivoli Directory Server [IBM 2006b], and Sun Java System Directory Server [Sun
2006]), and special-purpose Internet directories (e.g., [Bigfoot 2006; Switchboard 2006;
WhitePages.com 2006]).

In the following, we will briefly introduce LDAP by means of the following four models:

• Information model, which defines the types of data that can be stored in a directory.
• Naming model, which describes how to organize and refer to directory data.
• Functional model, which prescribes how to access directory data.
• Security model, which defines how to control access to directory data.

For more information on LDAP, including the historical development of directories, we refer to
[Howes and Smith 1997; Howes et al. 1999; Loshin 2000].

3.1.1 Information Model

The basic unit of information in an LDAP directory is an entry. An entry represents information
about a (real-world) object, specifically a person, an organizational unit, a resource, or a service.
Below is an example of a directory entry for the hypothetical user Peter Smith (in LDIF, the
LDAP Data Interchange Format). In this example, dn is the ‘distinguished name’ that will be
explained further below. The entry is related to the object classes top and person, and has the
attributes cn (for common name), sn (for surname), age, sex, and continent.

7

dn: cn=Peter Smith, cn=User Model, ou=UMS, o=gmd.de
objectclass: top
objectclass: person
cn: Peter Smith
sn: smith
age: 36
sex: m
continent: eu

Each directory entry belongs to one or more object classes (e.g., person, device,
organizationalUnit). Object class definitions specify a class type, a set of mandatory and
a set of optional attribute types, and an object identifier. Each attribute is associated with an
attribute type, whose definition specifies a name and an object identifier, an indicator whether
one or multiple values are allowed for an attribute, an attribute syntax, a set of matching rules
that specify how attribute values are to be compared for equality, ordering, and substring
matching, an indicator whether an attribute is intended to be used by the system or the user, and
possible restrictions on the range or size of attribute values.

3.1.2 Naming Model

The LDAP naming model defines the organization of LDAP entries in an inverted tree structure.
In this respect, LDAP’s naming model resembles a hierarchical file system (as, e.g., in UNIX),
where each directory contains files and sub-directories. Besides this similarity, however, there
are also a few differences between LDAP’s naming model and a hierarchical file system.

In a hierarchical file system, the root directory is the common ancestor and contains all files and
directories of the hierarchy. The root entry of an LDAP tree, in contrast, is a special entry that
contains server-specific information (e.g., about supported LDAP versions, available operations
and security features, and backup servers that can be contacted in case of a breakdown). No
domain data can be placed in the root entry of an LDAP tree. In a hierarchical file system, a node
is either a file or a directory, but not both. In contrast, entries in an LDAP tree contain data
(represented as attribute-value pairs) and at the same time can have child entries underneath
them.

The final difference between LDAP and a hierarchical file system relates to the naming of
individual nodes within the tree through full path specification. Names in LDAP are in reverse
order compared with, e.g., the UNIX name convention (i.e., the leaf entry comes first). The
distinguished name of our above example entry,

cn=Peter Smith, cn=User Model, ou=UMS, o=gmd.de

is formed by concatenating the comma-separated names of the entries from the leaf to the root
(UMS thereby stands for the entry ‘user modeling system’, and gmd.de for the organization
that hosts it).

LDAP also supports non-hierarchical topographies by so-called ‘alias entries’. Using the analogy
to the UNIX file system again, aliases are comparable to symbolic links. Although aliases can be
used for connecting directory partitions that reside on different LDAP servers, LDAP’s facility
of choice for ‘intra-linking’ distributed directories are ‘referrals’. Quite comparable to aliases,

8

referrals are explicit references that connect the different partitions of a distributed directory (for
an example of a distributed directory, we refer to Figure 1). The main advantage of referrals is
that they are standardized as a part of the LDAP v3 specification.

3.1.3 Functional Model

The LDAP functional model comprises three groups of operations for accessing a directory:

• query operations (namely search and compare) allow for searching and retrieving
information,

• update operations allow for adding, deleting, renaming, and modifying entries,

• authentication operations (namely bind and unbind) and control operations (abandon) allow
for authenticating clients and servers and for controlling previously initiated LDAP
operations.

The server verifies a client’s credentials and, if approved, grants it certain access privileges.
These privileges persist until the end of a session or until the client re-authenticates. Clients can
terminate a session anytime using unbind, and terminate ongoing LDAP operations (e.g., a long-
running search) using abandon. Besides these predefined operations, custom operations can also
be defined in a standardized manner by taking advantage of the ‘extended operation’ facility.

3.1.4 Security Model

LDAP’s security model provides standardized support for authentication, signing, and
encryption:

• Authentication allows for the verification of the identity of another party. LDAP’s security
model offers a standardized interface to various authentication schemes including anonymous
authentication (i.e., no authentication), simple passwords, (communicated as plain text or
encrypted via an SSL-secured connection), X.509 certificate authentication via SSL, and
SASL-based authentication and encryption using e.g. Kerberos.

• Signing ensures the authenticity and integrity of information exchanged between clients and
servers. LDAP’s security model supports signing through e.g. SSL. Within an SSL
connection, each block of information is accompanied by a cryptographic checksum that
allows clients and servers to verify the sender and to check whether the data has been
tampered with during transit.

• Encryption allows for the encoding of all exchanged information. During the negotiation
phase of an SSL connection, the two parties (e.g., a client and a server) agree on a protocol
(e.g., RC4, DES, IDEA). Besides SSL’s encryption facilities, LDAP’s security model also
supports alternative encryption services (e.g. MD-5) via its SASL interface.

Against this backdrop, it may come as a surprise that there is currently no standard access control
mechanism for LDAP. In our work, we decided to take advantage of the access control model
offered by Sun Java System Directory Server for granting directory access to anonymous and
authenticated clients. Directory Server establishes access control through a set of access control

9

lists, each of which implements an access control rule and is usually attached to a directory entry
via the special attribute aci (for access control information). By default, all users are denied
access of any kind to the directory. An aci then grants or denies access to its directory entry and
to all entries beneath. Its granularity can be very fine, if necessary down to an operation type on
a single attribute of a single node issued by a particular user from a dedicated IP address during a
specific period in time.

3.2 Directories versus Databases

In the following, we identify six characteristics of user modeling servers that seem to be
important for the effective support of user-adaptive applications: the availability of pre-defined
schemas that are relevant for user modeling and can be freely extended; the management of
distributed information, replication, performance and scalability, adherence to open standards,
and consistency management. We argue that directory systems generally rate higher than
traditional database systems on the first five of these dimensions. While database systems rate
better with regard to consistency management, there currently seems no user modeling
application around that would impose such requirements. We also discuss the ability of LDAP to
not only support centralized but also ‘virtually centralized’ user modeling servers, which we
regard as crucial for successful deployment to practice. This is not an independent characteristic
though, but a consequence of the other properties that we discuss. We finally conclude that the
wealth of useful characteristics for user modeling should make directories, and specifically
LDAP, the storage of choice for user modeling servers. Databases should only have a role in
smaller applications where these characteristics are not so important, and in applications that
pose high demands on consistency management.

3.2.1 Pre-defined Schemas and their Extensibility

LDAP directories provide built-in support for storing and retrieving various kinds of people-
related information including names, phone numbers, salaries, photographs, digital certificates,
passwords, preferences, and even mobile ‘user agents’. Moreover, they support the
representation of information about organizations, groups (e.g. administrators) and devices (e.g.
printers). Pre-defined schemas exist for these information types (e.g., organization,
organizationalUnit, device, person, residentialPerson, organiza-
tionalPerson, organizationalRole, etc.).

Directories are not limited to a fixed schema though: based on predefined standard types and
vendor-specific types of information, arbitrary extensions can be defined in order to cater to
specific modeling needs. This not only includes new types of information (e.g., descriptions of
user modeling services, users’ locale), but also custom primitive data types with new semantics
(e.g., German telephone numbers, probabilities of users’ interests) and behavior (e.g. dynamic
entries [Yaacovi et al. 1999], such as transient information about the user’s locale that must be
periodically refreshed in the user model).

A set of pre-defined primitives for representing basic information about users is surely
advantageous, specifically if they are standards-based (see Section 3.2.5). Such primitives
facilitate the exchange of information between applications and user modeling servers, and

10

between different user modeling servers. They may also speed up the development of user
modeling servers in general. Likewise, ease of extensibility is also crucial since there currently
exists no generally accepted user model ontology yet (see [PAPI 2001; Razmerita et al. 2003;
Heckmann et al. 2005] for rudimentary beginnings though). When comparing LDAP with
current database systems, LDAP clearly possesses far more predefined types of user information
and methods for extending them. In contrast, only few database systems offer user-related
information types and functionality for defining new primitive data types via low-level
extensions to the database nucleus (e.g. [Informix 2006]). These features are proprietary though
and therefore impair the interoperability between different database systems and their clients.

3.2.2 Management of Distributed Information

LDAP directories can manage information that is dispersed across a network of servers by
linking this information through referrals. In the example of Figure 1, the user models stored on
server B and the Usage Model stored on server C can still be accessed from server A since it is
linked to the administrative structure on A (for a brief presentation of the User Model and the
Usage Model, we refer to Chapters 4.2.1.1 and 4.2.1.2). Historically, this feature has been
utilized for deployments where the responsibility and authority for the management of directory
information is distributed (e.g., a branch of a firm is responsible for information about local
employees). The distribution is transparent to the outside world, i.e. the directory appears as a
single consistent repository. Scalability considerations provide another important motivation for
distributing information. It is often better to design a large directory as a network of smaller
parts, since this often guarantees much better performance, scalability, availability, and
reliability of the overall service than a single large directory. Moreover, a distributed directory is
in many cases cheaper to implement and simpler to manage (see [Howes et al. 1999] for more
information on distributed LDAP deployments and resulting advantages).

 Directory on Server A

Directory on Server B Directory on Server C

 o=gmd.de

ou=UMS

cn=User Model

cn=Peter Smith

cn=Interests

cn=Geschichte cn=Gastronomie
…

cn=George Brown

…

cn=Usage Model

cn=DMI Events

…

…

Figure 1: Distributed directory (based on [Howes et al. 1999])

The ability to maintain distributed repositories with user information already seems important
today. It will become even more important in future applications of user modeling servers, for
the following reasons:

11

• User information is already distributed in current applications. Customer relationship
management systems on the web utilize several sources of user information, such as user
profiles, purchase records from legacy systems, and customer segmentations from marketing
research. Commercial user modeling servers that support such applications integrate these
information sources already today to a greater or lesser extent [Fink and Kobsa 2000].

• Distribution is foreseen for identity management on the web. Traditional identity management
systems (e.g. [Passport 2006; Yodlee 2006]) require that users store their data in a single web
repository. More recent developments such as [Liberty 2006], [enQuire 2006] and [Kobsa and
Schreck 2003] pursue a federated approach, which ensures “that the use of critical personal
information is managed and distributed by the appropriate parties, rather than a central
authority” [Liberty 2006]. Federated identity management carries fewer security risks since it
avoids a single point of failure, caters better to users’ privacy concerns by not forcing them to
divulge all data to a single authority, and also gives the local repositories more control over
the recipients of user information.

• User modeling and user models are becoming ubiquitous. User models for smart appliances
have already appeared on the market or will become reality soon that maintain relevant user
characteristics (e.g., interests and preferences) and adapt their functionality accordingly.
Examples of such appliances include

- car radios that learn drivers’ preferred stations, volume and tone, and whether to interrupt
with traffic alerts, and store their preferences on their personal car keys,

- mobile phones that pre-load web pages that are presumably relevant (e.g., stock quotes),
- DVD and video recorders that proactively record television programs that are presumably

interesting to a TV viewer according to the preferences that it learned from their viewing
patterns, and

- refrigerators that track the stored food and reorder out-of-stock items via the Internet,
thereby taking a user’s preferences into account.

