
An LDAP-Based User Modeling Server 
and its Evaluation* 

 
Alfred Kobsa 

Donald Bren School of Information 
and Computer Sciences 
University of California 

Irvine, CA, U.S.A. 
kobsa@uci.edu 

Josef Fink 
Department of Computer 
and Engineering Sciences 

University of Applied Sciences 
Frankfurt, Germany 

jfink@fb2.fh-frankfurt.de 

 

Abstract 

Representation components of user modeling servers have been traditionally based on simple file 
structures and database systems. We propose directory systems as an alternative, which offer 
numerous advantages over the more traditional approaches: international vendor-independent 
standardization, demonstrated performance and scalability, dynamic and transparent management of 
distributed information, built-in replication and synchronization, a rich number of pre-defined types 
of user information, and extensibility of the core representation language for new information types 
and for data types with associated semantics. Directories also allow for the virtual centralization of 
distributed user models and their selective centralized replication if better performance is needed. 
We present UMS, a user modeling server that is based on the Lightweight Directory Access Protocol 
(LDAP). UMS allows for the representation of different models (such as user and usage profiles, and 
system and service models), and for the attachment of arbitrary components that perform user 
modeling tasks upon these models. External clients such as user-adaptive applications can submit and 
retrieve information about users. We describe a simulation experiment to test the runtime 
performance of this server, and present a theory of how the parameters of such an experiment can be 
derived from empirical web usage research. The results show that the performance of UMS meets the 
requirements of current small and medium websites already on very modest hardware platforms, and 
those of very large websites on an entry-level business server configuration. 

Keywords: user modeling server, directory server, LDAP, architecture, evaluation, performance, 
scalability 
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1 Introduction and Overview 

For nearly twenty years, researchers have been developing generic user modeling systems 
(which have been called ‘user modeling shell systems’ and more recently ‘user modeling 
servers’ [Kobsa 2001]). Such systems facilitate the development of user-adaptive applications 
through ‘built-in’ core user modeling functionality that these applications can utilize for 
providing user-adaptive services. In addition to these research prototypes, a number of 
commercial systems have been recently put on the market (and a far larger number advertised on 
short-lived websites) that aim at providing such functionality for a specific kind of user-adaptive 
applications, namely web-based customer relationship management systems [Fink and Kobsa 
2000; Kobsa et al. 2001].  

Early user modeling shell systems were for the most part developed in the area of Artificial 
Intelligence. Quite in its tradition, user models were generally stored in simple flat files, or in so-
called knowledge representation systems which themselves were implemented in (indexed) files 
or databases. More recent user modeling servers predominantly use database systems for storing 
information about users, and the recent commercial systems store user models in fairly 
sophisticated database management systems. 

In this paper, we will present a user modeling server that is based on a very different type of data 
repository, namely directory systems. The use of directories for user modeling systems has 
already been considered, and dismissed, by [Kummerfeld and Kay 1997]. We will however 
argue that the reasons for their rejection do not hold true any more today. Rather, directory 
systems offer a number of significant advantages over database systems that should make them 
the data storage of choice for user modeling servers in the currently prevailing application 
scenarios for user modeling. 

In Section 2 of this paper, we will give a brief review of knowledge and data base management 
systems that have traditionally served as data repositories of generic user modeling systems. 
Section 3 introduces the alternative concept of directory systems, and specifically the 
Lightweight Directory Access Protocol (LDAP). We discuss five dimensions along which 
directory systems excel over database systems for user modeling purposes, as well as their 
derivative ability to implement so-called virtually centralized distributed user models. We will 
also describe a sixth dimension along which databases fare better than directories, but this is (at 
least for now) not very relevant for user modeling. Section 4 presents the architecture of UMS, 
an LDAP-based user modeling server that was used successfully in two different application 
domains. The proposed architecture also includes solutions for scalability (to a user population 
size that is realistic for contemporary web applications), and for user modeling with intermittent 
network connectivity such as in user-adaptive mobile systems. In Section 5, we describe a 
simulation experiment to test the performance and scalability of our user modeling server in real-
world application scenarios. We propose a theory of how such experiments should be conducted, 
based on available client-side usage data (and not server logs that have been exclusively used so 
far). Section 6, finally, summarizes the contributions and the resulting conclusions. 
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2 Traditional Data Repositories of Generic User Modeling Systems1 

This section gives an overview of how user models have been stored in major generic user 
modeling systems that have been developed to date.  

GUMS [Finin and Drager 1986; Finin 1989] allowed programmers of user-adaptive systems the 
definition of simple stereotype hierarchies and, for each stereotype, of Prolog clauses 
describing stereotype members and rules prescribing the system’s reasoning about them. The 
system was implemented in CProlog [Pereira 1996]. A ‘flat’ set of Prolog clauses contained 
all assertions about the current user and stereotypes, as well as definitions of all Prolog 
predicates that prescribed the system’s inference processes. In the spirit of Prolog, the 
authors refer to the set of these clauses as a ‘data base’. They were all maintained in Prolog’s 
in-core, native store of clauses though, and the system’s assumptions about the user were not 
separated from its other clauses. 

BGP-MS [Kobsa 1990; Kobsa and Pohl 1995; Pohl 1998] allowed assumptions about the user 
and stereotypical assumptions about user groups to be represented in a first-order predicate 
logic. A subset of these assumptions could be stored in a terminological logic. Inferences 
across different assumption types (i.e., types of modals) could be defined in a first-order 
modal logic. All knowledge of the system was encoded in a ‘flat’ list of clauses for the 
theorem prover OTTER [McCune 1994], and was read into OTTER from one or more input 
files. Alternatively, terminological knowledge and instantiated ground clauses could be 
expressed in a KL-ONE-like language [Kobsa 1991]. All system knowledge including all 
user models were maintained in the ASCON network storage [Bosch 1988] which was fairly 
efficient due to extensive hashing, and stored persistently in a single file. 

PROTUM [Vergara 1994] was implemented in IF Prolog and represented user model content as 
a list of constants, each with associated type (i.e., observed, derived from stereotype, default) 
and confidence factor. User models were stored in separate files per user and could also be 
imported from the BGP-MS user model repository. They were kept in main memory during 
runtime. 

UMT [Brajnik and Tasso 1994] allowed the user model developer the definition of hierarchically 
ordered user stereotypes, and of rules for user model inferences and contradiction detection. 
UMT models were objects within the memory space of the Lisp process, and were 
collectively read from and saved to a text file.  

TAGUS [Paiva and Self 1994; Paiva and Self 1995] represented assumptions about the user in 
first-order formulas, with meta-operators expressing the assumption types. It allowed for the 
definition of a stereotype hierarchy, a library of misconceptions, and a number of user 
models. The system was programmed in Prolog and Gödel [Hill and Lloyd 1993]. Each user 
model was stored in a separate file that could be loaded anytime during runtime, and was 
maintained in main memory during execution. 

um [Kay 1995] was a user modeling toolkit that represented assumptions about users’ 
knowledge, beliefs, preferences and other characteristics as attribute-value pairs. Each piece 

                                                 
1 The authors would like to thank Guido Bosch, Giorgio Brajnik, Tim Finin, Judy Kay, Joseph Konstan, Ana Paiva, and John 

Riedl for clarifications regarding the storage of user models in their respective user modeling systems. 
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of information (aka ‘component’) was accompanied by an indication of its source, a list of 
evidence for its truth and falsehood, and other data. Partial models kept related components 
together and organized them into hierarchies. The system was written in C and used the 
UNIX directory system to store and organize the user models, with each partial model being 
a directory. Standard UNIX permissions were used for access control. The persistent form of 
a user model was stored in text files that were intended to be readable by users. More recent 
user modeling servers from the same lab, Personis [Kay et al. 2002] and PersonisLite 
[Carmichael et al. 2005], store components and evidence in two separate databases. They 
were stored in Berkeley DB, which is not fully relational but very fast for large databases. 

DOPPELGÄNGER [Orwant 1993, 1994, 1995] was a user modeling server that accepted 
information about users from hardware and software sensors, collected them in user models 
that were stored on the server, and allowed learning algorithms to operate upon the sensor 
data and upon user models. Each user model contained a primary model, submodels and 
backup models. At the storage level, a user model was a UNIX directory, and its components 
were files in this directory. In fact, DOPPELGÄNGER was based on an early version of um 
(described in [Kay 1990]). The decision to use many files was made to allow many processes 
the access to a given user model at the same time [Orwant 1993]. 

Group Lens [Tornago 2006] originally employed various collaborative filtering algorithms 
[Breese et al. 1998; Herlocker et al. 1999] for predicting users’ interests, based on explicitly 
provided users ratings, implicit ratings derived from users’ navigation, and transaction 
histories (e.g., shopping basket operations, purchases). GroupLens stored all user ratings in a 
database, but kept a correlation matrix of all ratings in cache memory during runtime. This 
created memory problems and huge performance problems on the largest sites. They were 
solved temporarily with reduced-size models being selected statistically (with careful 
sampling, the reduced-size models did not show much quality degradation). Group Lens 
eventually moved to item-item models, which can be truncated substantially without much 
loss of quality [Miller et al. 2004]. 

With the exception of Group Lens and, recently, Personis [Kay et al. 2002] and PersonisLite 
[Carmichael et al. 2005], none of the developed generic user modeling systems seemingly paid 
much attention to appropriate storage mechanisms. In the simplest case, all user models were 
read from secondary storage at launch time (or were already part of the program code of the user 
modeling system in the first place). In the most sophisticated case, the model of the current user 
was individually read from a file at the beginning of the session with the respective user, and 
saved to a file thereafter. During a session with a user, the complete user model was maintained 
in main memory. In many cases, user models were also tightly intertwined with the 
programming language (e.g., part of the LISP or PROLOG space). It is obvious that this 
approach does not scale up when the number of users increases. 

This disregard of storage considerations is not surprising though since these generic systems 
were either designed for single-user applications only, or never tested with a larger number of 
parallel applications and users. Researchers regarded other properties of generic user modeling 
systems as more important, such as generality including domain independence, representational 
expressiveness, and inferential capabilities (see [Kobsa 2001]).  

In the next section, we will propose directory systems as an alternative, which offer numerous 
advantages over previous approaches: demonstrated performance and scalability, dynamic and 
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transparent management of distributed information, built-in replication and synchronization, a 
rich number of pre-defined types of user information, international vendor-independent 
standardization, and extensibility of the core representation language for new information types 
and for data types with associated semantics. Directories also allow for the virtual centralization 
of distributed user models and their selective centralized replication if better performance is 
needed. 
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3 Directories as the Foundation of User Modeling Servers 

3.1 Introduction 

Directories are specialized database management systems that were originally designed for 
maintaining information about people in organizations, and later extended to also include 
information about devices and services on a network. They are crafted to meet the needs of a 
wide range of applications and are based on international standards that guarantee 
interoperability between implementations of different developers and vendors. 

