
To appear in A. Costa, V. Julian and P. Novais, eds. (2017):
Personal Assistants: Emerging Computational Technologies. Springer International

Personalized Visual Recognition via Wearables:
A First Step toward Personal Perception
Enhancement

Hosub Lee1, Cameron Upright2, Steven Eliuk2 and Alfred Kobsa1

1: University of California, Irvine, 2: Samsung Research America

Abstract During the last few years, deep learning has led to an astonishing advancement
in visual recognition. Computers now reach near-human accuracy in visually recogniz-
ing characters, physical objects and human faces. This will certainly allow us to build
more intelligent personal assistants that can help users better understand their surround-
ing environments. However, most visual recognition systems have been designed for
user-independent recognition (e.g., Google reverse image search), and not for an indi-
vidual user. We believe this practice is restricting the technology from helping people
who have individual needs. For example, a person with memory problems may want to
have a computer that accurately recognizes a few close friends, rather than hundreds of
celebrities. To address this issue, we propose a novel wearable system that enables users
to create their own visual recognition system with minimal effort. A client running on
Google Glass collects images of objects a user is interested in, and sends them to the
server with a request for a specific machine learning task: training or classification. The
server performs deep learning according to the request and returns the result to Glass.
Regarding the training task, our system not only aims to build deep learning models
with user generated image data, but also to update the models whenever new data is
added by the user. Experiments show that our system is able to train the custom deep
learning models in an efficient manner, in terms of the required amount of computing
power and training data. Based on the customized deep learning model, the system clas-
sifies an image into one of 10 different user-defined categories with 97% accuracy.

Keywords Personalization; Person identification; Object recognition; Google Glass;
Deep convolutional neural networks; Transfer learning; Finetuning

alfred

alfred

alfred

2

Introduction

With recent technological advances in wearable computing, users are more likely to
collect information about their surroundings. For instance, users could directly capture
images of objects through a smart glass rather than a smartphone. Google Glass is a
representative wearable that can translate this scenario into reality. Since the camera
functionality of Google Glass is always ready to be activated instantaneously by the
user’s command, it is reasonable to assume that more image data representing users’
personal interests could be collected. Consequently, there are more chances to build a
user-tailored visual recognition system by utilizing those collected images as training
data.

Recently, deep learning has been making a breakthrough in diverse computer vision
and pattern recognition problems [12, 16]. Deep learning is a machine learning tech-
nique that attempts to extract high-level concepts from data via a complex model com-
posed of hierarchical processing units. The trained deep learning model then utilizes the
extracted concepts in making predictions on new data. Deep convolutional neural net-
works (CNNs), a commonly used type of network, have been widely used in the com-
puter vision community [25]. CNNs are biologically-inspired variants of artificial neural
networks, which mimic how the human brain perceives images. These networks consist
of multiple layers of filters which hierarchically process segments of the input image.
Pooling layers are often added to reduce dimensionality and add translational invari-
ance. Finally, multiple fully connected layers may be used to combine the spatial fea-
tures and produce a final classification. Specifically, outputs of convolutions in the
lower layers are used to represent the primitive element that forms the image (e.g., edge).
Then, these representations are integrated in the higher layers to express more abstract
concepts (e.g., shape) of the image. With this architecture, we can train the whole net-
work through the standard backpropagation algorithm by using the labeled images as
training data. Recent studies proved that CNN-based image classifiers have reached
near-human levels on diverse visual recognition tasks [1, 11, 17, 19].

These technological advances can potentially benefit people. However, most deep
learning applications thus far have been designed and developed for the general popu-
lation, not for an individual who has a special need. Imagine that there is a professor
who gives a lecture to 300 students. This professor might want to wear Google Glass
displaying the names of students during the lecture because it is difficult to memorize
all their names. People with visual impairments may want to have Google Glass proac-
tively inform them about the presence of nearby friends. Those with cognitive impair-
ment (e.g., dementia) could use a Google Glass capable of recognizing their personal
belongings. This would help when they have memory problems. To realize all of these
scenarios, each individual user needs to have a custom machine learning model trained

3

on her/his own image data (i.e., a personalized machine learning model), and utilize the
model for recognizing an input image. In this regard, we have defined two main require-
ments for constructing personalized machine learning models. First, a user should be
able to easily collect images with appropriate labels in everyday life. Second, the system
should be able to not only train a machine learning model with user generated image
data, but update the model whenever the user provides the system with new classes of
data.