While these small user-model applications are largely independent of each other, it may
make sense in some cases to let them communicate with each other and exchange user
information, such as a wristwatch contacting the refrigerator while in a grocery store and
reminding the user to buy groceries that are running low.

Database systems can handle data distribution too. The possible scale and granularity of
distribution, however, are quite different from LDAP. Databases often restrict the granularity of
distribution to the level of database tables, and the scale of distribution to a rather small number
of sites. LDAP directories are not limited in these respects and support arbitrary levels of
granularity and distribution scales. An extension of LDAP, the Connection-less Lightweight
Directory Access Protocol (CLDAP, [Young 1995]) additionally facilitates the quick look-up of
attribute values without the need for a permanent connection, which becomes very interesting in
mobile scenarios and for appliances with limited capabilities.

12

3.2.3 Replication

Replication of user model information is very attractive for remote user-adaptive applications. It
allows these applications to temporarily duplicate the whole user model or substructures, to
manage them locally while offline (including local edits and additions), and to synchronize the
local copies with the original data (which may have also changed in the meantime) when this
becomes possible again. Figure 2 shows a situation where the User Model on server A has been
replicated in its entirety both on servers B and C (we omitted the labels in the replicas for
reasons of brevity).

Directory on Server A

Replica on Server B Replica on Server C

Replication protocol

cn=User Model

cn=Peter Smith

cn=Interests

cn=George Brown

cn=Interests

…

… …

… …

… … … …

Figure 2: Replicated User Model (based on [Howes et al. 1999])

Historically, replication was primarily motivated by availability and performance considerations
when deploying directories to real-world environments. Maintaining replicas of directory
information can significantly increase the availability and performance of a directory service
from a client’s point of view. These benefits can be equally leveraged in user modeling
scenarios:

• Availability. If a remote user modeling server, or the network connecting it with a user-
adaptive application, becomes (temporarily) unavailable, access to a local replica of user
information enables the application to still provide personalized information and services.
This can e.g. increase the autonomy of mobile users, smart appliances and user agents, by
reducing their dependence from the availability of a network connection.

• Locality. In general, the closer user information is to client applications, the better the quality
of service and, in some cases, the achievable level of security. Creating a local replica of a
user model may increase the security of user information since network communication can
be reduced to what is necessary to keep replicas synchronized (see [Kobsa and Schreck 2003]
for related threat models).

13

• Performance. Replicating a central repository on a network may also increase performance.
For instance, user-adaptive applications can avoid network congestion by utilizing a local
replica of a user model rather than one that is retrieved from a remote user modeling server.

Replication is currently far more powerful in directory systems than in database systems. For
one, LDAP directories are replicated on a far larger scale than databases. For example, employee
directories in international organizations may have replicas in hundreds or thousands of branch
offices all over the world. In contrast, only few database systems support replication, and then
typically with few copies only. It should be noted though that the replication and distribution
mechanisms of LDAP may also create disadvantages, such as temporary inconsistencies between
a user model and its copies, and the computing efforts needed to resolve such replication
conflicts. Furthermore, directory replication requires careful planning and deployment (see
[Howes et al. 1999] for a detailed discussion).

3.2.4 Performance and Scalability

Performance and scalability are very important criteria for user modeling applications,
particularly when those are to be deployed to the web. Directories have been designed to meet
the needs of a wide variety of Internet and intranet applications (e.g., e-mail servers and clients,
Web server applications and browsers, groupware servers and clients, and lightweight database
applications). Scalability is therefore of paramount importance for directories since the number
of applications that will utilize them is often not known at the time of deployment. Databases, in
contrast, are often designed for a dedicated set of database applications.

Directories are specifically optimized for search operations; their performance with regard to
updates is considered less important. While it is true that performance is vital for database
systems as well, their typical workload differs considerably from directories. Databases are
optimized for a relatively balanced ratio of search and update operations (as is the case for many
commercial transactions). [Shukla and Deshpande 2000] found that databases outperform
directories when a given query matches a large number of database entries or has a large result
set. If the number of matching entries and the overall result set are small, however, directories
showed a far better search performance in the authors’ evaluation than databases.

3.2.5 Open Standards

Adherence to open standards in the design of user modeling clients and servers is very important
since this improves their interoperability. There already exist efforts in some subfields of user
modeling to come up with standards (e.g., [Kobsa et al. 1996], [Kummerfeld and Kay 1997],
[Goodman et al. 1999], and [LTSC 2006]), although without many results so far.

14

LDAP is highly standardized. The most important areas of standardization are:

• LDAP protocol specifications for versions 2 and 3, namely RFCs2 1777-1779 and 2251-2256.
Some of these standards are in turn based on X.500 standards (e.g., RFC 2256 which defines
the syntax and matching rules for attribute types and object classes in an LDAP user schema,
is based on X.501, X.520, and X.521).

• Proposed extensions to LDAP version 3, including RFC 2589 for managing dynamic LDAP
entries that need to be periodically refreshed by client applications in order to persist; RFC
2820 for common requirements towards interoperable LDAP access control models; RFC
2713 for LDAP schema elements that represent Java objects; and RFC 2714 for schema
elements that host CORBA object references.

• Related Internet standards or proposed standards that have been adopted by LDAP, including
the Simple Authentication and Security Layer (SASL, RFC 2222). SASL is a generic
framework for negotiating security parameters between applications, e.g., for authentication,
encryption and signing. LDAP version 3 provides native support for SASL.

• Additional security standards besides SASL, such as X.509 certificates (RFCs 2559 and RFC
2587), the Secure Sockets Layer protocol (SSL) and the Transport Layer Security protocol
(TLS, RFC 2246).

• The LDAP Data Interchange Format (LDIF, RFC 2849), a text-based format for representing
and exchanging directory content.

• A C programming interface for LDAP (RFC 1823), and several APIs for Java that are
available as Internet Drafts (e.g. [Weltman et al. 2005]). Moreover, there exist a number of
proprietary and mostly freely available software development kits (SDKs) for a variety of
languages including C, C++, Java, Perl, and Basic.

Although several standards exist for databases as well (e.g. [ISO 1989, 2003] for SQL), their
number and scope falls far short of those for directories. This lack of standardization has many
implications, most importantly that no real interoperability can be achieved between database
systems of different vendors (e.g., an Oracle client application will generally not work with a
Sybase database).

3.2.6 Transaction and Replication Consistency

A transaction is a group of logically coherent operations, e.g. a set of queries and additions that
result in a low-level adaptation at the interface (including all internal inferences in the user
model, such as stereotype activation or de-activation). Transactions should adhere to the well-
known ACID properties (Atomicity, Consistency, Isolation, and Durability; see [Fink 2004] for
more information). Consistency, for example, means that a transaction transforms a user model
from one consistent state into another consistent state. If such a state cannot be achieved (e.g.,
since integrity constraints are being violated), the user model has to be reset to the original state
(see Fink [Fink 1999] for related examples).

2 RFCs (Request for Comments) are documents of the Internet Technology Task Force (http://www.ietf.org). They describe

many aspects of Internet communication, e.g., networking protocols, procedures, programs, and architectural concepts.

15

To the best of our knowledge, none of the interfaces and communication protocols that have
been proposed in the user modeling literature so far (e.g., [Kay 1995; Kobsa and Pohl 1995;
Orwant 1995; Paiva and Self 1995; Kobsa et al. 1996; Carmichael et al. 2005]) puts ACID-
compliant transactional facilities at the disposal of the application developer. A static and
restricted form of transaction support can be found in a number of systems including the PAT-
InterBook system [Brusilovsky et al. 1997] and in LDAP. Only a few directories support
transactional consistency that goes beyond the scope of a single LDAP operation. Compared to
this, database systems outperform directories with their full support for transactions.

Database systems and directory systems also exhibit differences with regard to replication
consistency. Directory systems support hundreds or thousands of replicas (e.g., a globally
distributed staff directory of a multi-national firm). Deployed user modeling currently seems to
be implemented with an assumption that loose consistency is acceptable. The administrative
overhead is therefore kept low. Databases in contrast normally support strong consistency, i.e.
database replicas have to be in sync at all times. Maintaining such strong consistency, however,
requires a considerable amount of system resources (see [Fink 2004]). This is one of the main
reasons why databases normally support a small number of replicas only.

User modeling currently seems to be content with loose consistency. We are e.g. not aware that
user-adaptive web stores that record in a user profile the items that the user put into her shopping
cart see a strong need to correct such an entry in the unlikely event that the request to the remote
shopping cart server fails or times out. Likewise, developers of user-adaptive handheld guides
that foresee local replication of a user model on the Internet to respond to temporary connection
failures do not seem to see a pressing need to update the local user model immediately when the
central model changes (e.g., since the user accesses information on a public terminal rather than
the handheld device), and vice versa.

3.3 Virtual Centralization Using LDAP

Integrating user information that is scattered across a network (no matter whether it refers to the
same or different users) is of paramount importance, specifically for businesses [Fink and Kobsa
2000]. There has been some debate recently whether this integration should occur proactively by
storing all user information in a central repository, or ‘on the fly’ when needed (specifically
through communicating agents, each of which is in charge of one of the local repositories that
need to be integrated). [Fink and Kobsa 2000] emphasize the merits of the centralized approach,
which include: up-to-dateness of user information; avoidance of duplication and resulting
potential for inconsistencies; compact storage when generic classes (‘stereotypes’) are present;
easy availability to different applications (and possible synergy effects due to the fact that user
information acquired by one application can be employed by other applications and vice versa);
and increased security [Schreck 2003].

All current commercial user modeling systems follow the centralized approach [Fink and Kobsa
2000]. [Yimam and Kobsa 2003] report that in a slightly different domain, namely expert finding
in organizations based on locally stored expertise models, the performance of the agent-
communication approach turned out to be unacceptable. They therefore argue for an aggregate
expert model that is continuously fed from the individual local models.

Central servers in general also pose challenges, namely with regard to availability and
scalability. [Orfali et al. 1994] discuss these problems in detail, and present solutions with regard

16

to availability. Other reasons for avoiding centralization may also exist: [Vassileva et al. 2003]
report having abandoned their originally centralized solution for a university-wide collection of
student-related information since central processing no longer suited the heterogeneity of user
information, usage purposes, and decision rules.

In their ‘future work’ section, [Fink and Kobsa 2000] already pointed out that ‘centralized user
modeling’ does not necessarily imply the physical centralization of user information (although
this has been the case in all research prototypes and commercial user modeling servers that have
been developed so far). An alternative is the concept of ‘virtually centralized’ user information,
which is extremely well supported by LDAP. Virtual centralization can come in many shades.
Figure 1 shows a situation in which A is the central access point to all user information on the
server. Integration of information on B and C is achieved by following links at runtime.3 If
runtime integration is detrimental to performance, or not advisable because of insufficient
availability of B and C, some or all information on B and C can be replicated on A.

An interesting aspect is that B and C do not even need to be LDAP servers to allow for virtual
integration. [Fink 2004] explains in detail how directory synchronization software from vendors
like [Persistent 2006] and [Critical Path 2006] allows for a fusion of user data in legacy systems
with an LDAP user modeling server. This can be achieved through a meta directory that contains
a replica of the data in B and C. Integration of non-LDAP data can however also be realized
through a virtual directory that retrieves values from legacy databases on demand.4

It should be noted that the support of virtual integration is not an independent property of LDAP,
but rather a consequence of its support for distributed repositories, (loose) consistency
management, and replication. In a virtually centralized user model architecture, furthermore, the
decision between central storage, distributed storage, and distributed storage with (partial or full)
central replication is not one that is made by an application developer who is in charge of the
user modeling aspects. Instead, it will be made by a system administrator based on service
quality and consistency needs. It may well be that much of the tension between centralized and
distributed user models [Vassileva et al. 2003], while valid from a systems administration point
of view, is a non-problem from a user modeling point of view.