The first of these international standards promulgated by ITU-T and ISO in the late 1980s was 
the Directory Access Protocol (DAP, [Chadwick 1996; ITU-T 2001]). DAP was intended to be 
used by clients for accessing an X.500 directory service. It did not gain much popularity, mainly 
because it was too complex to be implemented and deployed on the hardware that was typical for 
that time. 

During the following years, LDAP emerged from the X.500 protocol family as a light-weighted 
alternative. LDAP removed excessive complexity from X.500 DAP, significantly reduced 
resource requirements, and took advantage of the popular TCP/IP rather than the OSI protocol 
stack. At the same time LDAP still preserved many strengths of X.500, including its information 
model (see [Fink 2004]), its versatility, and its openness. Many commercial systems have been 
developed that are largely LDAP-compliant, including network-wide address books (e.g., Lotus 
Notes[IBM 2006a] and Microsoft Exchange [Microsoft 2006a]), network operating system 
directories (e.g., Microsoft Active Directory [Microsoft 2006b], Novell eDirectory [Novell 
2006], IBM Tivoli Directory Server [IBM 2006b], and Sun Java System Directory Server [Sun 
2006]), and special-purpose Internet directories (e.g., [Bigfoot 2006; Switchboard 2006; 
WhitePages.com 2006]). 

In the following, we will briefly introduce LDAP by means of the following four models: 

• Information model, which defines the types of data that can be stored in a directory. 
• Naming model, which describes how to organize and refer to directory data. 
• Functional model, which prescribes how to access directory data. 
• Security model, which defines how to control access to directory data. 

For more information on LDAP, including the historical development of directories, we refer to 
[Howes and Smith 1997; Howes et al. 1999; Loshin 2000]. 

3.1.1 Information Model 

The basic unit of information in an LDAP directory is an entry. An entry represents information 
about a (real-world) object, specifically a person, an organizational unit, a resource, or a service. 
Below is an example of a directory entry for the hypothetical user Peter Smith (in LDIF, the 
LDAP Data Interchange Format). In this example, dn is the ‘distinguished name’ that will be 
explained further below. The entry is related to the object classes top and person, and has the 
attributes cn (for common name), sn (for surname), age, sex, and continent. 



7 

dn: cn=Peter Smith, cn=User Model, ou=UMS, o=gmd.de 
objectclass: top 
objectclass: person 
cn: Peter Smith 
sn: smith 
age: 36 
sex: m 
continent: eu 

Each directory entry belongs to one or more object classes (e.g., person, device, 
organizationalUnit). Object class definitions specify a class type, a set of mandatory and 
a set of optional attribute types, and an object identifier. Each attribute is associated with an 
attribute type, whose definition specifies a name and an object identifier, an indicator whether 
one or multiple values are allowed for an attribute, an attribute syntax, a set of matching rules 
that specify how attribute values are to be compared for equality, ordering, and substring 
matching, an indicator whether an attribute is intended to be used by the system or the user, and 
possible restrictions on the range or size of attribute values. 

3.1.2 Naming Model 

The LDAP naming model defines the organization of LDAP entries in an inverted tree structure. 
In this respect, LDAP’s naming model resembles a hierarchical file system (as, e.g., in UNIX), 
where each directory contains files and sub-directories. Besides this similarity, however, there 
are also a few differences between LDAP’s naming model and a hierarchical file system.  

In a hierarchical file system, the root directory is the common ancestor and contains all files and 
directories of the hierarchy. The root entry of an LDAP tree, in contrast, is a special entry that 
contains server-specific information (e.g., about supported LDAP versions, available operations 
and security features, and backup servers that can be contacted in case of a breakdown). No 
domain data can be placed in the root entry of an LDAP tree. In a hierarchical file system, a node 
is either a file or a directory, but not both. In contrast, entries in an LDAP tree contain data 
(represented as attribute-value pairs) and at the same time can have child entries underneath 
them. 

The final difference between LDAP and a hierarchical file system relates to the naming of 
individual nodes within the tree through full path specification. Names in LDAP are in reverse 
order compared with, e.g., the UNIX name convention (i.e., the leaf entry comes first). The 
distinguished name of our above example entry, 

cn=Peter Smith, cn=User Model, ou=UMS, o=gmd.de 

is formed by concatenating the comma-separated names of the entries from the leaf to the root 
(UMS thereby stands for the entry ‘user modeling system’, and gmd.de for the organization 
that hosts it). 

LDAP also supports non-hierarchical topographies by so-called ‘alias entries’. Using the analogy 
to the UNIX file system again, aliases are comparable to symbolic links. Although aliases can be 
used for connecting directory partitions that reside on different LDAP servers, LDAP’s facility 
of choice for ‘intra-linking’ distributed directories are ‘referrals’. Quite comparable to aliases, 
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referrals are explicit references that connect the different partitions of a distributed directory (for 
an example of a distributed directory, we refer to Figure 1). The main advantage of referrals is 
that they are standardized as a part of the LDAP v3 specification. 

3.1.3 Functional Model 

The LDAP functional model comprises three groups of operations for accessing a directory: 

• query operations (namely search and compare) allow for searching and retrieving 
information, 

• update operations allow for adding, deleting, renaming, and modifying entries, 

• authentication operations (namely bind and unbind) and control operations (abandon) allow 
for authenticating clients and servers and for controlling previously initiated LDAP 
operations. 

The server verifies a client’s credentials and, if approved, grants it certain access privileges. 
These privileges persist until the end of a session or until the client re-authenticates. Clients can 
terminate a session anytime using unbind, and terminate ongoing LDAP operations (e.g., a long-
running search) using abandon. Besides these predefined operations, custom operations can also 
be defined in a standardized manner by taking advantage of the ‘extended operation’ facility.  

3.1.4 Security Model 

LDAP’s security model provides standardized support for authentication, signing, and 
encryption: 

• Authentication allows for the verification of the identity of another party. LDAP’s security 
model offers a standardized interface to various authentication schemes including anonymous 
authentication (i.e., no authentication), simple passwords, (communicated as plain text or 
encrypted via an SSL-secured connection), X.509 certificate authentication via SSL, and 
SASL-based authentication and encryption using e.g. Kerberos.  

• Signing ensures the authenticity and integrity of information exchanged between clients and 
servers. LDAP’s security model supports signing through e.g. SSL. Within an SSL 
connection, each block of information is accompanied by a cryptographic checksum that 
allows clients and servers to verify the sender and to check whether the data has been 
tampered with during transit. 

• Encryption allows for the encoding of all exchanged information. During the negotiation 
phase of an SSL connection, the two parties (e.g., a client and a server) agree on a protocol 
(e.g., RC4, DES, IDEA). Besides SSL’s encryption facilities, LDAP’s security model also 
supports alternative encryption services (e.g. MD-5) via its SASL interface. 

Against this backdrop, it may come as a surprise that there is currently no standard access control 
mechanism for LDAP. In our work, we decided to take advantage of the access control model 
offered by Sun Java System Directory Server for granting directory access to anonymous and 
authenticated clients. Directory Server establishes access control through a set of access control 
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lists, each of which implements an access control rule and is usually attached to a directory entry 
via the special attribute aci (for access control information). By default, all users are denied 
access of any kind to the directory. An aci then grants or denies access to its directory entry and 
to all entries beneath. Its granularity can be very fine, if necessary down to an operation type on 
a single attribute of a single node issued by a particular user from a dedicated IP address during a 
specific period in time.  

3.2 Directories versus Databases 

In the following, we identify six characteristics of user modeling servers that seem to be 
important for the effective support of user-adaptive applications: the availability of pre-defined 
schemas that are relevant for user modeling and can be freely extended; the management of 
distributed information, replication, performance and scalability, adherence to open standards, 
and consistency management. We argue that directory systems generally rate higher than 
traditional database systems on the first five of these dimensions. While database systems rate 
better with regard to consistency management, there currently seems no user modeling 
application around that would impose such requirements. We also discuss the ability of LDAP to 
not only support centralized but also ‘virtually centralized’ user modeling servers, which we 
regard as crucial for successful deployment to practice. This is not an independent characteristic 
though, but a consequence of the other properties that we discuss. We finally conclude that the 
wealth of useful characteristics for user modeling should make directories, and specifically 
LDAP, the storage of choice for user modeling servers. Databases should only have a role in 
smaller applications where these characteristics are not so important, and in applications that 
pose high demands on consistency management. 

3.2.1 Pre-defined Schemas and their Extensibility 

LDAP directories provide built-in support for storing and retrieving various kinds of people-
related information including names, phone numbers, salaries, photographs, digital certificates, 
passwords, preferences, and even mobile ‘user agents’. Moreover, they support the 
representation of information about organizations, groups (e.g. administrators) and devices (e.g. 
printers). Pre-defined schemas exist for these information types (e.g., organization, 
organizationalUnit, device, person, residentialPerson, organiza-
tionalPerson, organizationalRole, etc.). 

Directories are not limited to a fixed schema though: based on predefined standard types and 
vendor-specific types of information, arbitrary extensions can be defined in order to cater to 
specific modeling needs. This not only includes new types of information (e.g., descriptions of 
user modeling services, users’ locale), but also custom primitive data types with new semantics 
(e.g., German telephone numbers, probabilities of users’ interests) and behavior (e.g. dynamic 
entries [Yaacovi et al. 1999], such as transient information about the user’s locale that must be 
periodically refreshed in the user model). 

A set of pre-defined primitives for representing basic information about users is surely 
advantageous, specifically if they are standards-based (see Section 3.2.5). Such primitives 
facilitate the exchange of information between applications and user modeling servers, and 
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between different user modeling servers. They may also speed up the development of user 
modeling servers in general. Likewise, ease of extensibility is also crucial since there currently 
exists no generally accepted user model ontology yet (see [PAPI 2001; Razmerita et al. 2003; 
Heckmann et al. 2005] for rudimentary beginnings though). When comparing LDAP with 
current database systems, LDAP clearly possesses far more predefined types of user information 
and methods for extending them. In contrast, only few database systems offer user-related 
information types and functionality for defining new primitive data types via low-level 
extensions to the database nucleus (e.g. [Informix 2006]). These features are proprietary though 
and therefore impair the interoperability between different database systems and their clients. 