With these requirements in mind, we developed a novel wearable system that ena-
bles users to create their own CNNs without any difficulties. To begin with, our system
adopts the first generation of Google Glass for collecting image data representing users’
personal interests. By using our Google Glass application named DeepEye, a user can
take images of an object of interest and apply whatever label they want. DeepEye then
transmits these labeled images to a GPU-equipped Linux server to train the CNN. In
general, training deep learning models like a CNN from scratch uses a considerable
amount of time on modern GPUs and requires very large volumes of training data. To
make the training process more practical, we devised a new training mechanism named
chained finetuning. This mechanism was designed to train a new CNN by utilizing the
previously trained CNN as a starting point. Experimental results show that chained fine-
tuning allows us to train the CNN while requiring less computational power and training
data, compared to conventional training approaches. Most importantly, chained finetun-
ing is effective for expanding the expressive power (i.e., the number of classifiable cat-
egories) of the CNN whenever the user collects images of new object classes. DeepEye
can also run as an image classifier: if the user asks it to recognize an object from an
image, it will show a classification result produced by the server. The server thereby
utilizes the CNN trained specifically for the user. Our system showed about 97% accu-
racy in classifying an image taken by Google Glass into one of 10 user-defined catego-
ries.

In summary, the contributions of our work to the field of personal assistants are the
following:

• We built a novel wearable system which lets users create their own deep learning-
based visual recognition systems without any expertise;

• We proposed a simple, but efficient mechanism for training personalized deep learn-
ing models with user-generated image data (chained finetuning); and

• We showed the feasibility of the proposed system including chained finetuning
through several visual recognition experiments.

4

Related Work

In the late 1990s, there were several attempts to build visual recognition systems into
early versions of wearable computers. Steve Mann designed and prototyped a wearable
personal device that could take pictures and recognize human faces in it [14]. This wear-
able device was also equipped with a small head-mounted display to give textual infor-
mation to users. The author stated that the system could act as a visual perception en-
hancer because it could provide users with real-time feedback on what they were
viewing. Even though this prototype was cumbersome to wear (e.g., a set of communi-
cation units were attached to the user’s body), it is considered as a pioneering example
of wearable visual recognition systems. Thad Starner et al proposed a system that rec-
ognizes the user’s current behavior by analyzing video data [21]. The system utilized a
hat-mounted camera to collect video streams, and then classified each single frame into
pre-defined categories using a probabilistic object recognition technique. By using the
results of object recognition, the authors trained a hidden Markov model (HMM) to
identify three different tasks performed by the user. They also developed a visual recog-
nition system capable of recognizing sentence-level American Sign Language selected
from a 40-word lexicon [22]. They collected input video streams from both a desktop
computer and from a wearable computer (namely the same device as in [21]). The ex-
perimental results showed that the system could recognize the given sign language sub-
set with up to 98% accuracy. Finally, Antonio Torralba et al also proposed a wearable
system that accurately identified 24 different of object types in a given image [23]. First,
the authors adopted an HMM approach to recognize the current location of the user.
Next, they utilized the location information as a contextual cue for detecting objects
from an image, based on Bayesian inference. A helmet-mounted webcam was used to
collect training image data under realistic conditions in which the user walked freely
around the environment.

All of the mentioned works provide useful insight and practical advice for develop-
ing visual recognition systems for wearable computers. However, this topic has not been
actively studied anymore after the early 2000s. This is probably because there were no
commercial camera-equipped wearables available, leading to less opportunities for re-
search in both academia and industry. However, with the advent of Google Glass, this
situation may change. For instance, researchers at Fraunhofer developed emotion recog-
nition software for Google Glass [3]. Based on their proprietary machine learning frame-
work SHORE, the system detects people’s faces in an image taken by Google Glass,
and determines their emotional states by analyzing facial expressions. Similarly, re-
searchers in the field of affective computing connected Google Glass with custom-made
smile detection software to provide users with a real-time visualization of smiling faces
of people around them [4]. Thomas Way et al designed a Google Glass application

5

named ELEPHANT for retrieving meta information about the context (e.g., activity in-
formation) in which a picture was taken [24]. They anticipated that ELEPHANT could
help people with memory impairment because it can provide contextual information
when they have difficulty remembering a specific object. The authors consider using
traditional machine learning algorithms such as logistic regression, support vector ma-
chines (SVMs) or Naïve Bayes to retrieve context information from an image.