3.4 Consequences for User Modeling

Directories generally surpass databases with regard to the availability of pre-defined schemas for
people-related information, extensibility, the management of distributed information, the
possible extent of replication, performance and scalability, and adherence to standards. User
modeling servers and clients that take advantage of directory technology are likely to enjoy a
considerable degree of openness and flexibility. As has been explained in Section 3.2.4 though,
databases manage consistency better, both with regard to individual transactions and with regard
to global consistency between the original data and their replicas. They also perform better when
large amounts of data have to be retrieved, or when the number of updates approaches the
number of seeks.

3 [Fink 2004] discusses how link chasing can occur at different levels of transparency, with different security implications.
4 Directory synchronization software allows for one-way and two-way synchronization of data that may be fused from several

probably heterogeneous data sources (see [Fink 2004] for details).

17

Based on our discussion of the need for these characteristics in the area of user modeling, we
argue that directories and not databases should be the storage mechanism of choice for user
modeling servers. Databases should only have a role in smaller applications where the
characteristics in which LDAP excels are not so important, and in applications that pose high
demands on consistency management. To the best of our knowledge, however, there does not
seem to be a strong demand in the current user modeling literature for a high data refresh rate in
the user model, nor a need for retrieving large amounts of user information or for very
sophisticated transaction mechanisms (see Fink [1999]).

[Kummerfeld and Kay 1997] already considered LDAP as a candidate for a user model access
protocol, but dismissed it on the grounds that it is difficult to “extend the types of information
stored in the database ‘on the fly’”. While the schema can be changed, “this is usually a job for
the directory administrator and cannot be done easily by a user program during a session”. The
authors reason though this may not be a constraint for many applications.

This deficiency has since been addressed: LDAP version 3 now includes client-side schema
manipulation options [Wahl et al. 1977]. In retrospect, the objections of [Kummerfeld and Kay
1997] have been vindicated. Schema extensibility became an indispensable feature for today’s
deployment scenarios, since it allows one to cater to evolving data requirements without
affecting the overall service. With previous LDAP versions, extending the schema (e.g., adding
new attributes to a user’s profile) typically required an administrator to stop the LDAP server,
change the schema, start a reconfiguration process, and finally reboot the server. Such a
procedure is unacceptable in today’s application environments, which require a service with
basically no downtime.5

5 According to IEEE, the lowest availability level called ‘stable’ is defined by 99% uptime, which translates into 3.7 days of

planned or unplanned downtime per year. Most commercial directory servers, however, have to be operated at the service level
of ‘high availability’, which mandates 99.99% uptime, i.e. a maximum downtime of 52.6 minutes per year.

18

4 Architecture of an LDAP-Based User Modeling Server

4.1 Overview

Following our conclusions in Section 3.4, we developed our user modeling server (UMS) as an
LDAP directory server6 that is complemented by several ‘pluggable’ user modeling components
and can be accessed by external clients. Figure 3 gives an overview of this architecture. The
central Directory Component comprises the sub-systems Communication, Representation, and
Scheduler. The Communication sub-system is responsible for handling the communication with
external clients of the user modeling server (e.g., user-adaptive applications), and with the User
Modeling Components which are internal clients of the Directory Component. Each User
Modeling Component performs a dedicated user modeling task, such as collaborative filtering,
domain-based inferences, etc. The Representation sub-system is in charge of managing the
directory contents (mostly user information). The main tasks of the Scheduler are to wrap the
LDAP server in a component interface and to mediate between the different sub-systems and
components of the User Modeling Server.

User Learning
Component (ULC)

Mentor Learning
Component (MLC)

Domain Inference
Component (DIC)

Communication

Directory Component

R
e
p
r
e
s
e
n
t
a
t
i
o
n

S
c
h
e
d
u
l
e
r

Current User
Modeling Components

User Modeling Server

Legend:

CORBA

LDAP

ODBC, FIPA

Commercial
LDAP server

Example User
Modeling Clients

Personalized
Tourist
Guide

Personalized
Shopping

Site

Figure 3: Overview of the server architecture

6 We used the Directory Server from iPlanet which has meanwhile morphed into Sun’s Java System Directory Server [Sun

2006].

19

The Directory Component and the User Modeling Components communicate via CORBA [Pope
1997; OMG 2001] and LDAP. This communication infrastructure does not mandate a specific
distribution topography. Components can be flexibly distributed across a network of computers,
e.g. dependent on available computing resources.

Below we describe the Directory Component in more detail. The examples will be taken from a
deployment of our user modeling server in the Deep Map project [Malaka and Zipf 2000; Deep
Map 2001], which is concerned with the development of personal web-based and mobile tourist
guides. We then summarize the User Modeling Components and the external User Modeling
Clients that were defined in this project (see [Fink and Kobsa 2002; Fink 2004] for a more
detailed description). While the individual elements of the user modeling server can be selected
and configured differently for each application scenario, the choices that were made in the Deep
Map project are very representative of web-based applications that cater to users’ interests.

4.2 Directory Component

4.2.1 Representation Subsystem

The task of the Representation subsystem of the Directory Component is to store various models.
The formal definition of the models hosted by the UMS is based on standard LDAP object class
and attribute definitions. Nearly all schema elements used in the Representation component are
part of the standard LDAP protocol. When adding new object classes to the UMS, we tried to
adhere as much as possible to standard schema elements, in order to facilitate the deployment of
the UMS to other user modeling scenarios. The current version of the UMS for Deep Map hosts
a User Model, a Usage Model, a System Model, and a Service Model. These models can be seen
in the left frame of the browser screen shot shown in Figure 4.

Figure 4: Overview of the models hosted by the User Modeling Server

In the right frame of the browser, we see various attributes and associated values for the
currently selected root entry gmd.de. One important attribute is aci, which provides access

20

control information. Others are the name (gmd.de) and the standard LDAP object classes that
are associated with the root entry (namely top and organization). Each of these object
classes adds a number of required and optional attributes. The class organization, for
instance, adds name, postal address, telephone number, etc. (only those attributes of gmd.de
that contain at least one value are shown in Figure 4). All mentioned attributes may be modified
by clients provided they have sufficient access rights. The so-called ‘operational attributes’
createtimestamp, creatorsname, modifiersname and modifytimestamp record
all modifications and may not be changed. For more information on LDAP’s Information Model
and Naming Model, we refer to Sections 3.1.1 and 3.1.2 as well as Chapter 5 of [Fink 2004].

4.2.1.1 User Model

The left frame of Figure 5 shows three user models, one for Peter Smith, one for George
Brown, and one for a stereotype Kunstliebhaber (art lover). In general, user models in
Deep Map comprise a demographic part (which is mainly based on standard LDAP object class
and attribute definitions) and a part for users’ interests and preferences. The demographic
attributes for Peter Smith (whose entry is currently selected in the left frame) are shown in
the right frame of Figure 5. Since Peter Smith was assigned to the object classes top and
person, the demographic part comprises required attributes of person (namely the common
name cn and the surname sn) and optional attributes (e.g., the encrypted userpassword).
Other visible application-specific attributes include age, continent and sex. Several other
inherited attributes (e.g., description, telephone number) have not been filled with
values yet.

Figure 5: User models

21

The major part of a user model in Deep Map describes users’ interests and preferences. The
topography and terminology of this part corresponds to the domain taxonomy of Deep Map7,
which is maintained in the System Model (see Section 4.2.1.3). Figure 6 depicts the user model
of Peter Smith, with his interests being unfolded in the left frame. They range from
Geschichte (history) to Natur (nature), which itself is divided into several sub-interests.

Figure 6: Interest model of Peter Smith

The interest in Umweltbelastung (environmental burden), which is a sub-entry of Natur, is
currently selected. User attributes and operational attributes for this entry are shown in the right
frame. They mostly represent inferences and probabilities that are being computed by the User
Modeling Components in the Deep Map domain (see [Fink and Kobsa 2002] for detailed
explanations).

4.2.1.2 Usage Model

The Usage Model acts as a persistent storage for usage-related data within the UMS. It
comprises usage data communicated by the application, and information related to the processing
of these data in User Modeling Components (e.g., a counter for Peter Smith’s interface
events related to Umweltbelastung). In the left frame of Figure 7, we see the hierarchy of
the Usage Model from an administrator’s point of view. It comprises the following parts:

7 This correspondence can be weakened or even abandoned in deployment scenarios where a domain taxonomy cannot be

defined beforehand (i.e., when an open corpus of terms is used). [Fink 2004] describes the configuration parameters that are
available for such cases.

22

Figure 7: Usage model

• DMI Events contains usage data communicated by the application. Each entry in this sub-
tree describes a Deep Map interface event in terms of one or more interests from the domain
taxonomy that can be attributed to the user based on this event. For instance, Peter
Smith’s request for a document about the environmental impacts of tourism may be
described through an attributed interest Umweltbelastung.

• DMI Events Processed includes information that is required for, and results from,
processing usage data contained in DMI Events (e.g., the aforementioned event counter for
Umweltbelastung).

• Backup and Backup History may contain events from DMI Events that have already
been processed by User Modeling Components. The main motivation for stockpiling interface
events is to preserve them for later processing and analysis, e.g. with visualization and data
mining tools (which would be external User Modeling Clients in Figure 3).

4.2.1.3 System Model

The System Model includes relevant information about the application domain for User
Modeling Components of the UMS, as well as other information that facilitates their operation.
Its most important content is the aforementioned domain taxonomy.

Figure 8: System model: classifiers and demographics

23

In the current version of the UMS for Deep Map, the System Model comprises the following
attributes (see Figure 8):

• Classifiers contains templates for assigning continuous attribute values to classes.

• Demographics specifies those attributes in the demographic part of a user model that can
be used for computing groups of similar users. In the current version of the UMS for Deep
Map, this information is mainly relevant for the Mentor Learning Component (see Section
4.3).

• Interests constitutes the domain taxonomy of Deep Map. This sub-tree comprises five
levels with nearly 500 leaf entries.

4.2.1.4 Service Model

The Service Model is divided into three parts, each of which is dedicated to a single User
Modeling Component. Each entry represents a description of a server-internal event type in
which a User Modeling Component is interested. So-called ‘basefilters’ allow one to restrict the
portion of the overall taxonomy that must be monitored (e.g., DMI Events only). Events can be
triggered before and after an LDAP operation is executed by the server. Post-notifications allow
a User Modeling Component to react on the outcome of an LDAP operation (e.g., start
processing an interface event that has been added to DMI Events). Pre-notifications allow a
user modeling component to be invoked beforehand (e.g., carrying out consistency checks on
interface events that have been added to DMI Events).

4.2.2 Scheduler

The second subsystem of the Directory Component is the Scheduler. Its main task is to mediate
between the Directory Component and the User Modeling Components. User Modeling
Components can subscribe to certain types of UMS events by maintaining event subscriptions in
the Service Model (see Section 4.2.1.4). This approach limits the amount of communication,
allows for the addition and removal of user modeling components at runtime, and for their
dynamic distribution across a network of computers. Event vectors submitted by the Scheduler
are entered into a separate queue before being periodically processed by the ULC. This reduces
the amount of synchronous communication between the ULC and the Scheduler to a minimum.

A second task of the Scheduler is the provision of user modeling extensions to the LDAP
protocol. For instance, if a new user model has to be created, several standard LDAP operations
must be executed in a particular order: checking for an already existing model, establishing the
basic topography of a new model, setting appropriate access rights, and populating the model
with default values. Moreover, rollback mechanisms have to be provided that preserve model
consistency in case of potential problems during the creation process. Centralizing these
administration tasks in the Scheduler preserves model consistency and relieves administrators
and application programmers from laborious and error-prone administration and programming
tasks. In the current version of the UMS for Deep Map, we implemented two operations for
creating and deleting a user model using the standard mechanisms for adding custom extensions
to the standard LDAP protocol.