3.2.2 Management of Distributed Information 

LDAP directories can manage information that is dispersed across a network of servers by 
linking this information through referrals. In the example of Figure 1, the user models stored on 
server B and the Usage Model stored on server C can still be accessed from server A since it is 
linked to the administrative structure on A (for a brief presentation of the User Model and the 
Usage Model, we refer to Chapters 4.2.1.1 and 4.2.1.2). Historically, this feature has been 
utilized for deployments where the responsibility and authority for the management of directory 
information is distributed (e.g., a branch of a firm is responsible for information about local 
employees). The distribution is transparent to the outside world, i.e. the directory appears as a 
single consistent repository. Scalability considerations provide another important motivation for 
distributing information. It is often better to design a large directory as a network of smaller 
parts, since this often guarantees much better performance, scalability, availability, and 
reliability of the overall service than a single large directory. Moreover, a distributed directory is 
in many cases cheaper to implement and simpler to manage (see [Howes et al. 1999] for more 
information on distributed LDAP deployments and resulting advantages).  

 Directory on Server A 

Directory on Server B Directory on Server C 

 o=gmd.de

ou=UMS

cn=User Model

cn=Peter Smith

cn=Interests

cn=Geschichte cn=Gastronomie 
… 

cn=George Brown 

… 

cn=Usage Model 

cn=DMI Events 

… 

… 

 

Figure 1: Distributed directory (based on [Howes et al. 1999]) 

The ability to maintain distributed repositories with user information already seems important 
today. It will become even more important in future applications of user modeling servers, for 
the following reasons: 
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• User information is already distributed in current applications. Customer relationship 
management systems on the web utilize several sources of user information, such as user 
profiles, purchase records from legacy systems, and customer segmentations from marketing 
research. Commercial user modeling servers that support such applications integrate these 
information sources already today to a greater or lesser extent [Fink and Kobsa 2000]. 

• Distribution is foreseen for identity management on the web. Traditional identity management 
systems (e.g. [Passport 2006; Yodlee 2006]) require that users store their data in a single web 
repository. More recent developments such as [Liberty 2006], [enQuire 2006] and [Kobsa and 
Schreck 2003] pursue a federated approach, which ensures “that the use of critical personal 
information is managed and distributed by the appropriate parties, rather than a central 
authority” [Liberty 2006]. Federated identity management carries fewer security risks since it 
avoids a single point of failure, caters better to users’ privacy concerns by not forcing them to 
divulge all data to a single authority, and also gives the local repositories more control over 
the recipients of user information.  

• User modeling and user models are becoming ubiquitous. User models for smart appliances 
have already appeared on the market or will become reality soon that maintain relevant user 
characteristics (e.g., interests and preferences) and adapt their functionality accordingly. 
Examples of such appliances include 

- car radios that learn drivers’ preferred stations, volume and tone, and whether to interrupt 
with traffic alerts, and store their preferences on their personal car keys, 

- mobile phones that pre-load web pages that are presumably relevant (e.g., stock quotes), 
- DVD and video recorders that proactively record television programs that are presumably 

interesting to a TV viewer according to the preferences that it learned from their viewing 
patterns, and 

- refrigerators that track the stored food and reorder out-of-stock items via the Internet, 
thereby taking a user’s preferences into account. 

While these small user-model applications are largely independent of each other, it may 
make sense in some cases to let them communicate with each other and exchange user 
information, such as a wristwatch contacting the refrigerator while in a grocery store and 
reminding the user to buy groceries that are running low. 

Database systems can handle data distribution too. The possible scale and granularity of 
distribution, however, are quite different from LDAP. Databases often restrict the granularity of 
distribution to the level of database tables, and the scale of distribution to a rather small number 
of sites. LDAP directories are not limited in these respects and support arbitrary levels of 
granularity and distribution scales. An extension of LDAP, the Connection-less Lightweight 
Directory Access Protocol (CLDAP, [Young 1995]) additionally facilitates the quick look-up of 
attribute values without the need for a permanent connection, which becomes very interesting in 
mobile scenarios and for appliances with limited capabilities. 
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3.2.3 Replication 

Replication of user model information is very attractive for remote user-adaptive applications. It 
allows these applications to temporarily duplicate the whole user model or substructures, to 
manage them locally while offline (including local edits and additions), and to synchronize the 
local copies with the original data (which may have also changed in the meantime) when this 
becomes possible again. Figure 2 shows a situation where the User Model on server A has been 
replicated in its entirety both on servers B and C (we omitted the labels in the replicas for 
reasons of brevity). 

 
Directory on Server A 

Replica on Server B Replica on Server C 

Replication protocol 

cn=User Model

cn=Peter Smith

cn=Interests

cn=George Brown 

cn=Interests 

… 

… … 

… … 

…                     … …                     … 

 

Figure 2: Replicated User Model (based on [Howes et al. 1999]) 

Historically, replication was primarily motivated by availability and performance considerations 
when deploying directories to real-world environments. Maintaining replicas of directory 
information can significantly increase the availability and performance of a directory service 
from a client’s point of view. These benefits can be equally leveraged in user modeling 
scenarios: 

• Availability. If a remote user modeling server, or the network connecting it with a user-
adaptive application, becomes (temporarily) unavailable, access to a local replica of user 
information enables the application to still provide personalized information and services. 
This can e.g. increase the autonomy of mobile users, smart appliances and user agents, by 
reducing their dependence from the availability of a network connection. 

• Locality. In general, the closer user information is to client applications, the better the quality 
of service and, in some cases, the achievable level of security. Creating a local replica of a 
user model may increase the security of user information since network communication can 
be reduced to what is necessary to keep replicas synchronized (see [Kobsa and Schreck 2003] 
for related threat models).  
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• Performance. Replicating a central repository on a network may also increase performance. 
For instance, user-adaptive applications can avoid network congestion by utilizing a local 
replica of a user model rather than one that is retrieved from a remote user modeling server. 

Replication is currently far more powerful in directory systems than in database systems. For 
one, LDAP directories are replicated on a far larger scale than databases. For example, employee 
directories in international organizations may have replicas in hundreds or thousands of branch 
offices all over the world. In contrast, only few database systems support replication, and then 
typically with few copies only. It should be noted though that the replication and distribution 
mechanisms of LDAP may also create disadvantages, such as temporary inconsistencies between 
a user model and its copies, and the computing efforts needed to resolve such replication 
conflicts. Furthermore, directory replication requires careful planning and deployment (see 
[Howes et al. 1999] for a detailed discussion). 

3.2.4 Performance and Scalability 

Performance and scalability are very important criteria for user modeling applications, 
particularly when those are to be deployed to the web. Directories have been designed to meet 
the needs of a wide variety of Internet and intranet applications (e.g., e-mail servers and clients, 
Web server applications and browsers, groupware servers and clients, and lightweight database 
applications). Scalability is therefore of paramount importance for directories since the number 
of applications that will utilize them is often not known at the time of deployment. Databases, in 
contrast, are often designed for a dedicated set of database applications. 

Directories are specifically optimized for search operations; their performance with regard to 
updates is considered less important. While it is true that performance is vital for database 
systems as well, their typical workload differs considerably from directories. Databases are 
optimized for a relatively balanced ratio of search and update operations (as is the case for many 
commercial transactions). [Shukla and Deshpande 2000] found that databases outperform 
directories when a given query matches a large number of database entries or has a large result 
set. If the number of matching entries and the overall result set are small, however, directories 
showed a far better search performance in the authors’ evaluation than databases. 

3.2.5 Open Standards 

Adherence to open standards in the design of user modeling clients and servers is very important 
since this improves their interoperability. There already exist efforts in some subfields of user 
modeling to come up with standards (e.g., [Kobsa et al. 1996], [Kummerfeld and Kay 1997], 
[Goodman et al. 1999], and [LTSC 2006]), although without many results so far.  



14 

LDAP is highly standardized. The most important areas of standardization are: 

• LDAP protocol specifications for versions 2 and 3, namely RFCs2 1777-1779 and 2251-2256. 
Some of these standards are in turn based on X.500 standards (e.g., RFC 2256 which defines 
the syntax and matching rules for attribute types and object classes in an LDAP user schema, 
is based on X.501, X.520, and X.521). 

• Proposed extensions to LDAP version 3, including RFC 2589 for managing dynamic LDAP 
entries that need to be periodically refreshed by client applications in order to persist; RFC 
2820 for common requirements towards interoperable LDAP access control models; RFC 
2713 for LDAP schema elements that represent Java objects; and RFC 2714 for schema 
elements that host CORBA object references. 

• Related Internet standards or proposed standards that have been adopted by LDAP, including 
the Simple Authentication and Security Layer (SASL, RFC 2222). SASL is a generic 
framework for negotiating security parameters between applications, e.g., for authentication, 
encryption and signing. LDAP version 3 provides native support for SASL. 

• Additional security standards besides SASL, such as X.509 certificates (RFCs 2559 and RFC 
2587), the Secure Sockets Layer protocol (SSL) and the Transport Layer Security protocol 
(TLS, RFC 2246). 

• The LDAP Data Interchange Format (LDIF, RFC 2849), a text-based format for representing 
and exchanging directory content. 

• A C programming interface for LDAP (RFC 1823), and several APIs for Java that are 
available as Internet Drafts (e.g. [Weltman et al. 2005]). Moreover, there exist a number of 
proprietary and mostly freely available software development kits (SDKs) for a variety of 
languages including C, C++, Java, Perl, and Basic.  

Although several standards exist for databases as well (e.g. [ISO 1989, 2003] for SQL), their 
number and scope falls far short of those for directories. This lack of standardization has many 
implications, most importantly that no real interoperability can be achieved between database 
systems of different vendors (e.g., an Oracle client application will generally not work with a 
Sybase database). 

3.2.6 Transaction and Replication Consistency 

A transaction is a group of logically coherent operations, e.g. a set of queries and additions that 
result in a low-level adaptation at the interface (including all internal inferences in the user 
model, such as stereotype activation or de-activation). Transactions should adhere to the well-
known ACID properties (Atomicity, Consistency, Isolation, and Durability; see [Fink 2004] for 
more information). Consistency, for example, means that a transaction transforms a user model 
from one consistent state into another consistent state. If such a state cannot be achieved (e.g., 
since integrity constraints are being violated), the user model has to be reset to the original state 
(see Fink [Fink 1999] for related examples).  