Recently, researchers are trying to apply deep learning methods to wearable com-
puters to achieve more accuracy in visual recognition systems. Recently, several com-
panies demonstrated image classification with Google Glass [5, 18]. In order to recog-
nize objects in an image captured by Google Glass, both utilized pre-trained deep neural
networks which are deployed in their cloud. Since these works have not been published
as yet, we do not know the details of their systems. However, it seems clear that they
are focused on the classification of an input image using pre-trained deep learning mod-
els, rather than on training a deep learning model for an individual user.

Personalized Visual Recognition System via Google Glass

In this section, we discuss the design and implementation of our system in detail. We
first describe an overall system architecture including software/hardware specifications,
and then explain the functional details of the system.

System Architecture

Fig. 1 System Architecture

Our system is designed as a client-server model (Fig. 1). As a client, Google Glass col-
lects images when instructed by the user, and sends them to the server with a specific

Google Glass
ML model

Server

Classification request

Classification result

What is this?

This is “Jessica” Training request (w/ new data)

Update ML model
(w/ new data)

Training
Classification

6

task type (training or classification). The server then carries out the requested task and
returns the results back to Glass. The server was designed to continuously train (or up-
date) the CNN using the proposed training mechanism whenever new image data is col-
lected by Glass. When the server completes the training task, it replaces the preexisting
CNN with the newly trained one that considers the most recent images. Overall, Google
Glass acts as an image collector and interface which is visible to the end user. The server
performs machine learning tasks in the background, such as classifying images when
needed and training new models when an object is added. We chose this architecture
because Google Glass has limited computing power. To the best of our knowledge,
Glass’s dual-core CPU (OMAP4430) and 2GB main memory are not sufficient to exe-
cute backpropagation for training CNNs.

Client

We developed a Google Glass application (Glassware) named DeepEye, following the
Ongoing Task design pattern proposed by Google. The Ongoing Task pattern is com-
monly used for building a basic Glassware that enables users to control their Google
Glass [2]. We wrote a function for DeepEye that takes a photo periodically upon the
user’s command. DeepEye sends these image data and messages to the server through
Java socket communication over the Wi-Fi network. We used official Google libraries
such as the Android 4.4.2 (API 19) SDK and the Glass Development Kit Preview in
developing DeepEye.

Server

The main purpose of the server is to quickly train deep learning models with reasonable
prediction accuracy. In order to achieve this, we built a Java server on a Linux work-
station equipped with a modern GPU (NVIDIA GeForce GTX 970). We then deployed
an open source deep learning framework named Caffe [9] on the server. Currently, Caffe
is one of the fastest CNN implementations available. If the server receives a request for
a specific task from DeepEye, it executes a corresponding Caffe command (e.g., train a
CNN or classify an image with a CNN) through its python interface, and returns the
result.

7

Workflow

As discussed earlier, DeepEye has two main tasks: training and classification. Here, we
describe each task step by step. When DeepEye is started, a user is asked to choose
between two tasks via the Google Glass touch pad (Fig. 2-a).

(a) Initial screen (b) Train – labelling

(c) Train – data collecting (d) Classification

Fig. 2 Screenshots of DeepEye

Training

For the training task, the user enters the name of the target object (i.e., its label) through
Google Voice Input (Fig. 2-b). The user can try again if the result of the speech recog-
nition was incorrect. When the user confirms the label, DeepEye begins to take a photo
of the object every five seconds, and transmits it with a message representing the current
task (_train) to the server. This process is repeated as long as DeepEye receives an ACK
message from the server and the user has not explicitly terminated the training task (Fig.
2-c). The server will use the transferred image data for training a deep learning model
via our proposed training mechanism which we call ‘chained finetuning’.

As discussed, training deep learning models from scratch is very expensive and
time-consuming. For example, training a CNN on the ImageNet dataset which contains
1.2 million images with 1,000 categories can take several weeks on a single GPU or
hours/days in a distributed setting [11]. For these reasons, it is more common to retrain

8

an already fully trained model on a new dataset to repurpose a preexisting model for
different tasks [10]. For instance, after the initial retraining, we can immediately exploit
the pre-trained CNN’s well-learned parameters representing generic visual features like
edges. Then, we can focus on updating values of parameters aimed at extracting more
object-specific (high-level) features related to our own image data. This approach is
known as finetuning, one kind of transfer learning algorithm. Finetuning is widely used
to avoid expensive training efforts in diverse machine learning tasks [15].