24

4.2.3 Communication

The Directory Component and the User Modeling Components communicate via CORBA [Pope
1997; OMG 2001] and LDAP. In Figure 3, the CORBA Object Request Broker (ORB) is
depicted on the right side of the Directory Component as a software bus that mediates between
the Directory Component and the User Modeling Components8. The two orthogonal
communication layers are used at runtime as follows:

• The CORBA-based software bus is used for the communication of events and associated data
from the Directory Component to the User Modeling Components (e.g., an event ‘interest x
inserted into user model y’). Components can register filter instructions with the Directory
Component in order to subscribe to specific events or types of events. From a theoretical point
of view, this communication resembles a ‘filtered broadcast’, i.e. a combination of the
standard paradigms ‘filters’ and ‘broadcast algorithms’ for process interaction in distributed
programming environments (see [Andrews 1991]).

• LDAP is employed by User Modeling Components for accessing and manipulating
information that is hosted by the Directory Component.

Components can be flexibly distributed across a network of computers, e.g. dependent on
available computing resources. The separation of event handling and information access on
different layers provides for maximum flexibility. It even allows one to, e.g., replace the LDAP-
based information management with one that is based on SQL, while still preserving the
CORBA-based communication layer.

The communication between external UMS clients and the Directory Component is through
LDAP, and also through ODBC for external clients that are not LDAP enabled (see Figure 3).

4.3 User Modeling Components

User Modeling Components (see the right side of Figure 3) perform dedicated user modeling
tasks and communicate with the Directory Server through LDAP and CORBA. Arbitrarily many
User Modeling Components can be ‘plugged’ into the User Modeling Server. In the Deep Map
application, three User Modeling Components were developed (see [Fink and Kobsa 2002; Fink
2004] for more information):

• The User Learning Component (ULC), which learns user interests and preferences from usage
data, and updates individual user models. It uses univariate significance analysis with a
confidence interval to determine whether a certain type of observation about a user is made
significantly more or less often than in the population sample (see [Mitchell 1997; Pohl et al.
1999; Schwab and Pohl 1999]).

• The Mentor Learning Component (MLC), which predicts missing values in individual user
models from models of similar users. It employs memory-based Spearman correlation for
determining the proximity between users and various weighted prediction algorithms from the
area of collaborative filtering (see [Herlocker et al. 1999]).

8 In the current version of the UMS for Deep Map, we use the commercial ORB VisiBroker [Borland 2006].

25

• The Domain Inferences Component (DIC), which infers interests and preferences in
individual user models by applying domain inferences to user information that was explicitly
provided by users or implicitly inferred by the ULC and the MLC. To this end, it performs
sideward and upward propagation in the interest hierarchy of the domain taxonomy (see
Section 4.2.1.3 and [Kobsa et al. 1994]).

4.4 External Clients

External User Modeling Clients provide information about users to the Directory Component,
and retrieve information about users from it. Examples for such clients include:

• User-adaptive applications, which submit observations about the user to the Directory
Component, and query the Directory Component for user characteristics.

• LDAP browsers, which system administrators use to configure the components of the
Directory System, to specify access rights, and to add, update and remove entries.

• Widely available LDAP enabled applications, which users can employ to inspect and edit
their user models (e.g., Microsoft Internet Explorer, Qualcomm Eudora, Microsoft Active
Directory Browser); and

• LDAP or ODBC enabled data mining and visualization tools, to analyze the total user
population (e.g., to find clusters, stereotypes, and other regularities) and thereby to indirectly
verify the accuracy of the employed user modeling methods.

4.5 An Interaction Example

To illustrate the interplay between external User Modeling Clients, the Directory Server, its
Scheduler, and the User Modeling Components, we briefly describe a scenario in which a user-
adaptive application identifies a user interest and enters it into the Directory (see Figure 9).

 Directory
Server

Scheduler User Modeling
Components, e.g.

ULC

2. Addition to
 Usage Model

3. Identify subscribers

4. Communicate addition

6. Process result

5. Process event

User Modeling
Client

1. Submission of
event vector with

characteristic terms

7. Receive results

In terprocess

LDAP

CORBA

Legend:

Figure 9: Interaction scenario

26

1. A user’s request for a web document results in an event vector, which includes one or more
terms that characterize the content of the document (the terms could come from the HTML
‘description’ and ‘keywords’ tags, or be selected by a term significance measure such as
DF/ITF [Sparck Jones 1972]).

2. This vector is inserted into the DMI Events part of the Usage Model using an LDAP add
operation.

3. The add event is handed over to the Scheduler, which is tightly integrated with the Directory
Server. The Scheduler scans its internal subscription tables for matching entries. It finds a
subscription of the ULC whose event type and basefilter match the current event.

4. The Scheduler asynchronously communicates the add event and associated data (mainly the
event vector) to the ULC via CORBA, thereby following processing specifications that are
also part of the subscription. Subsequently, the Scheduler resumes processing with step 6.

5. The ULC periodically checks its event queue and performs a univariate significance analysis
with each of the received terms and finds, say, that the user is not interested in
Umweltbelastung, with a normalized probability of 0.8, an individual probability of
0.04, and the classification ‘yes’. If these values strongly differ from the ones in the current
user’s model, the ULC initiates an update via LDAP.

6. The Scheduler reports the successful submission to the Directory Server via interprocess
communication, thereby completing the event submission.

7. The Client receives the result of its submission to the user modeling server via LDAP.

27

5 Evaluation

The development of a prototype of our LDAP-based User Modeling Server in the Deep Map
project was a proof of concept for the feasibility of a directory-based approach. However, before
user modeling servers can be deployed in real-world application scenarios with potentially
millions of users, their runtime behavior must be experimentally tested under realistic workload
conditions to ascertain their satisfactory performance in the target environment.

The parameters of such experiments, and specifically the simulated user interactions that cause
requests to the UM server, should thereby closely resemble the interaction behavior at the target
site in question. Unfortunately, most existing web traffic data are not very useful for our
purposes. Many of them are based on proxy logs (e.g., [Duska et al. 1997; Gribble and Brewer
1997]) or web server logs (e.g., [Almeida et al. 1996; Padmanabhan and Qiu 2000]). While such
data is an excellent basis for analyzing caching and pre-fetching strategies, it does not reflect all
communication that would ordinarily take place between browsers and web servers
[Fenstermacher and Ginsburg 2002]. For instance, browsers may connect to web servers via
several proxies, and numerous caches may affect the amount of traffic between browsers and
web servers. Most published studies are moreover based on websites of research institutions,
which are not very representative for users’ typical website visits9 and presumably also not for
the navigation behavior that is exhibited at more typical sites (see e.g. [Almeida et al. 1996;
Padmanabhan and Qiu 2000]). Virtually all existing performance studies of UM servers also
employed synthetic workloads rather than empirical web usage behavior (e.g., [VanderMeer et
al. 2000; Datta et al. 2001]). The same holds true for performance studies of directory servers
(e.g., [Keung and Abbott 1998; Wang et al. 2000]).

To avoid these limitations, we used findings from client-side studies of Internet usage behavior.
We believe that these findings constitute a more promising basis for our model of real-world
workload than the ones mentioned before. They provide an authentic view of users’ online
behavior, as opposed to the keyhole perspective of earlier proxy and server based studies.

5.1 Web Usage Patterns

[Rozanski et al. 2001] conducted a comprehensive analysis of click-stream data collected by the
audience measurement service Nielsen//NetRatings. The data was collected at the client side
from a panel of 2,466 Internet users over several months. First, the researchers identified
186,797 user sessions (defined as the time from when a user signs on to the Internet until she
signs off, or ceases activity for more than an hour). Subsequently, they tested a variety of session
characteristics with regard to their suitability for clustering these sessions. The most
differentiating session characteristics were the following ones:
Session length: defined as the length of a single user session on the Internet.

Time per page: denotes the time interval between two subsequent web page requests.

Category concentration: the percentage of time a user stays at websites of the same category
(e.g., news, sports, entertainment, real estate).

9 For instance, [Nvision 1999] found that 35% of users' surfing time is spent at merely 50 (commercial) sites.

28

Site familiarity: the percentage of time a user stays at familiar sites, i.e. sites she had previously
visited four or more times.

Based on these characteristics, Rozanski et al. carried out a cluster analysis and distinguished the
following patterns of web usage (in parentheses their relative frequencies):
Quickie sessions (8%): These are short (one minute) visits to one or two familiar sites, to extract

specific bits of information (e.g., stock quotes, sports results). Users visit 2.2 pages per site
on average, and spend about 15 seconds on a page.

Just the Facts sessions (15%): Here users seek and evaluate specific pieces of information at
related sites (e.g., compare product offers). Sessions last 9 minutes on average. Users visit
10.5 sites and 1.7 pages per site, with about 30 seconds per page.

Single Mission sessions (7%): Users focus on gathering specific information or completing
concrete tasks (e.g., finding the website of a scientific conference and registering for it).
They visit two websites on average, which belong to the same category (e.g., search
engines or portals). Users quite carefully read the content of (frequently unfamiliar) web
pages in approximately 90 seconds. The average session length is 10 minutes, with 3.3
pages per site being visited.

Do It Again sessions (14%): These are focused on sites with which the user is familiar (e.g.,
online banks, chat rooms). Users spend about two minutes for each page. The average
session lasts 14 minutes, with 2.1 sites and 3.3 pages per site being visited.

Loitering sessions (16%): Users visit familiar ‘sticky’ sites, such as news, gaming,
telecommunications/ISP, and entertainment. Sessions last 33 minutes, with 8.5 sites and 1.9
pages per site being visited (two minutes per page on average).

Information Please sessions (17%): Users gather broad information from a range of often
unfamiliar websites from several categories (e.g., they collect facts about a specific car
model, find a dealership, negotiate a trade-in, and arrange a loan). Users visit 19.7 websites
and 1.9 pages per site. The average session length is 37 minutes, and pages are viewed for
one minute on average.

Surfing sessions (23%): They appear random, with users visiting nearly 45 sites in 70 minutes on
average (about one minute per page and 1.6 pages per site).

Over time, users can engage in several, if not all, session types, depending on how different their
tasks are. Rozanski et al. found, e.g., that two-third engaged in five or more session types and 44
percent in all seven session types.

5.2 Simulated workload

To test the performance of our UM server under different workload conditions, we simulated
users’ interaction with a hypothetical personalized website. Each user thereby follows one of the
abovementioned session types. The content of each web page is characterized by 1-3 terms taken
from the domain taxonomy (see Section 4.2.1.3). Web page requests by a user lead to add and
query operations in her user profile on the UM server: the terms of the requested web page are
processed and added to her interest model, and the user model is queried for terms that represent
such interests, to personalize a requested webpage. As a shortcut though, we omit the web server
in our simulation and represent web pages by their characteristic terms only.

To simulate different workload conditions, we systematically varied the following parameters:

29

• N (number of existing profiles in the UM server).
• W (number of web page requests per second).
For every factor combination, we generate a test plan with N user profiles. The behavior of
currently active users of the hypothetical website is simulated by clients of our user modeling
server. Clients are divided into seven classes, which represent the aforementioned session types.
A class i comprises ci clients which exhibit the web page request behavior that is characteristic
for their class. The ci clients of a class i create a total workload of wi page requests per second.
The combined workload of all clients equals the preset frequency of page requests W. We
assume that wi / W approximates the observed type frequency of class i (this assumption is
corroborated by a manual count of the frequencies of Quickie and Just the Facts sessions at
several German websites, such as the one described in [Fink et al. 2002]). Table 1 shows the test
plan for a workload W of approximately 2 pages per second. Columns 2 and 3 contain the type
frequency and the page request interval of the seven client classes from the study of [Rozanski et
al. 2001]. Column 4 breaks down the workload W of two pages per second for each session type.
For Quickies, for example, we calculate the number of clients ci as 2 page requests per second *
15 seconds per page * 8% Quickies = 2 clients. Based on this, column 5 shows the actual
workload wi of the ci clients for each session type. For Quickies, we calculate the workload wi as
2 clients / 15 seconds per page = 0.13 pages per second.