                                                 
2  RFCs (Request for Comments) are documents of the Internet Technology Task Force (http://www.ietf.org). They describe 

many aspects of Internet communication, e.g., networking protocols, procedures, programs, and architectural concepts. 
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To the best of our knowledge, none of the interfaces and communication protocols that have 
been proposed in the user modeling literature so far (e.g., [Kay 1995; Kobsa and Pohl 1995; 
Orwant 1995; Paiva and Self 1995; Kobsa et al. 1996; Carmichael et al. 2005]) puts ACID-
compliant transactional facilities at the disposal of the application developer. A static and 
restricted form of transaction support can be found in a number of systems including the PAT-
InterBook system [Brusilovsky et al. 1997] and in LDAP. Only a few directories support 
transactional consistency that goes beyond the scope of a single LDAP operation. Compared to 
this, database systems outperform directories with their full support for transactions. 

Database systems and directory systems also exhibit differences with regard to replication 
consistency. Directory systems support hundreds or thousands of replicas (e.g., a globally 
distributed staff directory of a multi-national firm). Deployed user modeling currently seems to 
be implemented with an assumption that loose consistency is acceptable. The administrative 
overhead is therefore kept low. Databases in contrast normally support strong consistency, i.e. 
database replicas have to be in sync at all times. Maintaining such strong consistency, however, 
requires a considerable amount of system resources (see [Fink 2004]). This is one of the main 
reasons why databases normally support a small number of replicas only. 

User modeling currently seems to be content with loose consistency. We are e.g. not aware that 
user-adaptive web stores that record in a user profile the items that the user put into her shopping 
cart see a strong need to correct such an entry in the unlikely event that the request to the remote 
shopping cart server fails or times out. Likewise, developers of user-adaptive handheld guides 
that foresee local replication of a user model on the Internet to respond to temporary connection 
failures do not seem to see a pressing need to update the local user model immediately when the 
central model changes (e.g., since the user accesses information on a public terminal rather than 
the handheld device), and vice versa. 

3.3 Virtual Centralization Using LDAP 

Integrating user information that is scattered across a network (no matter whether it refers to the 
same or different users) is of paramount importance, specifically for businesses [Fink and Kobsa 
2000]. There has been some debate recently whether this integration should occur proactively by 
storing all user information in a central repository, or ‘on the fly’ when needed (specifically 
through communicating agents, each of which is in charge of one of the local repositories that 
need to be integrated). [Fink and Kobsa 2000] emphasize the merits of the centralized approach, 
which include: up-to-dateness of user information; avoidance of duplication and resulting 
potential for inconsistencies; compact storage when generic classes (‘stereotypes’) are present; 
easy availability to different applications (and possible synergy effects due to the fact that user 
information acquired by one application can be employed by other applications and vice versa); 
and increased security [Schreck 2003].  

All current commercial user modeling systems follow the centralized approach [Fink and Kobsa 
2000]. [Yimam and Kobsa 2003] report that in a slightly different domain, namely expert finding 
in organizations based on locally stored expertise models, the performance of the agent-
communication approach turned out to be unacceptable. They therefore argue for an aggregate 
expert model that is continuously fed from the individual local models. 

Central servers in general also pose challenges, namely with regard to availability and 
scalability. [Orfali et al. 1994] discuss these problems in detail, and present solutions with regard 
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to availability. Other reasons for avoiding centralization may also exist: [Vassileva et al. 2003] 
report having abandoned their originally centralized solution for a university-wide collection of 
student-related information since central processing no longer suited the heterogeneity of user 
information, usage purposes, and decision rules.  

In their ‘future work’ section, [Fink and Kobsa 2000] already pointed out that ‘centralized user 
modeling’ does not necessarily imply the physical centralization of user information (although 
this has been the case in all research prototypes and commercial user modeling servers that have 
been developed so far). An alternative is the concept of ‘virtually centralized’ user information, 
which is extremely well supported by LDAP. Virtual centralization can come in many shades. 
Figure 1 shows a situation in which A is the central access point to all user information on the 
server. Integration of information on B and C is achieved by following links at runtime.3 If 
runtime integration is detrimental to performance, or not advisable because of insufficient 
availability of B and C, some or all information on B and C can be replicated on A.  

An interesting aspect is that B and C do not even need to be LDAP servers to allow for virtual 
integration. [Fink 2004] explains in detail how directory synchronization software from vendors 
like [Persistent 2006] and [Critical Path 2006] allows for a fusion of user data in legacy systems 
with an LDAP user modeling server. This can be achieved through a meta directory that contains 
a replica of the data in B and C. Integration of non-LDAP data can however also be realized 
through a virtual directory that retrieves values from legacy databases on demand.4 

It should be noted that the support of virtual integration is not an independent property of LDAP, 
but rather a consequence of its support for distributed repositories, (loose) consistency 
management, and replication. In a virtually centralized user model architecture, furthermore, the 
decision between central storage, distributed storage, and distributed storage with (partial or full) 
central replication is not one that is made by an application developer who is in charge of the 
user modeling aspects. Instead, it will be made by a system administrator based on service 
quality and consistency needs. It may well be that much of the tension between centralized and 
distributed user models [Vassileva et al. 2003], while valid from a systems administration point 
of view, is a non-problem from a user modeling point of view. 

3.4 Consequences for User Modeling 

Directories generally surpass databases with regard to the availability of pre-defined schemas for 
people-related information, extensibility, the management of distributed information, the 
possible extent of replication, performance and scalability, and adherence to standards. User 
modeling servers and clients that take advantage of directory technology are likely to enjoy a 
considerable degree of openness and flexibility. As has been explained in Section 3.2.4 though, 
databases manage consistency better, both with regard to individual transactions and with regard 
to global consistency between the original data and their replicas. They also perform better when 
large amounts of data have to be retrieved, or when the number of updates approaches the 
number of seeks.  

                                                 
3 [Fink 2004] discusses how link chasing can occur at different levels of transparency, with different security implications. 
4 Directory synchronization software allows for one-way and two-way synchronization of data that may be fused from several 

probably heterogeneous data sources (see [Fink 2004] for details). 
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Based on our discussion of the need for these characteristics in the area of user modeling, we 
argue that directories and not databases should be the storage mechanism of choice for user 
modeling servers. Databases should only have a role in smaller applications where the 
characteristics in which LDAP excels are not so important, and in applications that pose high 
demands on consistency management. To the best of our knowledge, however, there does not 
seem to be a strong demand in the current user modeling literature for a high data refresh rate in 
the user model, nor a need for retrieving large amounts of user information or for very 
sophisticated transaction mechanisms (see Fink [1999]).  

[Kummerfeld and Kay 1997] already considered LDAP as a candidate for a user model access 
protocol, but dismissed it on the grounds that it is difficult to “extend the types of information 
stored in the database ‘on the fly’”. While the schema can be changed, “this is usually a job for 
the directory administrator and cannot be done easily by a user program during a session”. The 
authors reason though this may not be a constraint for many applications.  

This deficiency has since been addressed: LDAP version 3 now includes client-side schema 
manipulation options [Wahl et al. 1977]. In retrospect, the objections of [Kummerfeld and Kay 
1997] have been vindicated. Schema extensibility became an indispensable feature for today’s 
deployment scenarios, since it allows one to cater to evolving data requirements without 
affecting the overall service. With previous LDAP versions, extending the schema (e.g., adding 
new attributes to a user’s profile) typically required an administrator to stop the LDAP server, 
change the schema, start a reconfiguration process, and finally reboot the server. Such a 
procedure is unacceptable in today’s application environments, which require a service with 
basically no downtime.5  

 

                                                 
5  According to IEEE, the lowest availability level called ‘stable’ is defined by 99% uptime, which translates into 3.7 days of 

planned or unplanned downtime per year. Most commercial directory servers, however, have to be operated at the service level 
of ‘high availability’, which mandates 99.99% uptime, i.e. a maximum downtime of 52.6 minutes per year. 
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4 Architecture of an LDAP-Based User Modeling Server 

4.1 Overview 

Following our conclusions in Section 3.4, we developed our user modeling server (UMS) as an 
LDAP directory server6 that is complemented by several ‘pluggable’ user modeling components 
and can be accessed by external clients. Figure 3 gives an overview of this architecture. The 
central Directory Component comprises the sub-systems Communication, Representation, and 
Scheduler. The Communication sub-system is responsible for handling the communication with 
external clients of the user modeling server (e.g., user-adaptive applications), and with the User 
Modeling Components which are internal clients of the Directory Component. Each User 
Modeling Component performs a dedicated user modeling task, such as collaborative filtering, 
domain-based inferences, etc. The Representation sub-system is in charge of managing the 
directory contents (mostly user information). The main tasks of the Scheduler are to wrap the 
LDAP server in a component interface and to mediate between the different sub-systems and 
components of the User Modeling Server. 
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Figure 3: Overview of the server architecture 

                                                 
6 We used the Directory Server from iPlanet which has meanwhile morphed into Sun’s Java System Directory Server [Sun 

2006]. 
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The Directory Component and the User Modeling Components communicate via CORBA [Pope 
1997; OMG 2001] and LDAP. This communication infrastructure does not mandate a specific 
distribution topography. Components can be flexibly distributed across a network of computers, 
e.g. dependent on available computing resources.  

Below we describe the Directory Component in more detail. The examples will be taken from a 
deployment of our user modeling server in the Deep Map project [Malaka and Zipf 2000; Deep 
Map 2001], which is concerned with the development of personal web-based and mobile tourist 
guides. We then summarize the User Modeling Components and the external User Modeling 
Clients that were defined in this project (see [Fink and Kobsa 2002; Fink 2004] for a more 
detailed description). While the individual elements of the user modeling server can be selected 
and configured differently for each application scenario, the choices that were made in the Deep 
Map project are very representative of web-based applications that cater to users’ interests. 

4.2 Directory Component 

4.2.1 Representation Subsystem 

The task of the Representation subsystem of the Directory Component is to store various models. 
The formal definition of the models hosted by the UMS is based on standard LDAP object class 
and attribute definitions. Nearly all schema elements used in the Representation component are 
part of the standard LDAP protocol. When adding new object classes to the UMS, we tried to 
adhere as much as possible to standard schema elements, in order to facilitate the deployment of 
the UMS to other user modeling scenarios. The current version of the UMS for Deep Map hosts 
a User Model, a Usage Model, a System Model, and a Service Model. These models can be seen 
in the left frame of the browser screen shot shown in Figure 4. 

