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Abstract During the last few years, deep learning has led to an astonishing advancement 
in visual recognition. Computers now reach near-human accuracy in visually recogniz- 
ing characters, physical objects and human faces. This will certainly allow us to build 
more intelligent personal assistants that can help users better understand their surround- 
ing environments. However, most visual recognition systems have been designed for 
user-independent recognition (e.g., Google reverse image search), and not for an indi- 
vidual user. We believe this practice is restricting the technology from helping people 
who have individual needs. For example, a person with memory problems may want to 
have a computer that accurately recognizes a few close friends, rather than hundreds of 
celebrities. To address this issue, we propose a novel wearable system that enables users 
to create their own visual recognition system with minimal effort. A client running on 
Google Glass collects images of objects a user is interested in, and sends them to the 
server with a request for a specific machine learning task: training or classification. The 
server performs deep learning according to the request and returns the result to Glass. 
Regarding the training task, our system not only aims to build deep learning models 
with user generated image data, but also to update the models whenever new data is 
added by the user. Experiments show that our system is able to train the custom deep 
learning models in an efficient manner, in terms of the required amount of computing 
power and training data. Based on the customized deep learning model, the system clas- 
sifies an image into one of 10 different user-defined categories with 97% accuracy. 

Keywords Personalization; Person identification; Object recognition; Google Glass; 
Deep convolutional neural networks; Transfer learning; Finetuning 
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Introduction 

With recent technological advances in wearable computing, users are more likely to 
collect information about their surroundings. For instance, users could directly capture 
images of objects through a smart glass rather than a smartphone. Google Glass is a 
representative wearable that can translate this scenario into reality. Since the camera 
functionality of Google Glass is always ready to be activated instantaneously by the 
user’s command, it is reasonable to assume that more image data representing users’ 
personal interests could be collected. Consequently, there are more chances to build a 
user-tailored visual recognition system by utilizing those collected images as training 
data. 

Recently, deep learning has been making a breakthrough in diverse computer vision 
and pattern recognition problems [12, 16]. Deep learning is a machine learning tech-
nique that attempts to extract high-level concepts from data via a complex model com-
posed of hierarchical processing units. The trained deep learning model then utilizes the 
extracted concepts in making predictions on new data. Deep convolutional neural net-
works (CNNs), a commonly used type of network, have been widely used in the com-
puter vision community [25]. CNNs are biologically-inspired variants of artificial neural 
networks, which mimic how the human brain perceives images. These networks consist 
of multiple layers of filters which hierarchically process segments of the input image. 
Pooling layers are often added to reduce dimensionality and add translational invari-
ance. Finally, multiple fully connected layers may be used to combine the spatial fea-
tures and produce a final classification. Specifically, outputs of convolutions in the 
lower layers are used to represent the primitive element that forms the image (e.g., edge). 
Then, these representations are integrated in the higher layers to express more abstract 
concepts (e.g., shape) of the image. With this architecture, we can train the whole net-
work through the standard backpropagation algorithm by using the labeled images as 
training data. Recent studies proved that CNN-based image classifiers have reached 
near-human levels on diverse visual recognition tasks [1, 11, 17, 19]. 

These technological advances can potentially benefit people. However, most deep 
learning applications thus far have been designed and developed for the general popu-
lation, not for an individual who has a special need. Imagine that there is a professor 
who gives a lecture to 300 students. This professor might want to wear Google Glass 
displaying the names of students during the lecture because it is difficult to memorize 
all their names. People with visual impairments may want to have Google Glass proac-
tively inform them about the presence of nearby friends. Those with cognitive impair-
ment (e.g., dementia) could use a Google Glass capable of recognizing their personal 
belongings. This would help when they have memory problems. To realize all of these 
scenarios, each individual user needs to have a custom machine learning model trained 
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on her/his own image data (i.e., a personalized machine learning model), and utilize the 
model for recognizing an input image. In this regard, we have defined two main require-
ments for constructing personalized machine learning models. First, a user should be 
able to easily collect images with appropriate labels in everyday life. Second, the system 
should be able to not only train a machine learning model with user generated image 
data, but update the model whenever the user provides the system with new classes of 
data. 