Chained finetuning, the extended version of finetuning, was designed to train a new
deep learning model on ad hoc additional training data. The main idea of chained fine-
tuning is simple. To train a new model (here, CNN) for a new task, it iteratively retrains
the pre-trained CNN on a newly created dataset. Suppose that there exists a CNN trained
to classify an image into three user-defined categories A, B and C (CNN_ABC). If a
user adds a new category D with the corresponding image data, chained finetuning then
constructs a new model (CNN_ABCD) on new training data while using the old model
(CNN_ABC) as a starting point. More specifically, we define a new CNN by adopting
an underlying network architecture of the pre-trained CNN, but change its classification
layer to have a correct number of outputs based on the given task (e.g., 4 output nodes
for CNN_ABCD). Next, we can initialize parameters (weights) of the new CNN with
that of the pre-trained CNN, and then progressively update the weights of the new CNN
through the backpropagation algorithm on a new dataset. This process can be continued
in a series whenever new types of training data became available.

Chained finetuning begins if there are at least two user-defined categories with a
sufficient amount of training data. Through repeated experiments, we determined the
threshold for sufficient training data as 100 images per class. The process also checks
whether there are any ongoing CNN training processes on the system. If training is al-
ready in progress, it will not try to train a new model until the ongoing process has
ended. Otherwise, if this is the first finetuning attempt, it trains a new model by using
the pre-trained CNN named BVLC Reference CaffeNet (CaffeNet) [9]. We utilized
CaffeNet as a base model because it is a publicly available pre-trained CNN that has a
reasonable prediction performance on a 1,000-class object recognition task (ImageNet
challenge) [11]. In any later finetuning, it trains a new model by finetuning the CNN
pre-trained in the previous finetuning stage. When a finetuning process has finished, the
previously trained CNN is replaced with the newly trained CNN.

Classification

Classification is relatively simple. When users choose the classification task, they take
a picture of the object by clicking the Google Glass touch pad. Similar to the training
task, DeepEye sends the image to the server, but with a different message (_classify).

9

Next, the server uses the latest trained CNN to execute the Caffe classification command
on the image. If no error occurs, the server sends the classification result (with proba-
bility) back to DeepEye. If DeepEye receives the result from the server, it displays them
to the user through Google Glass’s heads-up display (Fig. 2-d).

Experiment 1: Person Identification

Overview

To validate the effectiveness of the chained finetuning mechanism, we designed and
conducted a series of person identification experiments. At first, we finetuned CaffeNet
so that it could identify 20 different people, rather than 1,000 different objects from a
set of images. The intention was to confirm that finetuning is an effective approach for
constructing a custom deep learning model for a new task. This was important because
a single finetuning step is the basic building block for chained finetuning. Second, we
finetuned the previously trained CNN while adding images of a new person to the train-
ing data (i.e., chained finetuning), and evaluated the predictive power of the CNN
trained in each single finetuning stage. As a result, we trained a custom CNN so that it
could classify five different people. While finetuning CNNs, we tried to update the
weights of the classification layer faster than that of the underlying (low-level) layers.
This is because low-level layers of CNNs are supposed to extract more generic visual
features (e.g., edges), and therefore they likely do not change much when presented with
new data. Higher layers, in contrast, represent more class-specific characteristics (e.g.,
shapes) and thus need major updating with new data. Finally, we compared chained
finetuning with the original finetuning approach to decide which is better for training
personalized deep learning models.

Training Data

To gather training data, we randomly downloaded photos of 20 celebrities via Google
Image Search. Using a simple shell script, we collected a maximum of 100 images for
each person. We excluded some duplicate or corrupt images, and hence the number of
images per class (person) was not the same (see Table 1). We cropped faces from orig-
inal images using the OpenCV library to better gauge how well the trained CNNs iden-

10

tify different faces. We also augmented training data by creating additional image trans-
formations using ImageMagick’s ‘convert’ tool. Specifically, we created four variations
of each original image through 90, 180 and 270-degree rotation and mirroring. We in-
cluded this step to alleviate potential overfitting problems as much as possible by
providing more training data without extra labelling cost (data augmentation [7, 11]). In
total, our training data included 6,220 images. To measure training and test errors of the
trained CNNs, we shuffled the training data and put 20% aside as test data.