 

Figure 4: Overview of the models hosted by the User Modeling Server 

In the right frame of the browser, we see various attributes and associated values for the 
currently selected root entry gmd.de. One important attribute is aci, which provides access 
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control information. Others are the name (gmd.de) and the standard LDAP object classes that 
are associated with the root entry (namely top and organization). Each of these object 
classes adds a number of required and optional attributes. The class organization, for 
instance, adds name, postal address, telephone number, etc. (only those attributes of gmd.de 
that contain at least one value are shown in Figure 4). All mentioned attributes may be modified 
by clients provided they have sufficient access rights. The so-called ‘operational attributes’ 
createtimestamp, creatorsname, modifiersname and modifytimestamp record 
all modifications and may not be changed. For more information on LDAP’s Information Model 
and Naming Model, we refer to Sections 3.1.1 and 3.1.2 as well as Chapter 5 of [Fink 2004]. 

4.2.1.1 User Model 

The left frame of Figure 5 shows three user models, one for Peter Smith, one for George 
Brown, and one for a stereotype Kunstliebhaber (art lover). In general, user models in 
Deep Map comprise a demographic part (which is mainly based on standard LDAP object class 
and attribute definitions) and a part for users’ interests and preferences. The demographic 
attributes for Peter Smith (whose entry is currently selected in the left frame) are shown in 
the right frame of Figure 5. Since Peter Smith was assigned to the object classes top and 
person, the demographic part comprises required attributes of person (namely the common 
name cn and the surname sn) and optional attributes (e.g., the encrypted userpassword). 
Other visible application-specific attributes include age, continent and sex. Several other 
inherited attributes (e.g., description, telephone number) have not been filled with 
values yet.  

 

Figure 5: User models 
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The major part of a user model in Deep Map describes users’ interests and preferences. The 
topography and terminology of this part corresponds to the domain taxonomy of Deep Map7, 
which is maintained in the System Model (see Section 4.2.1.3). Figure 6 depicts the user model 
of Peter Smith, with his interests being unfolded in the left frame. They range from 
Geschichte (history) to Natur (nature), which itself is divided into several sub-interests. 

 

Figure 6: Interest model of Peter Smith 

The interest in Umweltbelastung (environmental burden), which is a sub-entry of Natur, is 
currently selected. User attributes and operational attributes for this entry are shown in the right 
frame. They mostly represent inferences and probabilities that are being computed by the User 
Modeling Components in the Deep Map domain (see [Fink and Kobsa 2002] for detailed 
explanations). 

4.2.1.2 Usage Model 

The Usage Model acts as a persistent storage for usage-related data within the UMS. It 
comprises usage data communicated by the application, and information related to the processing 
of these data in User Modeling Components (e.g., a counter for Peter Smith’s interface 
events related to Umweltbelastung). In the left frame of Figure 7, we see the hierarchy of 
the Usage Model from an administrator’s point of view. It comprises the following parts: 

                                                 
7 This correspondence can be weakened or even abandoned in deployment scenarios where a domain taxonomy cannot be 

defined beforehand (i.e., when an open corpus of terms is used). [Fink 2004] describes the configuration parameters that are 
available for such cases. 
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Figure 7: Usage model 

• DMI Events contains usage data communicated by the application. Each entry in this sub-
tree describes a Deep Map interface event in terms of one or more interests from the domain 
taxonomy that can be attributed to the user based on this event. For instance, Peter 
Smith’s request for a document about the environmental impacts of tourism may be 
described through an attributed interest Umweltbelastung.  

• DMI Events Processed includes information that is required for, and results from, 
processing usage data contained in DMI Events (e.g., the aforementioned event counter for 
Umweltbelastung). 

• Backup and Backup History may contain events from DMI Events that have already 
been processed by User Modeling Components. The main motivation for stockpiling interface 
events is to preserve them for later processing and analysis, e.g. with visualization and data 
mining tools (which would be external User Modeling Clients in Figure 3). 

4.2.1.3 System Model 

The System Model includes relevant information about the application domain for User 
Modeling Components of the UMS, as well as other information that facilitates their operation. 
Its most important content is the aforementioned domain taxonomy.  

 

Figure 8: System model: classifiers and demographics 
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In the current version of the UMS for Deep Map, the System Model comprises the following 
attributes (see Figure 8): 

• Classifiers contains templates for assigning continuous attribute values to classes.  

• Demographics specifies those attributes in the demographic part of a user model that can 
be used for computing groups of similar users. In the current version of the UMS for Deep 
Map, this information is mainly relevant for the Mentor Learning Component (see Section 
4.3).  

• Interests constitutes the domain taxonomy of Deep Map. This sub-tree comprises five 
levels with nearly 500 leaf entries.  

4.2.1.4 Service Model 

The Service Model is divided into three parts, each of which is dedicated to a single User 
Modeling Component. Each entry represents a description of a server-internal event type in 
which a User Modeling Component is interested. So-called ‘basefilters’ allow one to restrict the 
portion of the overall taxonomy that must be monitored (e.g., DMI Events only). Events can be 
triggered before and after an LDAP operation is executed by the server. Post-notifications allow 
a User Modeling Component to react on the outcome of an LDAP operation (e.g., start 
processing an interface event that has been added to DMI Events). Pre-notifications allow a 
user modeling component to be invoked beforehand (e.g., carrying out consistency checks on 
interface events that have been added to DMI Events). 

4.2.2 Scheduler 

The second subsystem of the Directory Component is the Scheduler. Its main task is to mediate 
between the Directory Component and the User Modeling Components. User Modeling 
Components can subscribe to certain types of UMS events by maintaining event subscriptions in 
the Service Model (see Section 4.2.1.4). This approach limits the amount of communication, 
allows for the addition and removal of user modeling components at runtime, and for their 
dynamic distribution across a network of computers. Event vectors submitted by the Scheduler 
are entered into a separate queue before being periodically processed by the ULC. This reduces 
the amount of synchronous communication between the ULC and the Scheduler to a minimum. 

A second task of the Scheduler is the provision of user modeling extensions to the LDAP 
protocol. For instance, if a new user model has to be created, several standard LDAP operations 
must be executed in a particular order: checking for an already existing model, establishing the 
basic topography of a new model, setting appropriate access rights, and populating the model 
with default values. Moreover, rollback mechanisms have to be provided that preserve model 
consistency in case of potential problems during the creation process. Centralizing these 
administration tasks in the Scheduler preserves model consistency and relieves administrators 
and application programmers from laborious and error-prone administration and programming 
tasks. In the current version of the UMS for Deep Map, we implemented two operations for 
creating and deleting a user model using the standard mechanisms for adding custom extensions 
to the standard LDAP protocol. 
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4.2.3 Communication 

The Directory Component and the User Modeling Components communicate via CORBA [Pope 
1997; OMG 2001] and LDAP. In Figure 3, the CORBA Object Request Broker (ORB) is 
depicted on the right side of the Directory Component as a software bus that mediates between 
the Directory Component and the User Modeling Components8. The two orthogonal 
communication layers are used at runtime as follows: 

• The CORBA-based software bus is used for the communication of events and associated data 
from the Directory Component to the User Modeling Components (e.g., an event ‘interest x 
inserted into user model y’). Components can register filter instructions with the Directory 
Component in order to subscribe to specific events or types of events. From a theoretical point 
of view, this communication resembles a ‘filtered broadcast’, i.e. a combination of the 
standard paradigms ‘filters’ and ‘broadcast algorithms’ for process interaction in distributed 
programming environments (see [Andrews 1991]). 

• LDAP is employed by User Modeling Components for accessing and manipulating 
information that is hosted by the Directory Component. 

Components can be flexibly distributed across a network of computers, e.g. dependent on 
available computing resources. The separation of event handling and information access on 
different layers provides for maximum flexibility. It even allows one to, e.g., replace the LDAP-
based information management with one that is based on SQL, while still preserving the 
CORBA-based communication layer. 

The communication between external UMS clients and the Directory Component is through 
LDAP, and also through ODBC for external clients that are not LDAP enabled (see Figure 3). 

4.3 User Modeling Components 

User Modeling Components (see the right side of Figure 3) perform dedicated user modeling 
tasks and communicate with the Directory Server through LDAP and CORBA. Arbitrarily many 
User Modeling Components can be ‘plugged’ into the User Modeling Server. In the Deep Map 
application, three User Modeling Components were developed (see [Fink and Kobsa 2002; Fink 
2004] for more information):  

• The User Learning Component (ULC), which learns user interests and preferences from usage 
data, and updates individual user models. It uses univariate significance analysis with a 
confidence interval to determine whether a certain type of observation about a user is made 
significantly more or less often than in the population sample (see [Mitchell 1997; Pohl et al. 
1999; Schwab and Pohl 1999]). 

• The Mentor Learning Component (MLC), which predicts missing values in individual user 
models from models of similar users. It employs memory-based Spearman correlation for 
determining the proximity between users and various weighted prediction algorithms from the 
area of collaborative filtering (see [Herlocker et al. 1999]). 

                                                 
8  In the current version of the UMS for Deep Map, we use the commercial ORB VisiBroker [Borland 2006]. 



25 

• The Domain Inferences Component (DIC), which infers interests and preferences in 
individual user models by applying domain inferences to user information that was explicitly 
provided by users or implicitly inferred by the ULC and the MLC. To this end, it performs 
sideward and upward propagation in the interest hierarchy of the domain taxonomy (see 
Section 4.2.1.3 and [Kobsa et al. 1994]). 

4.4 External Clients 

External User Modeling Clients provide information about users to the Directory Component, 
and retrieve information about users from it. Examples for such clients include: 

• User-adaptive applications, which submit observations about the user to the Directory 
Component, and query the Directory Component for user characteristics. 

• LDAP browsers, which system administrators use to configure the components of the 
Directory System, to specify access rights, and to add, update and remove entries. 

• Widely available LDAP enabled applications, which users can employ to inspect and edit 
their user models (e.g., Microsoft Internet Explorer, Qualcomm Eudora, Microsoft Active 
Directory Browser); and 

• LDAP or ODBC enabled data mining and visualization tools, to analyze the total user 
population (e.g., to find clusters, stereotypes, and other regularities) and thereby to indirectly 
verify the accuracy of the employed user modeling methods. 

4.5 An Interaction Example 

To illustrate the interplay between external User Modeling Clients, the Directory Server, its 
Scheduler, and the User Modeling Components, we briefly describe a scenario in which a user-
adaptive application identifies a user interest and enters it into the Directory (see Figure 9).  
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Figure 9: Interaction scenario 
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1. A user’s request for a web document results in an event vector, which includes one or more 
terms that characterize the content of the document (the terms could come from the HTML 
‘description’ and ‘keywords’ tags, or be selected by a term significance measure such as 
DF/ITF [Sparck Jones 1972]). 

2. This vector is inserted into the DMI Events part of the Usage Model using an LDAP add 
operation. 

3. The add event is handed over to the Scheduler, which is tightly integrated with the Directory 
Server. The Scheduler scans its internal subscription tables for matching entries. It finds a 
subscription of the ULC whose event type and basefilter match the current event.  