With these requirements in mind, we developed a novel wearable system that ena-
bles users to create their own CNNs without any difficulties. To begin with, our system 
adopts the first generation of Google Glass for collecting image data representing users’ 
personal interests. By using our Google Glass application named DeepEye, a user can 
take images of an object of interest and apply whatever label they want. DeepEye then 
transmits these labeled images to a GPU-equipped Linux server to train the CNN. In 
general, training deep learning models like a CNN from scratch uses a considerable 
amount of time on modern GPUs and requires very large volumes of training data. To 
make the training process more practical, we devised a new training mechanism named 
chained finetuning. This mechanism was designed to train a new CNN by utilizing the 
previously trained CNN as a starting point. Experimental results show that chained fine-
tuning allows us to train the CNN while requiring less computational power and training 
data, compared to conventional training approaches. Most importantly, chained finetun-
ing is effective for expanding the expressive power (i.e., the number of classifiable cat-
egories) of the CNN whenever the user collects images of new object classes. DeepEye 
can also run as an image classifier: if the user asks it to recognize an object from an 
image, it will show a classification result produced by the server. The server thereby 
utilizes the CNN trained specifically for the user. Our system showed about 97% accu-
racy in classifying an image taken by Google Glass into one of 10 user-defined catego-
ries. 

In summary, the contributions of our work to the field of personal assistants are the 
following: 

• We built a novel wearable system which lets users create their own deep learning-
based visual recognition systems without any expertise; 

• We proposed a simple, but efficient mechanism for training personalized deep learn-
ing models with user-generated image data (chained finetuning); and 

• We showed the feasibility of the proposed system including chained finetuning 
through several visual recognition experiments. 



4  

Related Work 

In the late 1990s, there were several attempts to build visual recognition systems into 
early versions of wearable computers. Steve Mann designed and prototyped a wearable 
personal device that could take pictures and recognize human faces in it [14]. This wear-
able device was also equipped with a small head-mounted display to give textual infor-
mation to users. The author stated that the system could act as a visual perception en-
hancer because it could provide users with real-time feedback on what they were 
viewing. Even though this prototype was cumbersome to wear (e.g., a set of communi-
cation units were attached to the user’s body), it is considered as a pioneering example 
of wearable visual recognition systems. Thad Starner et al proposed a system that rec-
ognizes the user’s current behavior by analyzing video data [21]. The system utilized a 
hat-mounted camera to collect video streams, and then classified each single frame into 
pre-defined categories using a probabilistic object recognition technique. By using the 
results of object recognition, the authors trained a hidden Markov model (HMM) to 
identify three different tasks performed by the user. They also developed a visual recog-
nition system capable of recognizing sentence-level American Sign Language selected 
from a 40-word lexicon [22]. They collected input video streams from both a desktop 
computer and from a wearable computer (namely the same device as in [21]). The ex-
perimental results showed that the system could recognize the given sign language sub-
set with up to 98% accuracy. Finally, Antonio Torralba et al also proposed a wearable 
system that accurately identified 24 different of object types in a given image [23]. First, 
the authors adopted an HMM approach to recognize the current location of the user. 
Next, they utilized the location information as a contextual cue for detecting objects 
from an image, based on Bayesian inference. A helmet-mounted webcam was used to 
collect training image data under realistic conditions in which the user walked freely 
around the environment. 

All of the mentioned works provide useful insight and practical advice for develop-
ing visual recognition systems for wearable computers. However, this topic has not been 
actively studied anymore after the early 2000s. This is probably because there were no 
commercial camera-equipped wearables available, leading to less opportunities for re-
search in both academia and industry. However, with the advent of Google Glass, this 
situation may change. For instance, researchers at Fraunhofer developed emotion recog-
nition software for Google Glass [3]. Based on their proprietary machine learning frame-
work SHORE, the system detects people’s faces in an image taken by Google Glass, 
and determines their emotional states by analyzing facial expressions. Similarly, re-
searchers in the field of affective computing connected Google Glass with custom-made 
smile detection software to provide users with a real-time visualization of smiling faces 
of people around them [4]. Thomas Way et al designed a Google Glass application 
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named ELEPHANT for retrieving meta information about the context (e.g., activity in-
formation) in which a picture was taken [24]. They anticipated that ELEPHANT could 
help people with memory impairment because it can provide contextual information 
when they have difficulty remembering a specific object. The authors consider using 
traditional machine learning algorithms such as logistic regression, support vector ma-
chines (SVMs) or Naïve Bayes to retrieve context information from an image. 