Table 1: Simulation environment for W=2 page requests per second (* = figure rounded)

Session type characteristics Test bed parameters

Variables

Session types

Relative
type

frequency

Interval
between
requests

No. of clients
(ci)*

Requests/sec.
(wi)*

Quickies 8% 15 sec 2 0.13

Just the Facts 15% 30 sec 9 0.30

Single Mission 7% 90 sec 13 0.14

Do It Again 14% 120 sec 34 0.28

Loitering 16% 120 sec 39 0.33

Information, Please 17% 60 sec 21 0.35

Surfing 23% 60 sec 28 0.47
 Total 100% 146 2.00

We assigned a frequency property to each term in the domain taxonomy (see Section 4.2.1.3)
that indicates how often it will occur as a characteristic term of simulated web pages. We assume
that these frequencies are Zipf distributed, based on the fact that term frequency distributions in
documents tend to follow Zipf’s law [Zipf 1949]. We assigned another frequency property to
simulated users that indicates how frequently they will start a new session with our hypothetical
website. We assume that these frequencies are also Zipf distributed, based on several studies
regarding the frequency and duration of people’s Internet usage (e.g., [Patrick and Black 1996]).
Finally, we also assume a Zipf distribution of the frequency in which web pages are requested by
our simulated users, based on the observation that web page popularity follows a Zipf-like
distribution 1/iα, where i is the popularity rank of the web page and α an adjustment for the
server environment and the domain. [Glassman 1994; Nielsen 1997; Breslau et al. 1999;

30

Padmanabhan and Qiu 2000] recommend different values for α. We followed [Padmanabhan and
Qiu 2000] who analyzed the MSNBC news site since their study was the most recent and their
site the most similar to our own target site. The authors recommend an α between 1.4 and 1.6,
and hence we opted for α=1.5 and use this value for all three distributions.

Finally, we assume further that our UM server has to process the following operations for
personalizing a requested web page10:
• Three search operations with Zipf-distributed terms from the domain taxonomy, namely for

personalizing the page header (e.g., user-tailored banner ads), the navigation section (e.g.,
personalized links), and the content part (e.g., personalized news). We assume one exact
search (such as for cn=Natur) and two substring searches (such as for cn=Umwelt*,
which yields all those concepts that match this search filter (e.g., Umwelt,
Umweltbelastung, Umwelt-Ticket)).

• One add operation for communicating the 1-3 characteristic terms of a web page as an
interest event to the UM server.

5.3 Test Bed

Figure 10 shows our test bed. On the right side, we see the User Modeling System for Deep Map.
Its representation part maintains the models that were described in Section 4.2.1, namely the
User Model, Usage Model, System Model, and Service Model. We retained the three latter
models from the Deep Map project without modification (including the taxonomy described in
Section 4.2.1.3), but varied systematically the size of the User Model by setting the number of
user profiles to 100, 500, 2,500, and 12,500. On the left side of Figure 10, we see the
components that constitute our Test Bed, namely the Controller, Generators, Master, and Clients.
In the following, we briefly describe their main tasks.

Controller. Its main tasks are
1. to create the different experimental workload conditions (by, e.g., generating and initializing

the required number of simultaneously operating Clients, and the number of user profiles
hosted by the user modeling system),

2. to execute test cases within the given constraints (e.g., test the runtime and ratio of different
types of LDAP operations), and

3. to collect and record client-side measures (e.g., mean response times for LDAP add
operations, and the average number of entries affected by LDAP search operations).

10 See [Fink 2004] for additional details. Note that many personalized websites do not provide personalization on all pages, which

reduces the load of the UM server.

31

 User Modeling Server

User Model

Usage Model

System Model

Service Model

M
a
s
t
e
r

G
e
n
e
r
a
t
o
r
s

C
o
n
t
r
o
l
l
e
r

1st Client

2nd Client

.

.

.

3rd Client

Test Bed

Test Results

Log Files

Transaction
Plans

User Model

User Learning
Component (ULC)

Mentor Learning
Component (MLC)

Domain Inference
Component (DIC)

Directory Component

R
e
p
r
e
s
e
n
t
a
t
i
o
n

S
c
h
e
d
u
l
e
r

User Modeling Components

Legend:

CORBA

LDAP

Initialization

Commercial
LDAP server,
Benchmark
software

Communication

Figure 10: Overview of the experimental testbed

Generators. They create
1. user model contents (i.e., a preset number of user profiles using standard LDAP object

types) ,
2. transaction plans, which specify the mix of LDAP operations to be sent to the UMS, and
3. log files, which contain various information about the generation processes.

Attributes in the demographic part of the generated user profiles are initialized with values that
are randomly selected from lists of permissible attribute values (e.g., from a list of valid
surnames or a list of postal/ZIP codes). The interests part of the generated user profiles is
initially empty. The generation of Transaction Plans can be controlled by a variety of parameters,
such as the ratio of exact vs. substring LDAP searches or the number of LDAP operations that
are being submitted to the UMS during a session. The selection of users from the set of

32

generated user profiles, and interests from the Deep Map Taxonomy, is controlled by our Zipf
distribution.

Master. Its main tasks are
1. to start and initialize a preset number of Clients, each with a dedicated transaction plan,
2. to manage Clients at the time of testing, and
3. to compile Clients’ individual performance measures into a single uniform report.

Clients. Their main tasks are
1. to execute their transaction plans (thereby submitting and monitoring LDAP requests), and
2. to report their performance measures back to the Master.

For implementing Generators, Master, and Clients, we took advantage of DirctoryMark
[MindCraft 2006], a benchmark suite for LDAP servers. DirectoryMark simulates clients that
simultaneously access an LDAP server and reports 269 performance indicators, all of which are
measured from a client’s point of view. Therefore, they do not only indicate the performance of
the user modeling system but also the performance of the network and, to a limited degree, the
performance of the client computer. Integrating Directory Mark into our Test Bed was fairly
easy, due to the compliance of our user modeling server with established LDAP standards. Only
a few modifications had to be applied to Directory Mark, which were mainly motivated by our
user modeling extensions to standard LDAP object types (e.g., regarding interests and
preferences), and the necessity for submitting interface events to the UMS. These modifications
were realized by a wrapper around Directory Mark and allowed us to inject event submissions
with randomly generated numbers of Zipf-distributed terms from the Deep Map Taxonomy into
the Transaction Plans generated by Directory Mark. These plans can then be executed by
standard Directory Mark Masters and Clients.
For each test scenario, we generated an appropriate number of user profiles as well as transaction
scripts that implement the workloads for each of the session types introduced earlier. For
instance, a transaction plan for a Quickie client would look as follows:

1. log in (i.e., LDAP bind) to the UMS11,
2. simulate a Web page request (i.e., submit three LDAP search operations and one LDAP add

operation as described earlier),
3. wait for 15 seconds,
4. simulate another Web page request,
5. wait again for 15 seconds, and finally
6. log off from the UMS11.

11 We thereby assumed that Quickie applications (e.g., retrieval of stock quotes or sports results) will handle user logins/logoffs

and authentication automatically, using cookies, certificates, and IP/Agent-related identification methods. The rejection rate
for first-party cookies is currently at 1-4% [Webtrends 2005], hence an identification rate of more than 99% can be reached in
combination with IP based methods.

33

During the execution of the experiment, the following steps were carried out under the
supervision of the Master:

1. generate a User Model with a given number of user profiles, and Transaction Plans for
every Client group (each group exhibits the page request behavior of one session type),

2. populate all user profiles in an initial warm-up phase,
3. reboot the servers, and
4. run each test case for 300 minutes.

The warm-up phase was introduced to avoid commencing a test run with all user profiles being
empty, which might have unduly altered the average performance figures. The duration of the
warm-up phase was determined in a pretest by observing the insert and update ratios in the User
Model. We found that for 100 profiles these ratios converge to a stable base state after
approximately 10 minutes, and we linearly increased this duration for higher numbers of profiles
as follows: 50 minutes for 500 profiles, 250 minutes for 2,500 profiles, etc.

5.4 Small to Medium Scale Application Scenario

Our first series of experiments was carried out with a hardware configuration that would be
typical for small web stores or news sites. In one test variant, all user modeling functionality
resided on a single platform. In a second variant, we distributed the four components of our UM
server across a network of four computers. In both conditions, a PC with an 800 MHz CPU, 512
MB of RAM and a 100 Mbps network card hosted the environment that simulated users
submitting page requests. We varied our test parameters as follows:
• N (number of existing profiles in the UM server): 100, 500, 2,500, or 12,50012.
• W (number of web page requests per second): 0.5, 1, 2, or 413.

5.4.1 Single Platform Tests

In the single platform tests, the complete UM server (i.e., Directory Component, ULC, MLC,
and DIC) was running on a single PC with two 800 MHz processors, 1 GB of RAM, a RAID
controller with two 18.3 GB UW-SCSI hard disks, and a 100 Mbps network card. The software
used was Windows NT 4.0, iPlanet Directory Server 4.13 and VisiBroker 3.4. The learning and
inference components were compiled with Java 1.2.2 and used the Java Hot Spot Server Virtual
Machine 2.0.

12 The corresponding user population is larger since not all users opt for personalization (5% in Yahoo and in a large German

news portal [personal communication], and 64% in Excite [Excite 2006]).
13 Based on data from [IVW 2006], one can estimate that two of three German websites with third-party traffic verification

receive less than four page requests per second on average, even when only twelve usage hours per day and personalization
on all pages are assumed.

34

0

10

20

30

40

50

60

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n
tim

e
pa

ge
 re

qu
es

ts
 (m

s)
No. of user profiles: 100
No. of user profiles: 500
No. of user profiles: 2,500
No. of user profiles: 12,500

Figure 11: Mean processing times for personalizing a web page

Figure 11 shows the mean times that our UM server takes to perform the four user model
operations for personalizing a page from the viewpoint of our hypothetical web application. The
results for all 16 value combinations of our independent variables are charted. In general, mean
times are only degressively proportional to the number of page requests and user profiles. In two
cases (namely for 100 and 500 profiles), the response times for four page requests per second are
even lower than for two. This advantageous behavior is mainly due to database caching in the
LDAP directory server. The more user model operations are being sent to the server for a given
number of user profiles, the faster this cache gets filled and the more operations can therefore be
directly served from cache memory. We also see that all mean times for 12,500 users are higher
than those for smaller numbers of user profiles, while the mean times for 100, 500, and 2,500
user profiles appear quite similar (except for 2,500 users and four pages). We assume that this
effect results mainly from a higher hit rate (i.e., probability that a specific piece of information is
contained in cache memory) in those cases that have a smaller number of user profiles. The
overall performance and scalability of our UM server appears highly satisfactory. Even in the
case of four page requests per second and 12,500 user models, the mean time to execute four
user model operations and to return the results to 288 clients in parallel is smaller than 53 ms.
The 99% confidence interval for the means does not exceed ± 0.24 ms due to the large sample
size. The mean times plus one / two standard deviations never exceed 78 / 103 ms. A more
detailed analysis shows that this graceful performance degradation occurs for both add and
search operations. Since the overhead caused by the UM server is minor, web-based applications
will be able to provide personalized services while responding within the desirable limit of one
second and, in any case, the mandatory limit of ten seconds [Nielsen 1993]. The moderate surge
of the mean response time when the number of clients and user profiles increases does not
suggest impending performance cliffs and scalability limits.