4. The Scheduler asynchronously communicates the add event and associated data (mainly the 
event vector) to the ULC via CORBA, thereby following processing specifications that are 
also part of the subscription. Subsequently, the Scheduler resumes processing with step 6. 

5. The ULC periodically checks its event queue and performs a univariate significance analysis 
with each of the received terms and finds, say, that the user is not interested in 
Umweltbelastung, with a normalized probability of 0.8, an individual probability of 
0.04, and the classification ‘yes’. If these values strongly differ from the ones in the current 
user’s model, the ULC initiates an update via LDAP. 

6. The Scheduler reports the successful submission to the Directory Server via interprocess 
communication, thereby completing the event submission. 

7. The Client receives the result of its submission to the user modeling server via LDAP. 
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5 Evaluation 

The development of a prototype of our LDAP-based User Modeling Server in the Deep Map 
project was a proof of concept for the feasibility of a directory-based approach. However, before 
user modeling servers can be deployed in real-world application scenarios with potentially 
millions of users, their runtime behavior must be experimentally tested under realistic workload 
conditions to ascertain their satisfactory performance in the target environment. 

The parameters of such experiments, and specifically the simulated user interactions that cause 
requests to the UM server, should thereby closely resemble the interaction behavior at the target 
site in question. Unfortunately, most existing web traffic data are not very useful for our 
purposes. Many of them are based on proxy logs (e.g., [Duska et al. 1997; Gribble and Brewer 
1997]) or web server logs (e.g., [Almeida et al. 1996; Padmanabhan and Qiu 2000]). While such 
data is an excellent basis for analyzing caching and pre-fetching strategies, it does not reflect all 
communication that would ordinarily take place between browsers and web servers 
[Fenstermacher and Ginsburg 2002]. For instance, browsers may connect to web servers via 
several proxies, and numerous caches may affect the amount of traffic between browsers and 
web servers. Most published studies are moreover based on websites of research institutions, 
which are not very representative for users’ typical website visits9 and presumably also not for 
the navigation behavior that is exhibited at more typical sites (see e.g. [Almeida et al. 1996; 
Padmanabhan and Qiu 2000]). Virtually all existing performance studies of UM servers also 
employed synthetic workloads rather than empirical web usage behavior (e.g., [VanderMeer et 
al. 2000; Datta et al. 2001]). The same holds true for performance studies of directory servers 
(e.g., [Keung and Abbott 1998; Wang et al. 2000]). 

To avoid these limitations, we used findings from client-side studies of Internet usage behavior. 
We believe that these findings constitute a more promising basis for our model of real-world 
workload than the ones mentioned before. They provide an authentic view of users’ online 
behavior, as opposed to the keyhole perspective of earlier proxy and server based studies. 

5.1 Web Usage Patterns 

[Rozanski et al. 2001] conducted a comprehensive analysis of click-stream data collected by the 
audience measurement service Nielsen//NetRatings. The data was collected at the client side 
from a panel of 2,466 Internet users over several months. First, the researchers identified 
186,797 user sessions (defined as the time from when a user signs on to the Internet until she 
signs off, or ceases activity for more than an hour). Subsequently, they tested a variety of session 
characteristics with regard to their suitability for clustering these sessions. The most 
differentiating session characteristics were the following ones: 
Session length: defined as the length of a single user session on the Internet. 

Time per page: denotes the time interval between two subsequent web page requests. 

Category concentration: the percentage of time a user stays at websites of the same category 
(e.g., news, sports, entertainment, real estate). 

                                                 
9 For instance, [Nvision 1999] found that 35% of users' surfing time is spent at merely 50 (commercial) sites. 
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Site familiarity: the percentage of time a user stays at familiar sites, i.e. sites she had previously 
visited four or more times. 

Based on these characteristics, Rozanski et al. carried out a cluster analysis and distinguished the 
following patterns of web usage (in parentheses their relative frequencies): 
Quickie sessions (8%): These are short (one minute) visits to one or two familiar sites, to extract 

specific bits of information (e.g., stock quotes, sports results). Users visit 2.2 pages per site 
on average, and spend about 15 seconds on a page. 

Just the Facts sessions (15%): Here users seek and evaluate specific pieces of information at 
related sites (e.g., compare product offers). Sessions last 9 minutes on average. Users visit 
10.5 sites and 1.7 pages per site, with about 30 seconds per page. 

Single Mission sessions (7%): Users focus on gathering specific information or completing 
concrete tasks (e.g., finding the website of a scientific conference and registering for it). 
They visit two websites on average, which belong to the same category (e.g., search 
engines or portals). Users quite carefully read the content of (frequently unfamiliar) web 
pages in approximately 90 seconds. The average session length is 10 minutes, with 3.3 
pages per site being visited. 

Do It Again sessions (14%): These are focused on sites with which the user is familiar (e.g., 
online banks, chat rooms). Users spend about two minutes for each page. The average 
session lasts 14 minutes, with 2.1 sites and 3.3 pages per site being visited. 

Loitering sessions (16%): Users visit familiar ‘sticky’ sites, such as news, gaming, 
telecommunications/ISP, and entertainment. Sessions last 33 minutes, with 8.5 sites and 1.9 
pages per site being visited (two minutes per page on average). 

Information Please sessions (17%): Users gather broad information from a range of often 
unfamiliar websites from several categories (e.g., they collect facts about a specific car 
model, find a dealership, negotiate a trade-in, and arrange a loan). Users visit 19.7 websites 
and 1.9 pages per site. The average session length is 37 minutes, and pages are viewed for 
one minute on average. 

Surfing sessions (23%): They appear random, with users visiting nearly 45 sites in 70 minutes on 
average (about one minute per page and 1.6 pages per site). 

Over time, users can engage in several, if not all, session types, depending on how different their 
tasks are. Rozanski et al. found, e.g., that two-third engaged in five or more session types and 44 
percent in all seven session types. 

5.2 Simulated workload 

To test the performance of our UM server under different workload conditions, we simulated 
users’ interaction with a hypothetical personalized website. Each user thereby follows one of the 
abovementioned session types. The content of each web page is characterized by 1-3 terms taken 
from the domain taxonomy (see Section 4.2.1.3). Web page requests by a user lead to add and 
query operations in her user profile on the UM server: the terms of the requested web page are 
processed and added to her interest model, and the user model is queried for terms that represent 
such interests, to personalize a requested webpage. As a shortcut though, we omit the web server 
in our simulation and represent web pages by their characteristic terms only. 

To simulate different workload conditions, we systematically varied the following parameters: 
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• N (number of existing profiles in the UM server). 
• W (number of web page requests per second). 
For every factor combination, we generate a test plan with N user profiles. The behavior of 
currently active users of the hypothetical website is simulated by clients of our user modeling 
server. Clients are divided into seven classes, which represent the aforementioned session types. 
A class i comprises ci clients which exhibit the web page request behavior that is characteristic 
for their class. The ci clients of a class i create a total workload of wi page requests per second. 
The combined workload of all clients equals the preset frequency of page requests W. We 
assume that wi / W approximates the observed type frequency of class i (this assumption is 
corroborated by a manual count of the frequencies of Quickie and Just the Facts sessions at 
several German websites, such as the one described in [Fink et al. 2002]). Table 1 shows the test 
plan for a workload W of approximately 2 pages per second. Columns 2 and 3 contain the type 
frequency and the page request interval of the seven client classes from the study of [Rozanski et 
al. 2001]. Column 4 breaks down the workload W of two pages per second for each session type. 
For Quickies, for example, we calculate the number of clients ci as 2 page requests per second * 
15 seconds per page * 8% Quickies = 2 clients. Based on this, column 5 shows the actual 
workload wi of the ci clients for each session type. For Quickies, we calculate the workload wi as 
2 clients / 15 seconds per page = 0.13 pages per second. 

Table 1: Simulation environment for W=2 page requests per second (* = figure rounded) 

Session type characteristics Test bed parameters 

Variables  
 

Session types 

Relative 
type 

frequency 

Interval 
between 
requests 

No. of clients 
(ci )* 

Requests/sec. 
(wi )* 

Quickies 8% 15 sec 2 0.13 

Just the Facts 15% 30 sec 9 0.30 

Single Mission 7% 90 sec 13 0.14 

Do It Again 14% 120 sec 34 0.28 

Loitering 16% 120 sec 39 0.33 

Information, Please 17% 60 sec 21 0.35 

Surfing 23% 60 sec 28 0.47 
 Total 100%  146 2.00 

We assigned a frequency property to each term in the domain taxonomy (see Section 4.2.1.3) 
that indicates how often it will occur as a characteristic term of simulated web pages. We assume 
that these frequencies are Zipf distributed, based on the fact that term frequency distributions in 
documents tend to follow Zipf’s law [Zipf 1949]. We assigned another frequency property to 
simulated users that indicates how frequently they will start a new session with our hypothetical 
website. We assume that these frequencies are also Zipf distributed, based on several studies 
regarding the frequency and duration of people’s Internet usage (e.g., [Patrick and Black 1996]). 
Finally, we also assume a Zipf distribution of the frequency in which web pages are requested by 
our simulated users, based on the observation that web page popularity follows a Zipf-like 
distribution 1/iα, where i is the popularity rank of the web page and α an adjustment for the 
server environment and the domain. [Glassman 1994; Nielsen 1997; Breslau et al. 1999; 
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Padmanabhan and Qiu 2000] recommend different values for α. We followed [Padmanabhan and 
Qiu 2000] who analyzed the MSNBC news site since their study was the most recent and their 
site the most similar to our own target site. The authors recommend an α between 1.4 and 1.6, 
and hence we opted for α=1.5 and use this value for all three distributions. 

Finally, we assume further that our UM server has to process the following operations for 
personalizing a requested web page10: 
• Three search operations with Zipf-distributed terms from the domain taxonomy, namely for 

personalizing the page header (e.g., user-tailored banner ads), the navigation section (e.g., 
personalized links), and the content part (e.g., personalized news). We assume one exact 
search (such as for cn=Natur) and two substring searches (such as for cn=Umwelt*, 
which yields all those concepts that match this search filter (e.g., Umwelt, 
Umweltbelastung, Umwelt-Ticket)). 

• One add operation for communicating the 1-3 characteristic terms of a web page as an 
interest event to the UM server.  