Table 1 Person Identification – Training Data

No Label Number of Images1 Characteristics
1 Jessica Alba 68 (340) Female, 30s
2 Kate Upton 54 (270) Female, 20s
3 Scarlett Johansson 67 (335) Female, 30s
4 Emma Watson 73 (365) Female, 20s
5 Jennifer Lawrence 60 (300) Female, 20s
6 Arnold Schwarzenegger 49 (245) Male, 60s
7 Johnny Depp 63 (315) Male, 50s
8 Bill Gates 59 (295) Male, 60s
9 Kristen Stewart 80 (400) Female, 20s

10 Leonardo Dicaprio 81 (405) Male, 40s
11 Lionel Messi 55 (275) Male, 20s
12 Manny Pacquiao 51 (255) Male, 30s
13 Matt Damon 74 (370) Male, 40s
14 Michael Jackson 47 (235) Male, 50s
15 Sandra Bullock 75 (375) Female, 50s
16 Eminem 39 (195) Male, 40s
17 Steve Jobs 55 (275) Male, 50s
18 Tiger Woods 58 (290) Male, 40s
19 Tom Cruise 74 (370) Male, 50s
20 Will Smith 62 (310) Male, 40s

1 The number in parentheses indicates the number of augmented training images.

11

Finetuning for 20-Class Person Identification

We finetuned CaffeNet for identifying 20 different face photos. By using all images
described in Table 1 as training data, we updated all the weights in CaffeNet via back-
propagation, with a maximum of 5,000 iterations. The training curves depicted in Fig. 3
show that the finetuned CaffeNet started to converge around the 1,000th iteration. In our
training/test data set, we could not observe any serious overfitting as both training and
test error show a similar pattern during the entire training process. For 40 consecutive
tests on the 20% test data set, its average prediction accuracy was about 0.98 and its loss
(error) was about 0.05. We therefore conclude that finetuning is effective for transform-
ing a preexisting deep learning model into the new model that performs a different task.

Fig. 3 20-Class ‘Person’ Identification – Training Curves

Chained Finetuning for 5-Class Person Identification

The goal of this experiment was to train a new CNN that identifies 5 different people
through chained finetuning. The experiment was conducted in the following steps. First,
we finetuned CaffeNet on training images of class 1-3 so as to identify 3 different faces,
and used it as a base model for chained finetuning. Next, we continued to finetune the
previously trained CNN whenever a new data class was added. Two additional classes
of image data were added in turn to the previous training data (class ‘new-1’ and ‘new-

12

2’ in Table 2). There are 1,625 images in the training data. We shuffled and split them
into 80% training and 20% test data.

Table 2 5-Class ‘Person’ Identification – Training Data

No Label Number of Images Characteristics
1 Jessica Alba 68 (340) Female, 30s
2 Kate Upton 54 (270) Female, 20s
3 Scarlett Johansson 67 (335) Female, 30s

new-1 Alexandra Daddario 70 (350) Female, 30s
new-2 Amanda Seyfried 66 (330) Female, 30s

Since we noticed in the previous experiment that the finetuned network converged

around the 1,000th iteration, we decided to stop our individual finetuning at this point.
Table 3 summarizes the prediction performance of the chain-finetuned CNNs
(CF_CNN) on the 20% test data set. Similar to the previous experiment, the test accu-
racy of the finally trained CNN was nearly perfect (99%). In addition, all CNNs trained
through the chained finetuning mechanism also showed promising test accuracies. Fig. 4
displays training curves for the finetuned model, CF_CNN (5). As with the previous
experiment, no serious overfitting on the training/test data sets was observed.

Fig. 4 5-Class ‘Person’ Identification – Training Curves

13

Table 3 5-Class ‘Person’ Identification – Test Accuracy

Finetuned Model
(Number of Classes)

Base Model
(Number of Classes)

Test Accuracy
(Loss)

CF_CNN (3) CaffeNet (1,000) 0.9885 (0.0427)
CF_CNN (4) CF_CNN (3) 0.9956 (0.0278)
CF_CNN (5) CF_CNN (4) 0.9969 (0.0134)

Comparison between Finetuning and Chained Finetuning

One possible approach to cope with an ad hoc addition of a new data class is to train a
new CNN using CaffeNet as a fixed base model whenever new data is added, which is
the original finetuning approach. To compare this approach with chained finetuning, we
used original finetuning in training a CNN on training data used in the previous experi-
ment (finetuned CNN; F_CNN). Then, we compared its prediction power with the CNN
trained through chained finetuning (chain-finetuned CNN; CF_CNN). To gauge the
models’ prediction power more objectively, we collected an additional set of 50 images
per each class. These images were downloaded from a different source (Bing image
search) and never used in the training process. We used them as a validation data set for
this experiment.