5.4.2 Multiple Platform Tests

In the multi-platform scenario, only the Directory Component was running on the mentioned
dual processor computer. The three other components of the UM server were each installed on a

35

separate 600-800 MHz single processor PC with 100 Mbps network card. Figure 12 compares
several measurements for both scenarios. We see that the mean time for processing the four user
model operations that personalize a web page plunges to 22.44 from 52.57 milliseconds, and its
standard deviation to 10.54 from 24.92 milliseconds (i.e., nearly 60% in both cases). The single
most important reason for this improvement is the considerably better search performance. The
mean search time falls to 5.29 from 14.57 ms (-64%), and its σ to 5 from 13.57 ms (-63%). Less
impressive is the performance gain of add operations: the mean time drops to 6.57 from 8.86 ms
(-26%), and σ to 6 from 8.29 ms (-28%).

8.86

14.57

52.57

6.575.29

22.44

0

10

20

30

40

50

60

70

80

Page requests Searches Additions

�
�
�
�
��
��
	
�

��
�
�

��
�
��
�

�

Single platform
Multi-platform

Figure 12: Single-platform vs. multi-platform performance

(12,500 profiles, 4 pages/sec)

The distribution of our UM server across a network of four computers improved its performance
considerably. Search operations benefit most from the relieved dual processor computer, since
they can now be carried out concurrently by the directory server. Add operations with their
inherent need for multi-user synchronization [Fink 2004] can take less advantage of the
additional hardware resources.

5.4.3 Evaluation of the Learning Components

So far, we discussed the performance of our UM server from the viewpoint of our hypothetical
web application. Now we turn to the individual components of our server: the statistics-based
User Learning Component, the similarity-based Mentor Learning Component, and the rule-based
Domain Inference Component. These components operate concurrently to the Directory
Component. Figure 13 shows the mean processing times of the ULC and the MLC for the single
platform scenario. The performance of the DIC (which is comparable to that of the ULC) is
discussed in [Fink and Kobsa 2002; Fink 2004].

36

For the ULC, mean times seem to mainly depend on the number of user profiles. They grow
degressively with increasing page requests, which is mainly due to the queue-based architecture
of the ULC (it allows for bulk processing of submitted events and for interim storage of interest
probabilities in the main memory, thereby saving costly updates of the user profile). All recorded
mean times are smaller than four seconds, which is highly satisfactory since it permits keeping
track of users’ changing interests even between consecutive page requests. The ULC fully
supports this inter-request learning for all session types and workloads we tested.

The performance of the MLC is less good. For 100, 500 and 2,500 profiles, all means are below
24 seconds but they grow progressively with increased page request rate. Except for Quickies,
this still allows for a prediction of user interests and preferences between consecutive page
requests. The response time deteriorates considerably though for 12,500 user profiles: 19 sec. for
0.5 and 141 sec. for 1 page/sec, but more than 2 hours for 2 and 4 pages/sec. In the latter two
cases, the MLC presumably cannot keep pace with the stream of user arrivals and approaches its
performance limits.

The most important reason for this weak scalability is the fact that the MLC we used in our tests
searches for similar users in the whole user population. This results in low performance, large
memory requirements, and often causes the underlying algorithm to be oversensitive to noise
[Wilson and Martinez 2000]. In order to cope with these problems, more recent commercial
versions of the UMS employ statistical sampling and reduction techniques from the area of
instance-based learning like IB3, IB4 [Aha 1992], and DROP3 [Wilson and Martinez 1997,
2000]. Especially DROP3 often significantly narrows the search space to a reasonably sized
sample of user profiles and can at the same time achieve higher prediction accuracies (see, e.g.,
[Wilson and Martinez 2000] for related experiments). Against this background, if we re-interpret
the 100, 500, and 2,500 profiles used in our tests as qualified samples from a much larger set of
user profiles, then the performance and scalability of the MLC seems again quite satisfactory.

Future work on the MLC may investigate the application of nearest-hyperrectangle, clustering,
and partitioning algorithms to the matrix of users. For work on these topics, we refer to
[Wettschereck 1994; Wettschereck and Dietterich 1995; Herlocker et al. 1999; O'Connor and
Herlocker 1999].

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n
tim

e
(s

)

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n
tim

e
(s

)

Figure 13: Mean processing times of statistics and similarity-based learning components

(see Figure 11 for legend)

37

5.5 Large Scale Application Scenario

The successful simulation results for a small to medium sized user-adaptive website put us in the
position to run a series of experiments on a much larger scale. The most notable one comprised
eight million user profiles14 and a workload of approximately 42 web page requests per second15.
To realize this workload, we employed a total of 1,794 simultaneous clients in several testbeds.
The UM server was installed on a Fire V880 from Sun’s entry-level server segment under Solaris
8, with eight 750 MHz processors, 8 MB cache per processor, 32 GB of RAM, and more than
200 GB of disk space. To take full advantage of the available hardware, we increased the cache
size of the Directory Component and each learning component to 2 GB. The user modeling
server was implemented in version 5.1 of iPlanet Directory Server. Otherwise the design of this
experiment was very comparable to the one described in Section 3.1.

The results were again very encouraging. Our UM server showed a mean response time of 35 ms
for personalizing a web page (i.e., for performing three LDAP searches and one add operation).
This user modeling performance should easily allow a personalized application to stay well
below the desirable response time limit of one second and, in any case, below the mandatory
limit of ten seconds [Nielsen 2000]. None of the several million search and add operations that
were submitted by our simulated users failed or timed out. Overall, the quality of service offered
by our server seems highly satisfactory.

Our simulation environment obviously allows us to change any parameter of the experiment and
to study the resulting effects. By systematic variation of the user modeling components we
found, for instance, that their resource needs depend on their number (each can be present or
absent, and instantiated multiple times), and on several parameters that determine, e.g., the
learning frequency, the size of the correlation space, etc. As far as the allocation of processor
resources is concerned, we found that an even distribution between the Directory Component,
and the learning and inference components, seems to be a good solution. We also confirmed
results from the literature regarding the effects of hardware sizing. For example, [Nelson 2002]
mentions the following rules of thumb for the number of CPUs necessary to process LDAP
operations: “With Directory Server 4.0, search performance will scale almost linearly with the
addition of up to 4 CPUs. In this range, you can expect to see 500-1,000 queries per second for
each CPU. Beyond 4 CPUs, the resulting increase in performance per CPU is less but still
significant”.

5.6 Related work

At the beginning of Section 5, we discussed several performance studies whose traffic data are
unlikely to accurately reflect the workloads of real-world user modeling servers, for various
reasons (e.g., since synthetic workloads were used). The only study that seems comparable to

14 As a comparison, AOL had about 20.1 million subscribers in the U.S. at the end of September 2005 [Goldman 2005]. The

number of subscribed users is a more meaningful measure of comparison than the number of unique users, mainly due to the
high mortality among the latter.

15 Based on data from [IVW 2006], one can estimate that nine of ten German websites with third-party traffic verification receive
less than 42 page requests per second on average, even when only twelve usage hours per day and personalization on all pages
are assumed.

38

ours from a design point of view is the one described in [Carmichael et al. 2005]. The authors
present a performance study of their PersonisLite user modeling server in a ubiquitous
computing scenario. PersonisLite stores user models in the Berkeley DB database system. The
server is meant to be used for a variety of applications, such as for generating recommendations
in a museum [Bright et al. 2005], for location and activity modeling in a ubiquitous computing
context [Carmichael et al. 2005; Whitaker and Kay 2005], and for author modeling in a
computer-assisted tutoring context [Goldrei et al. 2005]

Like in our own study, the authors use recorded traffic data for simulations aimed at measuring
the performance of their server, namely user login data from a campus environment and periodic
scan data whether they are still active. The experiment resulted in small CPU times for add
operations and linear increase with the number of items added, and also small CPU times for two
types of search operations with different complexities, with virtually no increase with the
number of items in the user model. Unfortunately these results are not comparable to ours, e.g.
for the following reasons:

1. Their server hardware is quite different from ours (a single Intel Pentium IV processor with
2,53 GHz versus, e.g., a dual Xeon processor configuration running at 800 MHz in our
case).

2. The number and complexity of PersonisLite services seems to be smaller than those on our
UM server. Specifically, the PersonisLite study focuses on a comparison of the performance
of two different inference processes (‘resolvers’), namely ones that only take the latest few
user data into account with ones that process the last half hour’s worth of data. The UMS
study evaluates instead the user modeling components introduced in Section 4.1.

3. Their test approach lacks a two-factor design, with an increasing number of data items and
number of client applications (see Section 5.4).

4. Their test starts with an empty database, whereas our database is pre-filled in a dedicated
warm-up phase so that the server performance does not become favorably biased at the
beginning of the experiment due to a smaller than normal database size (see Section 5.3).

5. They successively submit large batches of user model operations of the same type (e.g.,
450,000 add operations, 400 ask operations) rather than continuously mixing them (see
Section 5.2), which may unduly boost the performance due to caching effects.

6. They only collect a few measures for server performance (e.g., CPU time) directly on the
user modeling server, whereas we collect 269 different performance measures both on the
user modeling server and on the client side (see Section 5.3).

7. Their central measure for evaluating server performance is CPU time (i.e. the consumption
of a single resource on the server), whereas the central measure in our test is the response
time for user modeling operations from a client point of view (i.e., including server
performance, network latency, and client performance).

39

6 Summary and Conclusion

We showed that the use of directories for storing user information offers significant advantages
over the two traditional approaches in academia and industry, namely flat file systems and
database systems. These advantages lie particularly in the
• management and retrieval of (user-related) information, in a way that is compliant with

established standards;
• pre-defined user related information types, and the possibility to define new types;
• distribution of information across a network, which often leads to better performance,

scalability, availability, and reliability of the user modeling service;
• replication and loose synchronization of information, which may enhance the performance

and availability of the overall service, and is particularly useful in mobile applications where
clients can become disconnected from the network;

• ability to realize a virtually centralized distributed architecture for a user model repository;
and the

• security of information and users’ privacy, by providing facilities for authentication, signing,
encryption, access control, auditing, and resource control (see [Fink 2004]).

We presented the architecture of our user modeling server UMS which takes advantage of the
above benefits of LDAP. We also briefly demonstrated the utility of this server in an application
scenario. In simulation experiments we verified that our server can fully cope with the workloads
of small and medium-sized application environments. We found that the processing time for a
representative real-world mix of user modeling operations only degressively increases with the
frequency of page requests. The distribution of the user modeling server across a network of
computers additionally improved its performance. At the same time, the hardware demands of
our server are quite moderate. These results complement and corroborate the discussion of
Section 3 regarding the advantages of directory systems as a basis for user modeling servers.

Since the workload used in the simulations was based on empirically gathered usage data and
statistical findings from web usage research and information retrieval, the ecological relevance
of our experiments appears to be high. Virtually all parameters of our experiment (e.g., the
number of user modeling components used, their computational characteristics, their distribution
across platform, and the characteristics of the site platform, the user behavior and the webpage
content) can be systematically changed and the resulting effects studied. Our experience with
actual installations of our server in commercial environments showed that this approach and the
developed simulation test bed were an indispensable tool for real-world personalization.

More recent experience that we gained from deploying our user modeling server to large
commercial Web sites confirms that our server can indeed be deployed in high-workload
environments as well. Our user modeling server has been already successfully deployed in
commercial application environments. A profiling application across most German Top 100 web
sites with a total workload of tens of millions of users and several billion page impressions per
month is already up and running on a farm of high-end Xeon-based servers. Pilot systems for
other European countries are currently being tested.

40

7 Acknowledgment

This work has been supported by the European Media Laboratory (EML), the National Science
Foundation (Grant DST 0307504), and by an Alexander von Humboldt Research Award. We
would like to thank the anonymous reviewers for their valuable comments on an earlier version
of this paper.