5.3 Test Bed 

Figure 10 shows our test bed. On the right side, we see the User Modeling System for Deep Map. 
Its representation part maintains the models that were described in Section 4.2.1, namely the 
User Model, Usage Model, System Model, and Service Model. We retained the three latter 
models from the Deep Map project without modification (including the taxonomy described in 
Section 4.2.1.3), but varied systematically the size of the User Model by setting the number of 
user profiles to 100, 500, 2,500, and 12,500. On the left side of Figure 10, we see the 
components that constitute our Test Bed, namely the Controller, Generators, Master, and Clients. 
In the following, we briefly describe their main tasks. 

Controller. Its main tasks are 
1. to create the different experimental workload conditions (by, e.g., generating and initializing 

the required number of simultaneously operating Clients, and the number of user profiles 
hosted by the user modeling system), 

2. to execute test cases within the given constraints (e.g., test the runtime and ratio of different 
types of LDAP operations), and 

3. to collect and record client-side measures (e.g., mean response times for LDAP add 
operations, and the average number of entries affected by LDAP search operations). 

                                                 
10 See [Fink 2004] for additional details. Note that many personalized websites do not provide personalization on all pages, which 

reduces the load of the UM server. 



31 

 User Modeling Server 

User Model 
 

Usage Model 
 

System Model 
 

Service Model 

 
M 
a 
s 
t 
e 
r 
 
 
 

G 
e 
n 
e 
r 
a 
t 
o 
r 
s 

 
 
 
 
 

C 
o 
n 
t 
r 
o 
l 
l 
e 
r 

1st Client 

2nd Client 

. 

. 

. 

3rd Client 

Test Bed 

Test Results 
 

Log Files 
 

Transaction 
Plans 

 

User Model 

User Learning 
Component (ULC) 

Mentor Learning 
Component (MLC) 

Domain Inference 
Component (DIC) 

 
 
 
 
 
 
 
 
 

Directory Component 

 
 

R 
e 
p 
r 
e 
s 
e 
n 
t 
a 
t 
i 
o 
n 

 
 
 
 
 

S 
c 
h 
e 
d 
u 
l 
e 
r 

User Modeling Components 

Legend: 

CORBA 

LDAP 

Initialization 

Commercial 
LDAP server, 
Benchmark 
software 

 

Communication 
 

 

 

Figure 10: Overview of the experimental testbed 

Generators. They create 
1. user model contents (i.e., a preset number of user profiles using standard LDAP object 

types) , 
2. transaction plans, which specify the mix of LDAP operations to be sent to the UMS, and  
3. log files, which contain various information about the generation processes. 

Attributes in the demographic part of the generated user profiles are initialized with values that 
are randomly selected from lists of permissible attribute values (e.g., from a list of valid 
surnames or a list of postal/ZIP codes). The interests part of the generated user profiles is 
initially empty. The generation of Transaction Plans can be controlled by a variety of parameters, 
such as the ratio of exact vs. substring LDAP searches or the number of LDAP operations that 
are being submitted to the UMS during a session. The selection of users from the set of 
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generated user profiles, and interests from the Deep Map Taxonomy, is controlled by our Zipf 
distribution. 

Master. Its main tasks are 
1. to start and initialize a preset number of Clients, each with a dedicated transaction plan, 
2. to manage Clients at the time of testing, and 
3. to compile Clients’ individual performance measures into a single uniform report. 

Clients. Their main tasks are 
1. to execute their transaction plans (thereby submitting and monitoring LDAP requests), and 
2. to report their performance measures back to the Master. 

For implementing Generators, Master, and Clients, we took advantage of DirctoryMark 
[MindCraft 2006], a benchmark suite for LDAP servers. DirectoryMark simulates clients that 
simultaneously access an LDAP server and reports 269 performance indicators, all of which are 
measured from a client’s point of view. Therefore, they do not only indicate the performance of 
the user modeling system but also the performance of the network and, to a limited degree, the 
performance of the client computer. Integrating Directory Mark into our Test Bed was fairly 
easy, due to the compliance of our user modeling server with established LDAP standards. Only 
a few modifications had to be applied to Directory Mark, which were mainly motivated by our 
user modeling extensions to standard LDAP object types (e.g., regarding interests and 
preferences), and the necessity for submitting interface events to the UMS. These modifications 
were realized by a wrapper around Directory Mark and allowed us to inject event submissions 
with randomly generated numbers of Zipf-distributed terms from the Deep Map Taxonomy into 
the Transaction Plans generated by Directory Mark. These plans can then be executed by 
standard Directory Mark Masters and Clients.  
For each test scenario, we generated an appropriate number of user profiles as well as transaction 
scripts that implement the workloads for each of the session types introduced earlier. For 
instance, a transaction plan for a Quickie client would look as follows: 

1. log in (i.e., LDAP bind) to the UMS11, 
2. simulate a Web page request (i.e., submit three LDAP search operations and one LDAP add 

operation as described earlier), 
3. wait for 15 seconds, 
4. simulate another Web page request, 
5. wait again for 15 seconds, and finally 
6. log off from the UMS11. 

                                                 
11 We thereby assumed that Quickie applications (e.g., retrieval of stock quotes or sports results) will handle user logins/logoffs 

and authentication automatically, using cookies, certificates, and IP/Agent-related identification methods. The rejection rate 
for first-party cookies is currently at 1-4% [Webtrends 2005], hence an identification rate of more than 99% can be reached in 
combination with IP based methods. 
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During the execution of the experiment, the following steps were carried out under the 
supervision of the Master: 

1. generate a User Model with a given number of user profiles, and Transaction Plans for 
every Client group (each group exhibits the page request behavior of one session type), 

2. populate all user profiles in an initial warm-up phase, 
3. reboot the servers, and 
4. run each test case for 300 minutes. 

The warm-up phase was introduced to avoid commencing a test run with all user profiles being 
empty, which might have unduly altered the average performance figures. The duration of the 
warm-up phase was determined in a pretest by observing the insert and update ratios in the User 
Model. We found that for 100 profiles these ratios converge to a stable base state after 
approximately 10 minutes, and we linearly increased this duration for higher numbers of profiles 
as follows: 50 minutes for 500 profiles, 250 minutes for 2,500 profiles, etc. 

5.4 Small to Medium Scale Application Scenario 

Our first series of experiments was carried out with a hardware configuration that would be 
typical for small web stores or news sites. In one test variant, all user modeling functionality 
resided on a single platform. In a second variant, we distributed the four components of our UM 
server across a network of four computers. In both conditions, a PC with an 800 MHz CPU, 512 
MB of RAM and a 100 Mbps network card hosted the environment that simulated users 
submitting page requests. We varied our test parameters as follows: 
• N (number of existing profiles in the UM server): 100, 500, 2,500, or 12,50012. 
• W (number of web page requests per second): 0.5, 1, 2, or 413. 

5.4.1 Single Platform Tests 

In the single platform tests, the complete UM server (i.e., Directory Component, ULC, MLC, 
and DIC) was running on a single PC with two 800 MHz processors, 1 GB of RAM, a RAID 
controller with two 18.3 GB UW-SCSI hard disks, and a 100 Mbps network card. The software 
used was Windows NT 4.0, iPlanet Directory Server 4.13 and VisiBroker 3.4. The learning and 
inference components were compiled with Java 1.2.2 and used the Java Hot Spot Server Virtual 
Machine 2.0. 

                                                 
12  The corresponding user population is larger since not all users opt for personalization (5% in Yahoo and in a large German 

news portal [personal communication], and 64% in Excite [Excite 2006]). 
13  Based on data from [IVW 2006], one can estimate that two of three German websites with third-party traffic verification 

receive less than four page requests per second on average, even when only twelve usage hours per day and personalization 
on all pages are assumed. 
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Figure 11: Mean processing times for personalizing a web page 

Figure 11 shows the mean times that our UM server takes to perform the four user model 
operations for personalizing a page from the viewpoint of our hypothetical web application. The 
results for all 16 value combinations of our independent variables are charted. In general, mean 
times are only degressively proportional to the number of page requests and user profiles. In two 
cases (namely for 100 and 500 profiles), the response times for four page requests per second are 
even lower than for two. This advantageous behavior is mainly due to database caching in the 
LDAP directory server. The more user model operations are being sent to the server for a given 
number of user profiles, the faster this cache gets filled and the more operations can therefore be 
directly served from cache memory. We also see that all mean times for 12,500 users are higher 
than those for smaller numbers of user profiles, while the mean times for 100, 500, and 2,500 
user profiles appear quite similar (except for 2,500 users and four pages). We assume that this 
effect results mainly from a higher hit rate (i.e., probability that a specific piece of information is 
contained in cache memory) in those cases that have a smaller number of user profiles. The 
overall performance and scalability of our UM server appears highly satisfactory. Even in the 
case of four page requests per second and 12,500 user models, the mean time to execute four 
user model operations and to return the results to 288 clients in parallel is smaller than 53 ms. 
The 99% confidence interval for the means does not exceed ± 0.24 ms due to the large sample 
size. The mean times plus one / two standard deviations never exceed 78 / 103 ms. A more 
detailed analysis shows that this graceful performance degradation occurs for both add and 
search operations. Since the overhead caused by the UM server is minor, web-based applications 
will be able to provide personalized services while responding within the desirable limit of one 
second and, in any case, the mandatory limit of ten seconds [Nielsen 1993]. The moderate surge 
of the mean response time when the number of clients and user profiles increases does not 
suggest impending performance cliffs and scalability limits. 

5.4.2 Multiple Platform Tests 

In the multi-platform scenario, only the Directory Component was running on the mentioned 
dual processor computer. The three other components of the UM server were each installed on a 
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separate 600-800 MHz single processor PC with 100 Mbps network card. Figure 12 compares 
several measurements for both scenarios. We see that the mean time for processing the four user 
model operations that personalize a web page plunges to 22.44 from 52.57 milliseconds, and its 
standard deviation to 10.54 from 24.92 milliseconds (i.e., nearly 60% in both cases). The single 
most important reason for this improvement is the considerably better search performance. The 
mean search time falls to 5.29 from 14.57 ms (-64%), and its σ to 5 from 13.57 ms (-63%). Less 
impressive is the performance gain of add operations: the mean time drops to 6.57 from 8.86 ms 
(-26%), and σ to 6 from 8.29 ms (-28%). 
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Figure 12: Single-platform vs. multi-platform performance  

(12,500 profiles, 4 pages/sec) 

The distribution of our UM server across a network of four computers improved its performance 
considerably. Search operations benefit most from the relieved dual processor computer, since 
they can now be carried out concurrently by the directory server. Add operations with their 
inherent need for multi-user synchronization [Fink 2004] can take less advantage of the 
additional hardware resources. 