Fig. 5 5-Class ‘Person’ Identification – Finetuning vs. Chained Finetuning (Training Error)

14

As shown in Fig. 5, the chain-finetuned CNN starts to converge about 30% earlier
(after 200 iterations) than the finetuned CNN (after 700 iterations). This was expected,
since chained finetuning takes advantage of what was already learned from the previous
step. On both the test and validation data sets, the chain-finetuned CNN outperformed
the finetuned CNN (see Fig. 6 and Table 4). However, we also noticed that the perfor-
mance on validation data (validation accuracy) was lower than the test accuracy in both
cases. This implies that the trained CNNs might be excessively fitted to the training data,
thus having difficulties to predict outcomes for previously unseen data. We suspect that
the unbalanced distribution of training data is one possible reason for this overfitting
problem. There were 400 training images for class 9, but 195 images for class 16 (see
Table 1). The model may not have been sufficiently trained for identifying class 16. For
the following experiments, we tried to assign an equal amount of training data to each
individual class to prevent overfitting as much as possible.

Fig. 6 5-Class ‘Person’ Identification – Finetuning vs. Chained Finetuning (Test Accuracy)

Table 4 5-Class ‘Person’ Identification – Test and Validation Accuracy

Finetuned Model
(Number of Classes)

Test Accuracy
(Loss)

Validation Accuracy
(Loss)

F_CNN (5) 0.9656 (0.0893) 0.844 (0.7122)
CF_CNN (5) 0.9969 (0.0134) 0.88 (0.6967)

15

Experiment 2: Object Recognition

Overview

In this experiment, we aimed to evaluate the predictive power of chain-finetuned CNNs
in a real-world scenario. To this end, we trained a CNN so that it can recognize 10
different types of objects from images taken by Google Glass. The ultimate aim of such
a system would be to help people with memory problems to remember and recognize
their personal belongings.

Training and Validation Data

To begin with, we chose 10 personal objects (small toy, badge, baseball cap, key, eye-
glasses, pouch, food container, lotion, watch, wallet) of a member of our research team,
and collected images using DeepEye and the server. To minimize the risk of overfitting,
we collected the exact same amount of training data for each class, namely 100 original
with 400 automatically augmented images. We also collected 30 additional images per
each class as validation data. To differentiate these from the original training data, we
deliberately varied the photographing conditions such as lighting, angle and background
(see Fig. 7). Both training and validation images were taken by a single participant in a
standard office setting. Even though Google Glass is equipped with a 5MP camera ca-
pable of taking 2,560 by 1,888 resolution JPG images with a file size of about 2 mega-
bytes, we collected reduced-size versions of the images (1296 by 972 pixels) to avoid
any network delays between DeepEye and the server.

(a) Sample Image for Training (cap) (b) Sample Image for Validation (cap)

Fig. 7 10-Class ‘Object’ Recognition – Training and Validation Data

16

Chained Finetuning for 10-Class Object Recognition

Regarding chained finetuning, we used the same procedures and settings as for the
5-class person identification experiment described above. The training curves in Fig. 8
show that the finetuned CNN starts to rapidly converge at around 100 iterations. Com-
pared to all previous person identification experiments, this one had near-perfect test
accuracy, probably because the classification task was easier. The objects used in this
experiment had vastly different shapes and appearances (e.g., cap vs. wallet), so that the
model could identify them with high confidence. In contrast, the differences between
faces of the same gender and age are subtle (e.g., class 4: Emma Watson and class 9:
Kristen Stewart in Table 1). This could have led to some confusion telling them apart.

Fig. 8 10-Class ‘Object’ Recognition – Training Curves

Table 5 summarizes the measured prediction power of all chain-finetuned CNNs on
the validation data set. For up to 7 different objects, the trained CNNs showed a near-
perfect performance in recognizing objects without serious overfitting concerns. How-
ever, the validation accuracy was slightly diminished, as the number of object classes
increased from 8 to 9. It may be improved if we collect additional training images of the
objects, and train a new CNN at the next finetuning stage. The validation accuracy of
the final trained CNN was 97%, with a loss of 0.116. It took approximately 7 minutes
to train this model on our GPU platform.

17

Table 5 10-Class ‘Object’ Recognition – Validation Accuracy

Finetuned Model
(Number of Classes)

Base Model
(Number of Classes)

Validation Accuracy
(Loss)

CF_CNN (3) CaffeNet (1,000) 0.99 (0.0212)
CF_CNN (4) CF_CNN (3) 0.99 (0.1819)
CF_CNN (5) CF_CNN (4) 0.99 (0.0555)
CF_CNN (6) CF_CNN (5) 0.99 (0.0462)
CF_CNN (7) CF_CNN (6) 0.99 (0.0454)
CF_CNN (8) CF_CNN (7) 0.96 (0.2696)
CF_CNN (9) CF_CNN (8) 0.94 (0.2319)

CF_CNN (10) CF_CNN (9) 0.97 (0.116)

Discussion and Future Work

We demonstrated the feasibility of our proposed visual recognition system that uses
Google Glass. Yet, some issues still need to be overcome before it can be used more
widely.