8 References

Aha, D. W. (1992). "Tolerating Noisy, Irrelevant and Novel Attributes in Instance-Based Learning Algorithms."
International Journal of Man-Machine Studies 36: 267-287. DOI: 10.1016/0020-7373(92)90018-G.

Almeida, V., A. Bestavros, M. Crovella and A. Oliveira (1996). Characterizing Reference Locality in the WWW.
Fourth International Conference on Parallel and Distributed Information Systems, IEEE Computer Society,
92-103. DOI: 10.1109/PDIS.1996.568672.

Andrews, G. (1991). "Paradigms for Process Interaction in Distributed Programs." ACM Computing Surveys 23(1):
49-90. DOI: 10.1145/103162.103164.

Bigfoot (2006). Bigfoot. http://search.bigfoot.com/.

Borland (2006). "Borland VisiBroker." http://www.borland.com/us/products/visibroker/.

Bosch, G. (1988). ASCON. Memo, SFB 314: AI – Knowledge-Based Systems, Dept. of Computer Science,
Saarland University, Saarbrücken, Germany.

Brajnik, G. and C. Tasso (1994). "A Shell for Developing Non-monotonic User Modeling Systems." International
Journal of Human-Computer Studies 40: 31-62. DOI: 10.1006/ijhc.1994.1003.

Breese, J., D. Heckerman and C. Kadie (1998). Empirical Analysis of Predictive Algorithms for Collaborative
Filtering. Proc. of the Fourteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-98),
San Francisco, Morgan Kaufmann, 43-52. ftp://ftp.research.microsoft.com/pub/tr/tr-98-12.pdf.

Breslau, L., P. Cao, L. Fan, G. Phillips and S. Shenker (1999). Web Caching and Zipf-Like Distributions: Evidence
and Implications. INFOCOM '99. Eighteenth Annual Joint Conference of the IEEE Computer and
Communications Societies, 126-134. DOI: 10.1109/INFCOM.1999.749260.

Bright, A., J. Kay, D. Ler, K. Ngo, W. Niu and A. Nuguid (2005). Adaptively Recommending Museum Tours.
UBICOMP-05 Workshop on Smart Environments and their Applications to Cultural Heritage, Tokyo,
Japan. http://smart.arces.unibo.it/pdf/04-Adaptively-Recommending_Bright.pdf.

Brusilovsky, P., S. Ritter and E. Schwarz (1997). Distributed Intelligent Tutoring on the Web. AI-ED'97, 8th World
Conference on Artificial Intelligence in Education, Kobe, Japan, 482-489.
http://www2.sis.pitt.edu/~peterb/papers/AIED97.html.

Carmichael, D. J., J. Kay and B. Kummerfeld (2005). "Consistent Modelling of Users, Devices and Sensors in a
Ubiquitous Computing Environment." User Modeling and User-Adapted Interaction: The Journal of
Personalization Research 15(3-4): 197-234. DOI: 10.1007/s11257-005-0001-z.

Chadwick, D. (1996). Understanding X.500: The Directory. London, Thomson.

Critical Path (2006). Critical Path. http://www.cp.net.

41

Datta, A., K. Dutta, D. VanderMeer, K. Ramamritham and S. B. Navathe (2001). "An Architecture to Support
Scalable Online Personalization on the Web." The VLDB Journal 10: 104–117. DOI:
10.1007/s007780100037.

Deep Map (2001). Deep Map: Intelligent, Mobile, Multi-Media and Full of Knowledge (Project Homepage).
http://www.eml.org/english/research/deepmap/deepmap.html.

Duska, B. M., D. Marwood and M. J. Feeley (1997). The Measured Access Characteristics of World-Wide-Web
Client Proxy Caches. USENIX Symposium on Internet Technologies and Systems, Monterey, CA.
http://www.usenix.org/publications/library/proceedings/usits97/duska.html.

enQuire (2006). enQuire Identity Server. http://www.persistentsys.com/products/enquire/enquire.htm.

Excite (2006). Excite Network Online Media Kit.
http://www.excitenetwork.com/advertising/index/id/Directmarket|ListRental|3|1.html.

Fenstermacher, K. D. and M. Ginsburg (2002). Mining Client-Side Activity for Personalization. Fourth Workshop
on Advanced Issues in Electronic Commerce and Web Information Systems (WECWIS), Newport Beach,
CA, 44-51. http://linux.ece.uci.edu/TFEC/wecwis.html.

Finin, T. W. (1989). GUMS: A General User Modeling Shell. In: A. Kobsa and W. Wahlster, eds: User Models in
Dialog Systems. Berlin, Heidelberg, Springer-Verlag: 411-430.

Finin, T. W. and D. Drager (1986). GUMS1: A General User Modeling System. Sixth Canadian Conference on
Artificial Intelligence, Montreal, Canada, 24-29.

Fink, J. (1999). Transactional Consistency in User Modeling Systems. In: J. Kay, ed. UM99 User Modeling:
Proceedings of the Seventh International Conference. Wien New York, Springer-Verlag: 191-200.
http://bistrica.usask.ca/UM/UM99/Proc/fink.pdf.

Fink, J. (2004). User Modeling Servers - Requirements, Design, and Evaluation. Amsterdam, Netherlands, IOS
Press. http://books.google.com/books?q=isbn:1586034057.

Fink, J. and A. Kobsa (2000). "A Review and Analysis of Commercial User Modeling Servers for Personalization
on the World Wide Web." User Modeling and User-Adapted Interaction: The Journal of Personalization
Research 10(2-3): 209-249. DOI: 10.1023/A:1026597308943.

Fink, J. and A. Kobsa (2002). "User Modeling in Personalized City Tours." Artificial Intelligence Review 18(1): 33-
74. DOI: 10.1023/A:1016383418977.

Fink, J., J. Koenemann, S. Noller and I. Schwab (2002). "Putting Personalization into Practice." Communications of
the ACM 45(5): 41-42. DOI: 10.1145/506218.506242.

Glassman, S. (1994). "A Caching Relay for the World Wide Web." Computer Networks and ISDN Systems 27(2):
165-172. DOI: 10.1016/0169-7552(94)90130-9.

Goldman, A. (2005). "Top U.S. ISPs by Subscriber: How We Count." ISP-Planet. http://www.isp-
planet.com/research/rankings/2005/usa_insight_q32005.html.

Goldrei, S., J. Kay and B. Kummerfeld (2005). Exploiting User Models to Automate the Harvesting of Metadata for
Learning Objects. AIED-05 Workshop on Adaptive Systems for Web-Based Education: Tools and
Reusability, Amsterdam, Netherlands. http://www.lcc.uma.es/~eva/waswbe05/papers/goldrei.pdf.

Goodman, B., F. Linton and J. Schoening (1999). Workshop on Standards for Learner Modeling.
http://www.cs.usask.ca/UM99/w2.shtml.

Gribble, S. D. and E. A. Brewer (1997). System Design Issues for Internet Middleware Services: Deductions from a
Large Client Trace. USENIX Symposium on Internet Technologies and Systems, Monterey, CA.
http://www.usenix.org/publications/library/proceedings/usits97/gribble.html.

Heckmann, D., T. Schwartz, B. Brandherm, M. Schmitz and M. von Wilamowitz-Moellendorff (2005). GUMO: The
General User Model Ontology. In: L. Ardissono, P. Brna and A. Mitrovic, eds: User Modeling 2005: 10th
International Conference, UM 2005, Edinburgh, Scotland.: 428-432. DOI: 10.1007/11527886_58.

42

Herlocker, J., J. Konstan, A. Borchers and J. Riedl (1999). An Algorithmic Framework for Performing Collaborative
Filtering. Proc. of the 22nd Annual International ACM SIGIR Conference on Research and Development in
Information Retrieval., New York, 230-237. DOI: 10.1145/312624.312682.

Hill, P. and J. Lloyd (1993). The Gödel Programming Language. Cambridge, MA, MIT Press.

Howes, T., M. Smith and G. Good (1999). Understanding and Deploying LDAP Directory Services. Indianapolis,
IN, Macmillan.

Howes, T. A. and M. Smith (1997). LDAP: Programming Directory-Enabled Applications with Lightweight
Directory Access Protocol. Indianapolis, IN, Macmillan.

IBM (2006a). IBM Lotus Notes. http://www.ibm.com/notes.

IBM (2006b). IBM Tivoli Directory Server. http://www-306.ibm.com/software/tivoli/products/directory-server/.

Informix (2006). Informix Product Family. http://www.ibm.com/software/data/informix/.

ISO (1989). Information technology -- Database languages -- SQL. ISO/IEC 9075:1989, International
Standardization Organization, Geneva, Switzerland. http://www.iso.org.

ISO (2003). Information technology -- Database languages -- SQL. ISO/IEC 9075:2003, International
Standardization Organization, Geneva, Switzerland. http://www.iso.org.

ITU-T (2001). Information Technology – Open Systems Interconnection – The Directory: Overview of Concepts,
Models and Services. Recommendation X.500 (02/01), International Telecommunication Union.
http://www.itu.int/ITU-T/publications/recs.html.

IVW (2006). IVW Online Usage Data March 2006 (in German). http://www.ivwonline.de/ausweisung2/suchen.php.

Kay, J. (1990). um: a Toolkit for User Modelling. Second International Workshop on User Modeling, Honolulu, HI.

Kay, J. (1995). "The um Toolkit for Reusable, Long Term User Models." User Modeling and User-Adapted
Interaction: The Journal of Personalization Research 4(3): 149-196. DOI: 10.1007/BF01100243.

Kay, J., B. Kummerfeld and P. Lauder (2002). Personis: A Server for User Models. In: P. De Bra, P. Brusilovsky
and R. Conejo, eds: Adaptive Hypermedia and Adaptive Web-Based Systems: Second International
Conference, AH 2002. Berlin Heidelberg, Springer-Verlag: 203–212.
http://springerlink.metapress.com/link.asp?id=2l54yrgc0p8n2d5g.

Keung, S. and S. Abbott (1998). LDAP Server Performance Report.
http://www.bnelson.com/sizing/docl/ldapsPerformance.html.

Kobsa, A. (1990). "Modeling The User's Conceptual Knowledge in BGP-MS, a User Modeling Shell System."
Computational Intelligence 6: 193-208.

Kobsa, A. (1991). Utilizing Knowledge: The Components of the SB-ONE Knowledge Representation Workbench.
In: J. Sowa, ed. Principles of Semantic Networks: Exploration in the Representation of Knowledge. San
Mateo, CA, Morgan Kaufmann: 457-486.

Kobsa, A. (2001). "Generic User Modeling Systems." User Modeling and User-Adapted Interaction: The Journal of
Personalization Research 11(1-2): 49-63. DOI: 10.1023/A:1011187500863.

Kobsa, A., J. Koenemann and W. Pohl (2001). "Personalized Hypermedia Presentation Techniques for Improving
Customer Relationships." The Knowledge Engineering Review 16(2): 111-155. DOI:
10.1017/S0269888901000108.

Kobsa, A., D. Müller and A. Nill (1994). KN-AHS: An Adaptive Hypertext Client of the User Modeling System
BGP-MS. Proceedings of the Fourth International Conference on User Modeling, Hyannis, MA, 99-105.
Reprinted in M. Maybury and W. Wahlster, eds. (1998). Readings in Intelligent User Interfaces. San
Mateo, CA: Morgan Kaufman, 372-378. http://www.ics.uci.edu/~kobsa/papers/1994-UM94-kobsa.pdf.

Kobsa, A. and W. Pohl (1995). "The BGP-MS User Modeling System." User Modeling and User-Adapted
Interaction: The Journal of Personalization Research 4(2): 59-106. DOI: 10.1007/BF01099428.