5.4.3 Evaluation of the Learning Components 

So far, we discussed the performance of our UM server from the viewpoint of our hypothetical 
web application. Now we turn to the individual components of our server: the statistics-based 
User Learning Component, the similarity-based Mentor Learning Component, and the rule-based 
Domain Inference Component. These components operate concurrently to the Directory 
Component. Figure 13 shows the mean processing times of the ULC and the MLC for the single 
platform scenario. The performance of the DIC (which is comparable to that of the ULC) is 
discussed in [Fink and Kobsa 2002; Fink 2004]. 
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For the ULC, mean times seem to mainly depend on the number of user profiles. They grow 
degressively with increasing page requests, which is mainly due to the queue-based architecture 
of the ULC (it allows for bulk processing of submitted events and for interim storage of interest 
probabilities in the main memory, thereby saving costly updates of the user profile). All recorded 
mean times are smaller than four seconds, which is highly satisfactory since it permits keeping 
track of users’ changing interests even between consecutive page requests. The ULC fully 
supports this inter-request learning for all session types and workloads we tested. 

The performance of the MLC is less good. For 100, 500 and 2,500 profiles, all means are below 
24 seconds but they grow progressively with increased page request rate. Except for Quickies, 
this still allows for a prediction of user interests and preferences between consecutive page 
requests. The response time deteriorates considerably though for 12,500 user profiles: 19 sec. for 
0.5 and 141 sec. for 1 page/sec, but more than 2 hours for 2 and 4 pages/sec. In the latter two 
cases, the MLC presumably cannot keep pace with the stream of user arrivals and approaches its 
performance limits. 

The most important reason for this weak scalability is the fact that the MLC we used in our tests 
searches for similar users in the whole user population. This results in low performance, large 
memory requirements, and often causes the underlying algorithm to be oversensitive to noise 
[Wilson and Martinez 2000]. In order to cope with these problems, more recent commercial 
versions of the UMS employ statistical sampling and reduction techniques from the area of 
instance-based learning like IB3, IB4 [Aha 1992], and DROP3 [Wilson and Martinez 1997, 
2000]. Especially DROP3 often significantly narrows the search space to a reasonably sized 
sample of user profiles and can at the same time achieve higher prediction accuracies (see, e.g., 
[Wilson and Martinez 2000] for related experiments). Against this background, if we re-interpret 
the 100, 500, and 2,500 profiles used in our tests as qualified samples from a much larger set of 
user profiles, then the performance and scalability of the MLC seems again quite satisfactory. 

Future work on the MLC may investigate the application of nearest-hyperrectangle, clustering, 
and partitioning algorithms to the matrix of users. For work on these topics, we refer to 
[Wettschereck 1994; Wettschereck and Dietterich 1995; Herlocker et al. 1999; O'Connor and 
Herlocker 1999]. 

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n 
tim

e 
(s

)

 

0

5

10

15

20

25

30

0 0.5 1 1.5 2 2.5 3 3.5 4

Page requests per second

M
ea

n 
tim

e 
(s

)

 
Figure 13: Mean processing times of statistics and similarity-based learning components 

(see Figure 11 for legend) 



37 

5.5 Large Scale Application Scenario 

The successful simulation results for a small to medium sized user-adaptive website put us in the 
position to run a series of experiments on a much larger scale. The most notable one comprised 
eight million user profiles14 and a workload of approximately 42 web page requests per second15. 
To realize this workload, we employed a total of 1,794 simultaneous clients in several testbeds. 
The UM server was installed on a Fire V880 from Sun’s entry-level server segment under Solaris 
8, with eight 750 MHz processors, 8 MB cache per processor, 32 GB of RAM, and more than 
200 GB of disk space. To take full advantage of the available hardware, we increased the cache 
size of the Directory Component and each learning component to 2 GB. The user modeling 
server was implemented in version 5.1 of iPlanet Directory Server. Otherwise the design of this 
experiment was very comparable to the one described in Section 3.1. 

The results were again very encouraging. Our UM server showed a mean response time of 35 ms 
for personalizing a web page (i.e., for performing three LDAP searches and one add operation). 
This user modeling performance should easily allow a personalized application to stay well 
below the desirable response time limit of one second and, in any case, below the mandatory 
limit of ten seconds [Nielsen 2000]. None of the several million search and add operations that 
were submitted by our simulated users failed or timed out. Overall, the quality of service offered 
by our server seems highly satisfactory. 

Our simulation environment obviously allows us to change any parameter of the experiment and 
to study the resulting effects. By systematic variation of the user modeling components we 
found, for instance, that their resource needs depend on their number (each can be present or 
absent, and instantiated multiple times), and on several parameters that determine, e.g., the 
learning frequency, the size of the correlation space, etc. As far as the allocation of processor 
resources is concerned, we found that an even distribution between the Directory Component, 
and the learning and inference components, seems to be a good solution. We also confirmed 
results from the literature regarding the effects of hardware sizing. For example, [Nelson 2002] 
mentions the following rules of thumb for the number of CPUs necessary to process LDAP 
operations: “With Directory Server 4.0, search performance will scale almost linearly with the 
addition of up to 4 CPUs. In this range, you can expect to see 500-1,000 queries per second for 
each CPU. Beyond 4 CPUs, the resulting increase in performance per CPU is less but still 
significant”. 

5.6 Related work 

At the beginning of Section 5, we discussed several performance studies whose traffic data are 
unlikely to accurately reflect the workloads of real-world user modeling servers, for various 
reasons (e.g., since synthetic workloads were used). The only study that seems comparable to 

                                                 
14 As a comparison, AOL had about 20.1 million subscribers in the U.S. at the end of September 2005 [Goldman 2005]. The 

number of subscribed users is a more meaningful measure of comparison than the number of unique users, mainly due to the 
high mortality among the latter. 

15 Based on data from [IVW 2006], one can estimate that nine of ten German websites with third-party traffic verification receive 
less than 42 page requests per second on average, even when only twelve usage hours per day and personalization on all pages 
are assumed. 
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ours from a design point of view is the one described in [Carmichael et al. 2005]. The authors 
present a performance study of their PersonisLite user modeling server in a ubiquitous 
computing scenario. PersonisLite stores user models in the Berkeley DB database system. The 
server is meant to be used for a variety of applications, such as for generating recommendations 
in a museum [Bright et al. 2005], for location and activity modeling in a ubiquitous computing 
context [Carmichael et al. 2005; Whitaker and Kay 2005], and for author modeling in a 
computer-assisted tutoring context [Goldrei et al. 2005] 

Like in our own study, the authors use recorded traffic data for simulations aimed at measuring 
the performance of their server, namely user login data from a campus environment and periodic 
scan data whether they are still active. The experiment resulted in small CPU times for add 
operations and linear increase with the number of items added, and also small CPU times for two 
types of search operations with different complexities, with virtually no increase with the 
number of items in the user model. Unfortunately these results are not comparable to ours, e.g. 
for the following reasons: 

1. Their server hardware is quite different from ours (a single Intel Pentium IV processor with 
2,53 GHz versus, e.g., a dual Xeon processor configuration running at 800 MHz in our 
case). 

2. The number and complexity of PersonisLite services seems to be smaller than those on our 
UM server. Specifically, the PersonisLite study focuses on a comparison of the performance 
of two different inference processes (‘resolvers’), namely ones that only take the latest few 
user data into account with ones that process the last half hour’s worth of data. The UMS 
study evaluates instead the user modeling components introduced in Section 4.1. 

3. Their test approach lacks a two-factor design, with an increasing number of data items and 
number of client applications (see Section 5.4). 

4. Their test starts with an empty database, whereas our database is pre-filled in a dedicated 
warm-up phase so that the server performance does not become favorably biased at the 
beginning of the experiment due to a smaller than normal database size (see Section 5.3). 

5. They successively submit large batches of user model operations of the same type (e.g., 
450,000 add operations, 400 ask operations) rather than continuously mixing them (see 
Section 5.2), which may unduly boost the performance due to caching effects. 

6. They only collect a few measures for server performance (e.g., CPU time) directly on the 
user modeling server, whereas we collect 269 different performance measures both on the 
user modeling server and on the client side (see Section 5.3). 

7. Their central measure for evaluating server performance is CPU time (i.e. the consumption 
of a single resource on the server), whereas the central measure in our test is the response 
time for user modeling operations from a client point of view (i.e., including server 
performance, network latency, and client performance). 
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6 Summary and Conclusion 

We showed that the use of directories for storing user information offers significant advantages 
over the two traditional approaches in academia and industry, namely flat file systems and 
database systems. These advantages lie particularly in the 
• management and retrieval of (user-related) information, in a way that is compliant with 

established standards; 
• pre-defined user related information types, and the possibility to define new types; 
• distribution of information across a network, which often leads to better performance, 

scalability, availability, and reliability of the user modeling service; 
• replication and loose synchronization of information, which may enhance the performance 

and availability of the overall service, and is particularly useful in mobile applications where 
clients can become disconnected from the network;  

• ability to realize a virtually centralized distributed architecture for a user model repository; 
and the 

• security of information and users’ privacy, by providing facilities for authentication, signing, 
encryption, access control, auditing, and resource control (see [Fink 2004]). 

We presented the architecture of our user modeling server UMS which takes advantage of the 
above benefits of LDAP. We also briefly demonstrated the utility of this server in an application 
scenario. In simulation experiments we verified that our server can fully cope with the workloads 
of small and medium-sized application environments. We found that the processing time for a 
representative real-world mix of user modeling operations only degressively increases with the 
frequency of page requests. The distribution of the user modeling server across a network of 
computers additionally improved its performance. At the same time, the hardware demands of 
our server are quite moderate. These results complement and corroborate the discussion of 
Section 3 regarding the advantages of directory systems as a basis for user modeling servers. 

Since the workload used in the simulations was based on empirically gathered usage data and 
statistical findings from web usage research and information retrieval, the ecological relevance 
of our experiments appears to be high. Virtually all parameters of our experiment (e.g., the 
number of user modeling components used, their computational characteristics, their distribution 
across platform, and the characteristics of the site platform, the user behavior and the webpage 
content) can be systematically changed and the resulting effects studied. Our experience with 
actual installations of our server in commercial environments showed that this approach and the 
developed simulation test bed were an indispensable tool for real-world personalization.  

More recent experience that we gained from deploying our user modeling server to large 
commercial Web sites confirms that our server can indeed be deployed in high-workload 
environments as well. Our user modeling server has been already successfully deployed in 
commercial application environments. A profiling application across most German Top 100 web 
sites with a total workload of tens of millions of users and several billion page impressions per 
month is already up and running on a farm of high-end Xeon-based servers. Pilot systems for 
other European countries are currently being tested. 
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