Recently, researchers are trying to apply deep learning methods to wearable com-
puters to achieve more accuracy in visual recognition systems. Recently, several com-
panies demonstrated image classification with Google Glass [5, 18]. In order to recog-
nize objects in an image captured by Google Glass, both utilized pre-trained deep neural 
networks which are deployed in their cloud. Since these works have not been published 
as yet, we do not know the details of their systems. However, it seems clear that they 
are focused on the classification of an input image using pre-trained deep learning mod-
els, rather than on training a deep learning model for an individual user. 

Personalized Visual Recognition System via Google Glass 

In this section, we discuss the design and implementation of our system in detail. We 
first describe an overall system architecture including software/hardware specifications, 
and then explain the functional details of the system. 

System Architecture 

 

 
Fig. 1 System Architecture 

Our system is designed as a client-server model (Fig. 1). As a client, Google Glass col-
lects images when instructed by the user, and sends them to the server with a specific 
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task type (training or classification). The server then carries out the requested task and 
returns the results back to Glass. The server was designed to continuously train (or up-
date) the CNN using the proposed training mechanism whenever new image data is col-
lected by Glass. When the server completes the training task, it replaces the preexisting 
CNN with the newly trained one that considers the most recent images. Overall, Google 
Glass acts as an image collector and interface which is visible to the end user. The server 
performs machine learning tasks in the background, such as classifying images when 
needed and training new models when an object is added. We chose this architecture 
because Google Glass has limited computing power. To the best of our knowledge, 
Glass’s dual-core CPU (OMAP4430) and 2GB main memory are not sufficient to exe-
cute backpropagation for training CNNs. 

Client 

We developed a Google Glass application (Glassware) named DeepEye, following the 
Ongoing Task design pattern proposed by Google. The Ongoing Task pattern is com-
monly used for building a basic Glassware that enables users to control their Google 
Glass [2]. We wrote a function for DeepEye that takes a photo periodically upon the 
user’s command. DeepEye sends these image data and messages to the server through 
Java socket communication over the Wi-Fi network. We used official Google libraries 
such as the Android 4.4.2 (API 19) SDK and the Glass Development Kit Preview in 
developing DeepEye. 

Server 

The main purpose of the server is to quickly train deep learning models with reasonable 
prediction accuracy. In order to achieve this, we built a Java server on a Linux work-
station equipped with a modern GPU (NVIDIA GeForce GTX 970). We then deployed 
an open source deep learning framework named Caffe [9] on the server. Currently, Caffe 
is one of the fastest CNN implementations available. If the server receives a request for 
a specific task from DeepEye, it executes a corresponding Caffe command (e.g., train a 
CNN or classify an image with a CNN) through its python interface, and returns the 
result. 
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Workflow 

As discussed earlier, DeepEye has two main tasks: training and classification. Here, we 
describe each task step by step. When DeepEye is started, a user is asked to choose 
between two tasks via the Google Glass touch pad (Fig. 2-a). 
 

  
(a) Initial screen (b) Train – labelling 

  
(c) Train – data collecting (d) Classification 

Fig. 2 Screenshots of DeepEye 

Training 

For the training task, the user enters the name of the target object (i.e., its label) through 
Google Voice Input (Fig. 2-b). The user can try again if the result of the speech recog-
nition was incorrect. When the user confirms the label, DeepEye begins to take a photo 
of the object every five seconds, and transmits it with a message representing the current 
task (_train) to the server. This process is repeated as long as DeepEye receives an ACK 
message from the server and the user has not explicitly terminated the training task (Fig. 
2-c). The server will use the transferred image data for training a deep learning model 
via our proposed training mechanism which we call ‘chained finetuning’. 