43

Kobsa, A., W. Pohl and J. Fink (1996). A Standard for the Performatives in the Communication between
Applications and User Modeling Systems (Draft). http://www.ics.uci.edu/~kobsa/papers/1996-kobsa-pohl-
fink-rfc.pdf.

Kobsa, A. and J. Schreck (2003). "Privacy through Pseudonymity in User-Adaptive Systems." ACM Transactions on
Internet Technology 3(2): 149–183. DOI: 10.1145/767193.767196.

Kummerfeld, R. and J. Kay (1997). Remote Access Protocols for User Modelling. Proceedings and Resource Kit for
Workshop User Models in the Real World, Chia Laguna, Sardinia, 12-15.
http://www.cs.usyd.edu.au/~judy/Homec/Pubs/1997_umnet.html.

Liberty (2006). Liberty Alliance Project: Digital Identity Defined. http://www.projectliberty.org/.

Loshin, P. (2000). Big Book of Lightweight Directory Access Protocol (LDAP) RFCs. San Diego, CA, Morgan
Kaufmann.

LTSC (2006). Learning Technology Standards Committee. http://ieeeltsc.org/.

Malaka, R. and A. Zipf (2000). DEEP MAP – Challenging IT Research in the Framework of a Tourist Information
System. In: D. Fesenmaier, S. Klein and D. Buhalis, eds: Informaton and Communication Technologies in
Tourism 2000: Proceedings of ENTER 2000. Wien, New York, Springer: 15-27.

McCune, W. W. (1994). OTTER 3.0 Reference Manual and Guide. In: Argonne National Laboratory, Mathematics
and Computer Science Division. Argonne, IL. http://www-unix.mcs.anl.gov/AR/otter/.

Microsoft (2006a). Microsoft Exchange Server. http://www.microsoft.com/exchange/.

Microsoft (2006b). Windows Server 2003 Active Directory.
http://www.microsoft.com/windowsserver2003/technologies/directory/activedirectory/default.mspx.

Miller, B. N., J. A. Konstan and J. Riedl (2004). "PocketLens: Toward a Personal Recommender System." ACM
Transactions on Information Systems 22(3): 437-476. DOI: 10.1145/1010614.1010618.

MindCraft (2006). DirectoryMark: The LADP Server Benchmarking Tool.
http://www.mindcraft.com/directorymark/.

Mitchell, T. (1997). Machine Learning. New York, NY, McGraw-Hill.

Nelson, B. (2002). Sizing Guide for Netscape Directory Server. http://www.bnelson.com/sizing/doc2/Directory4_0-
SizingGuide.html.

Nielsen, J. (1993). Usability Engineering. San Diego, CA, Academic Press.

Nielsen, J. (1997). Zipf Curves and Website Popularity. http://www.useit.com/alertbox/zipf.html.

Nielsen, J. (2000). Designing Web Usability. Indianapolis, IN, New Riders.

Novell (2006). Novell eDirectory. http://www.novell.com/products/edirectory/.

Nvision (1999). 35 Percent of Surfing Time is Spent on 50 Sites.
http://www.nua.com/surveys/index.cgi?f=VS&art_id=905355323&rel=true.

O'Connor, M. and J. Herlocker (1999). Clustering Items for Collaborative Filtering. Proceedings of the ACM SIGIR
Workshop on Recommender Systems, Berkeley, CA.
http://web.engr.oregonstate.edu/~herlock/papers/sigir99_workshop_clustering.pdf.

OMG (2001). Object Management Group (OMG). http://www.omg.org.

Orfali, R., D. Harkey and J. Edwards (1994). Essential Client/Server Survival Guide. New York, Wiley and Sons.

Orwant, J. (1993). Doppelgänger Goes to School: Machine Learning for User Modeling. Master Thesis, MIT,
Cambridge, MA.

Orwant, J. (1994). Privacy and User Models: Threats, Caveats, and Safeguards.
http://citeseer.ist.psu.edu/orwant94privacy.html.

44

Orwant, J. (1995). "Heterogenous Learning in the Doppelänger User Modeling System." User Modeling and User-
Adapted Interaction: The Journal of Personalization Research 4(2): 107-130. DOI: 10.1007/BF01099429.

Padmanabhan, V. and L. Qiu (2000). The Content and Access Dynamics of a Busy Web Site: Findings and
Implications. ACM SIGCOMM, ACM, 111-123. DOI: 10.1145/347059.347413.

Paiva, A. and J. Self (1994). TAGUS: A User and Learner Modeling System. In: Proc. of the Fourth International
Conference on User Modeling. Hyannis, MA: 43-49.

Paiva, A. and J. Self (1995). "TAGUS -- A User and Learner Modeling Workbench." User Modeling and User-
Adapted Interaction: The Journal of Personalization Research 4(3): 197-226. DOI: 10.1007/BF01100244.

PAPI (2001). PAPI Learner, Draft 8 Specification. http://edutool.com/papi.

Passport (2006). Microsoft Passport Network. http://www.passport.net.

Patrick, A. S. and A. Black (1996). "Implications of Access Methods and Frequency of Use for the National Capital
Freenet." http://debra.dgbt.doc.ca/services-research/survey/connections/.

Pereira, F., Ed. (1996). C-Prolog User’s Manual Version 1.5. http://www.cs.duke.edu/~raw/cps106/cprolog.ps.

Persistent (2006). Persistent. http://www.persistentsys.com.

Pohl, W. (1998). Logic-Based Representation and Reasoning for User Modeling Shell Systems. Sankt Augustin,
Germany, infix.

Pohl, W., I. Schwab and I. Koychev (1999). Learning About the User: A General Approach and Its Application.
IJCAI'99 Workshop Learning About Users, Stockholm, Sweden.

Pope, A. (1997). The Corba Reference Guide: Understanding the Common Object Request Broker Architecture.
Sydney, Australia, Addison-Wesley.

Razmerita, L., A. Angehrn and A. Maedche (2003). Ontology-Based User Modeling for Knowledge Management
Systems. In: P. Brusilovsky, A. Corbett and F. De Rosis, eds: User Modeling 2003: 9th International
Conference, UM 2003. Heidelberg, Germany, Springer Verlag: 213-217.
http://springerlink.metapress.com/link.asp?id=thw9rmvmvklx9hac.

Rozanski, H., G. Bollman and M. Lipman (2001). Seize the Occasion: Usage-based Segmentation for Internet
Marketers. http://www.strategy-business.com/media/pdf/03-20-01_eInsight.pdf.

Schreck, J. (2003). Security and Privacy in User Modeling. Dordrecht, Netherlands, Kluwer Academic Publishers.
http://www.security-and-privacy-in-user-modeling.info.

Schwab, I. and W. Pohl (1999). Learning Information Interest from Positive Examples. UM99 Workshop on
Machine Learning for User Modeling, Banff, Canada.

Shukla, S. and A. Deshpande (2000). Tutorial: LDAP Directory Services – Just Another Database Application?
2000 ACM SIGMOD International Conference on Management of Data, New York, NY.
http://www.pspl.co.in/presentation/sigmod2000_directory_database_tutorial.pdf.

Sparck Jones, K. (1972). "A Statistical Interpretation of Term Specificity and its Application to Retrieval." Journal
of Documentation 28: 11-21. DOI: 10.1108/00220410410560573.

Sun (2006). Sun Java System Directory Server Enterprise Edition.
http://www.sun.com/software/products/directory_srvr_ee/.

Switchboard (2006). Switchboard. http://www.switchboard.com/.

Tornago (2006). Net Perceptions. http://www.tornago.com.

VanderMeer, D., K. Dutta and A. Datta (2000). Enabling Scalable Online Personalization on the Web. 2nd ACM
Conference on Electronic Commerce, Minneapolis, MN, ACM, 185-196. DOI: 10.1145/352871.352892.

Vassileva, J., G. McCalla and J. Greer (2003). "Multi-Agent Multi-User Modeling in I-Help." User Modeling and
User-Adapted Interaction: The Journal of Personalization Research 13(1+2): 179-210. DOI:
10.1023/A:1024072706526.

45

Vergara, H. (1994). PROTUM: A Prolog Based Tool for User Modeling. WIS-Report 10, WG Knowledge-Based
Information Systems, Department of Information Science, University of Konstanz, Germany.

Wahl, M., T. Howes and S. Kille (1977). Lightweight Directory Access Protocol (v3). RFC 2251, Internet
Engineering Task Force. http://www.ietf.org/rfc/rfc2251.txt.

Wang, X., H. Schulzrinne, D. Kandlur and D. Verma (2000). Measurement and Analysis of LDAP Performance.
ACM SIGMETRICS Conference on Measurement and Modeling of Computer Systems, ACM, 156-165.
http://www.cs.columbia.edu/~xinwang/public/paper/ldap_sigmetrics.pdf.

Webtrends (2005). WebTrends Customers Switch to First-Party Cookies and See Accuracy Skyrocket by More
Than 300 Percent.
http://www.webtrends.com/AboutWebTrends/NewsRoom/NewsRoomArchive/2005/WebTrendsCustomers
SwitchtoFirst-PartyCookiesandSeeAccuracySkyrocketbyMoreThan300Percent.aspx.

Weltman, R., C. Tomlinson and S. Sonntag (2005). The Java LDAP Application Program Interface.
http://www.ietf.org/internet-drafts/draft-ietf-ldapext-ldap-java-api-19.txt.

Wettschereck, D. (1994). A Hybrid Nearest-Neighbor and Nearest-Hyperrectangle Algorithm. Proceedings of the
7th European Conference on Machine Learning, Catania, Italy, Springer-Verlag, 323-335.

Wettschereck, D. and T. G. Dietterich (1995). "An Experimental Comparison of Nearest-Neighbor and Nearest-
Hyperrectangle Algorithms." Machine Learning 19(1): 5-28. DOI: 10.1007/BF00994658.

Whitaker, R. and J. Kay (2005). Location and Activity Modelling in Intelligent Environments. UM05 Workshop on
Decentralized, Agent Based and Social Approaches to User Modelling, Edinburgh, Scotland.
http://www.l3s.de/~dolog/dasum/Whitaker_Kay_um05.pdf.

WhitePages.com (2006). WhitePages.com. http://www.whitepages.com.

Wilson, D. R. and T. R. Martinez (1997). Instance Pruning Techniques. In: D. Fisher, ed. Machine Learning:
Proceedings of the Fourteenth International Conference (ICML'97). San Francisco, CA, Morgan Kaufmann
Publishers: 403-411. http://synapse.cs.byu.edu/papers/wilson.icml97.prune.pdf.

Wilson, D. R. and T. R. Martinez (2000). "Reduction Techniques for Instance-Based Learning Algorithms."
Machine Learning 38: 257-286. DOI: 10.1023/A:1007626913721.

Yaacovi, Y., M. Wahl and T. Genovese (1999). Lightweight Directory Access Protocol (v3): Extensions for
Dynamic Directory Services. RFC 2589, Internet Engineering Task Force.
http://www.ietf.org/rfc/rfc2589.txt.

Yimam, D. and A. Kobsa (2003). Expert Finding Systems for Organizations: Problem and Domain Analysis and the
DEMOIR Approach. In: M. Ackerman, A. Cohen, V. Pipek and V. Wulf, eds: Beyond Knowledge
Management: Sharing Expertise. Cambridge, MA, MIT Press. http://www.ics.uci.edu/~kobsa/papers/2003-
JOCEC-kobsa.pdf.

Yodlee (2006). Yodlee. http://www.yodlee.com.

Young, A. (1995). Connection-Less Lightweight X.500 Directory Access Protocol. RFC 1798, Internet Engineering
Task Force. http://www.ietf.org/rfc/rfc1798.txt.

Zipf, G. K. (1949). Human Behavior and the Principle of Least Effort. Reading, MA, Addison-Wesley.