Google Glass emits a lot of heat when it continuously utilizes the camera function.
According to [13], a single camera usage heats Google Glass 28°C above the surround-
ing temperature. In the worst case (video chatting), Google Glass’s surface temperature
increased up to 50°C within 13.3 minutes. Because Google Glass is in direct contact
with the skin, the heated surface may lead to discomfort and potentially even health risks
for users. Therefore, users may have trouble collecting at once a large volume of images
(more than 100) via Google Glass. The authors also measured the energy consumption
of Google Glass for various tasks. To take a single photo, Google Glass consumes
2,927mW in 3.3 seconds. Users can take fewer than 800 images on a single battery
charge. Like the heat problem, this may prevent users from taking sufficiently many
images to build their own deep learning models. We expect Google to fix these issues
in the next generation of Glass.

At this moment, there exists no large-scale image dataset collected from wearable
computers such as Google Glass. Therefore, we generated the custom dataset using
DeepEye in our experiments, and utilized it for testing the proposed training mechanism.
To thoroughly verify its effectiveness, we should still investigate whether our mecha-
nism also works well for more complex image classification problems (e.g., 100-class
object recognition). Thus, we are considering distributing DeepEye to a group of Google
Glass users, and to collect abundant image data from their everyday lives. Furthermore,

18

we need to tackle any potential overfitting problems in training personalized deep learn-
ing models. For this, we applied a neural network regularization technique named drop-
out [20] to DeepEye’s training mechanism. Dropout forces neural networks to learn
several independent representations of identical input-output pairs, by randomly disa-
bling some neurons (nodes) in a given layer. For all experiments described above, we
used a fixed dropout rate of 0.7 for fully-connected layers. Therefore, it is worth inves-
tigating the optimum dropout rate for training more complex models through chained
finetuning.

While often overlooked, privacy is an important concern [6, 8]. For the person iden-
tification task, users need to take photos of people around them (mostly, friends and
acquaintances). We assumed that they would ask them for their permission before taking
a photo. However, there are no user interfaces or mechanisms in our system advising
them to do that. The system may invade privacy if it collects photos of people without
their consent. To find the best way to prevent possible privacy invasions, we need to
collect users’ opinions on, and/or reactions against the system. Also, it is necessary to
prevent unauthorized access to user-generated image data and the trained models, as
they may reflect a user’s very personal behavior and interests.

Finally, we believe that even users who are not tech-savvy should have little diffi-
culty using our system because they are only asked to perform a few simple operations
via Google Glass (e.g., image labelling through Google Voice Input). However, we need
to verify the usability of the system with target users who have special needs. Specifi-
cally, we need to qualitatively and quantitatively assess the usability of the system for
people with memory or visual impairments, possibly including their caregivers. Their
feedback may allow us to improve our user interface, so that our system will work in a
more user-friendly way. Additionally, a longitudinal study might be needed to verify
whether our system can have a positive influence on their lives and medical conditions.

Conclusion

In this paper, we designed and implemented a novel wearable system which builds per-
sonalized deep learning models for recognizing objects of interest to a user. To the best
of our knowledge, this is the first attempt to train deep learning models for personalized
visual recognition, via camera-equipped wearable computers like Google Glass. The
proposed system works as a client-server model: Google Glass (client) collects images
from a user’s everyday life and sends them to a GPU-equipped Linux server. The server
then trains a deep convolutional neural network (CNN) on the user-specific image data.
To efficiently update the pre-trained network on newly-added images, we proposed a

19

simple training mechanism called chained finetuning. As a variant of conventional fine-
tuning, it is effective in terms of prediction power and training efforts in continuously
training (or updating) a personalized deep learning model. In a custom 10-class object
recognition task, our system took 7 minutes to train a personalized CNN on our GPU
platform, and showed a 97% classification accuracy without serious overfitting. Con-
sidering the training time and the model’s prediction power, we believe our system can
become a feasible intelligent personal assistant. Future work will mainly focus on the
testing of the proposed system with more users and harder tasks. It will also include
privacy impact assessments and a verification of its effectiveness in improving users’
cognitive abilities.