As discussed, training deep learning models from scratch is very expensive and 
time-consuming. For example, training a CNN on the ImageNet dataset which contains 
1.2 million images with 1,000 categories can take several weeks on a single GPU or 
hours/days in a distributed setting [11]. For these reasons, it is more common to retrain 
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an already fully trained model on a new dataset to repurpose a preexisting model for 
different tasks [10]. For instance, after the initial retraining, we can immediately exploit 
the pre-trained CNN’s well-learned parameters representing generic visual features like 
edges. Then, we can focus on updating values of parameters aimed at extracting more 
object-specific (high-level) features related to our own image data. This approach is 
known as finetuning, one kind of transfer learning algorithm. Finetuning is widely used 
to avoid expensive training efforts in diverse machine learning tasks [15]. 

Chained finetuning, the extended version of finetuning, was designed to train a new 
deep learning model on ad hoc additional training data. The main idea of chained fine-
tuning is simple. To train a new model (here, CNN) for a new task, it iteratively retrains 
the pre-trained CNN on a newly created dataset. Suppose that there exists a CNN trained 
to classify an image into three user-defined categories A, B and C (CNN_ABC). If a 
user adds a new category D with the corresponding image data, chained finetuning then 
constructs a new model (CNN_ABCD) on new training data while using the old model 
(CNN_ABC) as a starting point. More specifically, we define a new CNN by adopting 
an underlying network architecture of the pre-trained CNN, but change its classification 
layer to have a correct number of outputs based on the given task (e.g., 4 output nodes 
for CNN_ABCD). Next, we can initialize parameters (weights) of the new CNN with 
that of the pre-trained CNN, and then progressively update the weights of the new CNN 
through the backpropagation algorithm on a new dataset. This process can be continued 
in a series whenever new types of training data became available. 

Chained finetuning begins if there are at least two user-defined categories with a 
sufficient amount of training data. Through repeated experiments, we determined the 
threshold for sufficient training data as 100 images per class. The process also checks 
whether there are any ongoing CNN training processes on the system. If training is al-
ready in progress, it will not try to train a new model until the ongoing process has 
ended. Otherwise, if this is the first finetuning attempt, it trains a new model by using 
the pre-trained CNN named BVLC Reference CaffeNet (CaffeNet) [9]. We utilized 
CaffeNet as a base model because it is a publicly available pre-trained CNN that has a 
reasonable prediction performance on a 1,000-class object recognition task (ImageNet 
challenge) [11]. In any later finetuning, it trains a new model by finetuning the CNN 
pre-trained in the previous finetuning stage. When a finetuning process has finished, the 
previously trained CNN is replaced with the newly trained CNN. 

Classification 

Classification is relatively simple. When users choose the classification task, they take 
a picture of the object by clicking the Google Glass touch pad. Similar to the training 
task, DeepEye sends the image to the server, but with a different message (_classify). 
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Next, the server uses the latest trained CNN to execute the Caffe classification command 
on the image. If no error occurs, the server sends the classification result (with proba-
bility) back to DeepEye. If DeepEye receives the result from the server, it displays them 
to the user through Google Glass’s heads-up display (Fig. 2-d). 

Experiment 1: Person Identification 

Overview 

To validate the effectiveness of the chained finetuning mechanism, we designed and 
conducted a series of person identification experiments. At first, we finetuned CaffeNet 
so that it could identify 20 different people, rather than 1,000 different objects from a 
set of images. The intention was to confirm that finetuning is an effective approach for 
constructing a custom deep learning model for a new task. This was important because 
a single finetuning step is the basic building block for chained finetuning. Second, we 
finetuned the previously trained CNN while adding images of a new person to the train-
ing data (i.e., chained finetuning), and evaluated the predictive power of the CNN 
trained in each single finetuning stage. As a result, we trained a custom CNN so that it 
could classify five different people. While finetuning CNNs, we tried to update the 
weights of the classification layer faster than that of the underlying (low-level) layers. 
This is because low-level layers of CNNs are supposed to extract more generic visual 
features (e.g., edges), and therefore they likely do not change much when presented with 
new data. Higher layers, in contrast, represent more class-specific characteristics (e.g., 
shapes) and thus need major updating with new data. Finally, we compared chained 
finetuning with the original finetuning approach to decide which is better for training 
personalized deep learning models. 

Training Data 

To gather training data, we randomly downloaded photos of 20 celebrities via Google 
Image Search. Using a simple shell script, we collected a maximum of 100 images for 
each person. We excluded some duplicate or corrupt images, and hence the number of 
images per class (person) was not the same (see Table 1). We cropped faces from orig-
inal images using the OpenCV library to better gauge how well the trained CNNs iden-
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tify different faces. We also augmented training data by creating additional image trans-
formations using ImageMagick’s ‘convert’ tool. Specifically, we created four variations 
of each original image through 90, 180 and 270-degree rotation and mirroring. We in-
cluded this step to alleviate potential overfitting problems as much as possible by 
providing more training data without extra labelling cost (data augmentation [7, 11]). In 
total, our training data included 6,220 images. To measure training and test errors of the 
trained CNNs, we shuffled the training data and put 20% aside as test data. 

Table 1 Person Identification – Training Data 

No Label Number of Images1 Characteristics 
1 Jessica Alba 68 (340) Female, 30s 
2 Kate Upton 54 (270) Female, 20s 
3 Scarlett Johansson 67 (335) Female, 30s 
4 Emma Watson 73 (365) Female, 20s 
5 Jennifer Lawrence 60 (300) Female, 20s 
6 Arnold Schwarzenegger 49 (245) Male, 60s 
7 Johnny Depp 63 (315) Male, 50s 
8 Bill Gates 59 (295) Male, 60s 
9 Kristen Stewart 80 (400) Female, 20s 

10 Leonardo Dicaprio 81 (405) Male, 40s 
11 Lionel Messi 55 (275) Male, 20s 
12 Manny Pacquiao 51 (255) Male, 30s 
13 Matt Damon 74 (370) Male, 40s 
14 Michael Jackson 47 (235) Male, 50s 
15 Sandra Bullock 75 (375) Female, 50s 
16 Eminem 39 (195) Male, 40s 
17 Steve Jobs 55 (275) Male, 50s 
18 Tiger Woods 58 (290) Male, 40s 
19 Tom Cruise 74 (370) Male, 50s 
20 Will Smith 62 (310) Male, 40s 

1 The number in parentheses indicates the number of augmented training images. 
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Finetuning for 20-Class Person Identification 

We finetuned CaffeNet for identifying 20 different face photos. By using all images 
described in Table 1 as training data, we updated all the weights in CaffeNet via back-
propagation, with a maximum of 5,000 iterations. The training curves depicted in Fig. 3 
show that the finetuned CaffeNet started to converge around the 1,000th iteration. In our 
training/test data set, we could not observe any serious overfitting as both training and 
test error show a similar pattern during the entire training process. For 40 consecutive 
tests on the 20% test data set, its average prediction accuracy was about 0.98 and its loss 
(error) was about 0.05. We therefore conclude that finetuning is effective for transform-
ing a preexisting deep learning model into the new model that performs a different task. 

 

 
Fig. 3 20-Class ‘Person’ Identification – Training Curves  

Chained Finetuning for 5-Class Person Identification 

The goal of this experiment was to train a new CNN that identifies 5 different people 
through chained finetuning. The experiment was conducted in the following steps. First, 
we finetuned CaffeNet on training images of class 1-3 so as to identify 3 different faces, 
and used it as a base model for chained finetuning. Next, we continued to finetune the 
previously trained CNN whenever a new data class was added. Two additional classes 
of image data were added in turn to the previous training data (class ‘new-1’ and ‘new-
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2’ in Table 2). There are 1,625 images in the training data. We shuffled and split them 
into 80% training and 20% test data. 