Acknowledgements

Part of this work was done while Hosub Lee was a summer intern at Samsung Research
America, Mountain View, CA. We would like to thank our reviewers for their valuable
comments on earlier versions of this paper.

References

1. Ciresan D, Meier U, Schmidhuber J (2012) Multi-column deep neural networks for image classifi-
cation. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on, IEEE,
pp 3642–3649

2. Google Developers (2015) Ongoing task pattern. https://developers.google.com/glass/develop/pat-
terns/ongoing-task

3. Fraunhofer (2014) Fraunhofer IIS presents world’s first emotion detection app on Google Glass.
http://www.iis.fraunhofer.de/en/pr/2014/20140827_BS_Shore_Google_Glas.html

4. Hernandez J, Picard RW (2014) SenseGlass: using Google Glass to sense daily emotions. In: Pro-
ceedings of the adjunct publication of the 27th annual ACM symposium on user interface software
and technology, ACM, pp 77–78

5. Hof R (2014) First image recognition app coming soon to glass. http://www.forbes.com/sites/rob-
erthof/2014/02/26/first-image-recognition-app-coming-soon-to-google-glass/

6. Hong J (2013) Considering privacy issues in the context of Google Glass. Commun. ACM,
56(11):10-11

7. Howard AG (2013) Some improvements on deep convolutional neural network based image clas-
sification. arXiv preprint arXiv:1312.5402

20

8. Hoyle R, Templeman R, Armes S, Anthony D, Crandall D, Kapadia A (2014) Privacy behaviors of
lifeloggers using wearable cameras. In: Proceedings of the 2014 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing, ACM, pp 571–582

9. Jia Y, Shelhamer E, Donahue J, Karayev S, Long J, Girshick R, Guadarrama S, Darrell T (2014)
Caffe: Convolutional architecture for fast feature embedding. In: Proceedings of the 22nd ACM
International Conference on Multimedia, ACM, pp 675–678

10. Karayev S, Trentacoste M, Han H, Agarwala A, Darrell T, Hertzmann A, Winnemoeller H (2013)
Recognizing image style. arXiv preprint arXiv:1311.3715

11. Krizhevsky A, Sutskever I, Hinton GE (2012) ImageNet classification with deep convolutional
neural networks. In: Advances in neural information processing systems, pp 1097–1105

12. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521:436–444. doi: 10.1038/na-
ture14539

13. LiKamWa R, Wang Z, Carroll A, Lin FX, Zhong L (2014) Draining our glass: an energy and heat
characterization of Google Glass. In: Proceedings of 5th Asia-Pacific Workshop on Systems, ACM,
p 10

14. Mann S (1997) Wearable computing: a first step toward personal imaging. Computer 30:25–32.
doi: 10.1109/2.566147

15. Pan SJ, Yang Q (2010) A survey on transfer learning. Knowledge and Data Engineering, IEEE
Transactions on 22:1345–1359. doi: 10.1109/TKDE.2009.191

16. Schmidhuber J (2014) Deep learning in neural networks: an overview. Neural Networks 61:85–
117. doi: 10.1016/j.neunet.2014.09.003

17. Sermanet P, Eigen D, Zhang X, Mathieu M, Fergus R, LeCun Y (2013) OverFeat: Integrated recog-
nition, localization and detection using convolutional networks. arXiv preprint arXiv:1312.6229

18. Simonite T (2013) A Google Glass app knows what you’re looking at. http://www.technolo-
gyreview.com/view/519726/a-google-glass-app-knows-what-youre-looking-at/

19. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556

20. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research 15:1929–
1958.

21. Starner T, Schiele B, Pentland A (1998) Visual contextual awareness in wearable computing. In:
Wearable Computers, Second International Symposium on, IEEE, pp 50–57

22. Starner T, Weaver J, Pentland A (1998) Real-time American sign language recognition using desk
and wearable computer based video. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 20:1371–1375. doi: 10.1109/34.735811

23. Torralba A, Murphy KP, Freeman WT, Rubin MA (2003) Context-based vision system for place
and object recognition. In: Computer Vision, Ninth IEEE International Conference on, IEEE, pp
273–280

21

24. Way T, Bemiller, A, Mysari R, Reimers C (2015) Using Google Glass and machine learning to
assist people with memory deficiencies. In: Proceedings on the International Conference on Artifi-
cial Intelligence (ICAI), pp 571–577

25. Zeiler MD, Fergus R (2013) Visualizing and Understanding Convolutional Networks. In: European
Conference on Computer Vision, Springer International Publishing, pp 818–833