Table 2 5-Class ‘Person’ Identification – Training Data 

No Label Number of Images Characteristics 
1 Jessica Alba 68 (340) Female, 30s 
2 Kate Upton 54 (270) Female, 20s 
3 Scarlett Johansson 67 (335) Female, 30s 

new-1 Alexandra Daddario 70 (350) Female, 30s 
new-2 Amanda Seyfried 66 (330) Female, 30s 

 
Since we noticed in the previous experiment that the finetuned network converged 

around the 1,000th iteration, we decided to stop our individual finetuning at this point. 
Table 3 summarizes the prediction performance of the chain-finetuned CNNs 
(CF_CNN) on the 20% test data set. Similar to the previous experiment, the test accu-
racy of the finally trained CNN was nearly perfect (99%). In addition, all CNNs trained 
through the chained finetuning mechanism also showed promising test accuracies. Fig. 4 
displays training curves for the finetuned model, CF_CNN (5). As with the previous 
experiment, no serious overfitting on the training/test data sets was observed. 

 

 
Fig. 4 5-Class ‘Person’ Identification – Training Curves 
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Table 3 5-Class ‘Person’ Identification – Test Accuracy 

Finetuned Model          
(Number of Classes) 

Base Model                  
(Number of Classes) 

Test Accuracy       
(Loss) 

CF_CNN (3) CaffeNet (1,000) 0.9885 (0.0427) 
CF_CNN (4) CF_CNN (3) 0.9956 (0.0278) 
CF_CNN (5) CF_CNN (4) 0.9969 (0.0134) 

Comparison between Finetuning and Chained Finetuning 

One possible approach to cope with an ad hoc addition of a new data class is to train a 
new CNN using CaffeNet as a fixed base model whenever new data is added, which is 
the original finetuning approach. To compare this approach with chained finetuning, we 
used original finetuning in training a CNN on training data used in the previous experi-
ment (finetuned CNN; F_CNN). Then, we compared its prediction power with the CNN 
trained through chained finetuning (chain-finetuned CNN; CF_CNN). To gauge the 
models’ prediction power more objectively, we collected an additional set of 50 images 
per each class. These images were downloaded from a different source (Bing image 
search) and never used in the training process. We used them as a validation data set for 
this experiment. 

 

 
Fig. 5 5-Class ‘Person’ Identification – Finetuning vs. Chained Finetuning (Training Error) 
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As shown in Fig. 5, the chain-finetuned CNN starts to converge about 30% earlier 
(after 200 iterations) than the finetuned CNN (after 700 iterations). This was expected, 
since chained finetuning takes advantage of what was already learned from the previous 
step. On both the test and validation data sets, the chain-finetuned CNN outperformed 
the finetuned CNN (see Fig. 6 and Table 4). However, we also noticed that the perfor-
mance on validation data (validation accuracy) was lower than the test accuracy in both 
cases. This implies that the trained CNNs might be excessively fitted to the training data, 
thus having difficulties to predict outcomes for previously unseen data. We suspect that 
the unbalanced distribution of training data is one possible reason for this overfitting 
problem. There were 400 training images for class 9, but 195 images for class 16 (see 
Table 1). The model may not have been sufficiently trained for identifying class 16. For 
the following experiments, we tried to assign an equal amount of training data to each 
individual class to prevent overfitting as much as possible. 

 

 
Fig. 6 5-Class ‘Person’ Identification – Finetuning vs. Chained Finetuning (Test Accuracy) 

Table 4 5-Class ‘Person’ Identification – Test and Validation Accuracy 

Finetuned Model          
(Number of Classes) 

Test Accuracy       
(Loss) 

Validation Accuracy       
(Loss) 

F_CNN (5) 0.9656 (0.0893) 0.844 (0.7122) 
CF_CNN (5) 0.9969 (0.0134) 0.88 (0.6967) 
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Experiment 2: Object Recognition 

Overview 

In this experiment, we aimed to evaluate the predictive power of chain-finetuned CNNs 
in a real-world scenario. To this end, we trained a CNN so that it can recognize 10 
different types of objects from images taken by Google Glass. The ultimate aim of such 
a system would be to help people with memory problems to remember and recognize 
their personal belongings. 

Training and Validation Data 

To begin with, we chose 10 personal objects (small toy, badge, baseball cap, key, eye-
glasses, pouch, food container, lotion, watch, wallet) of a member of our research team, 
and collected images using DeepEye and the server. To minimize the risk of overfitting, 
we collected the exact same amount of training data for each class, namely 100 original 
with 400 automatically augmented images. We also collected 30 additional images per 
each class as validation data. To differentiate these from the original training data, we 
deliberately varied the photographing conditions such as lighting, angle and background 
(see Fig. 7). Both training and validation images were taken by a single participant in a 
standard office setting. Even though Google Glass is equipped with a 5MP camera ca-
pable of taking 2,560 by 1,888 resolution JPG images with a file size of about 2 mega-
bytes, we collected reduced-size versions of the images (1296 by 972 pixels) to avoid 
any network delays between DeepEye and the server. 

 

  
(a) Sample Image for Training (cap) (b) Sample Image for Validation (cap) 

Fig. 7 10-Class ‘Object’ Recognition – Training and Validation Data 



16  

Chained Finetuning for 10-Class Object Recognition 

Regarding chained finetuning, we used the same procedures and settings as for the 
5-class person identification experiment described above. The training curves in Fig. 8 
show that the finetuned CNN starts to rapidly converge at around 100 iterations. Com-
pared to all previous person identification experiments, this one had near-perfect test 
accuracy, probably because the classification task was easier. The objects used in this 
experiment had vastly different shapes and appearances (e.g., cap vs. wallet), so that the 
model could identify them with high confidence. In contrast, the differences between 
faces of the same gender and age are subtle (e.g., class 4: Emma Watson and class 9: 
Kristen Stewart in Table 1). This could have led to some confusion telling them apart. 
 

 
Fig. 8 10-Class ‘Object’ Recognition – Training Curves 
 

Table 5 summarizes the measured prediction power of all chain-finetuned CNNs on 
the validation data set. For up to 7 different objects, the trained CNNs showed a near-
perfect performance in recognizing objects without serious overfitting concerns. How-
ever, the validation accuracy was slightly diminished, as the number of object classes 
increased from 8 to 9. It may be improved if we collect additional training images of the 
objects, and train a new CNN at the next finetuning stage. The validation accuracy of 
the final trained CNN was 97%, with a loss of 0.116. It took approximately 7 minutes 
to train this model on our GPU platform. 
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Table 5 10-Class ‘Object’ Recognition – Validation Accuracy 

Finetuned Model          
(Number of Classes) 

Base Model                  
(Number of Classes) 

Validation Accuracy       
(Loss) 

CF_CNN (3) CaffeNet (1,000) 0.99 (0.0212) 
CF_CNN (4) CF_CNN (3) 0.99 (0.1819) 
CF_CNN (5) CF_CNN (4) 0.99 (0.0555) 
CF_CNN (6) CF_CNN (5) 0.99 (0.0462) 
CF_CNN (7) CF_CNN (6) 0.99 (0.0454) 
CF_CNN (8) CF_CNN (7) 0.96 (0.2696) 
CF_CNN (9) CF_CNN (8) 0.94 (0.2319) 

CF_CNN (10) CF_CNN (9) 0.97 (0.116) 

Discussion and Future Work 

We demonstrated the feasibility of our proposed visual recognition system that uses 
Google Glass. Yet, some issues still need to be overcome before it can be used more 
widely. 

Google Glass emits a lot of heat when it continuously utilizes the camera function. 
According to [13], a single camera usage heats Google Glass 28°C above the surround-
ing temperature. In the worst case (video chatting), Google Glass’s surface temperature 
increased up to 50°C within 13.3 minutes. Because Google Glass is in direct contact 
with the skin, the heated surface may lead to discomfort and potentially even health risks 
for users. Therefore, users may have trouble collecting at once a large volume of images 
(more than 100) via Google Glass. The authors also measured the energy consumption 
of Google Glass for various tasks. To take a single photo, Google Glass consumes 
2,927mW in 3.3 seconds. Users can take fewer than 800 images on a single battery 
charge. Like the heat problem, this may prevent users from taking sufficiently many 
images to build their own deep learning models. We expect Google to fix these issues 
in the next generation of Glass. 

At this moment, there exists no large-scale image dataset collected from wearable 
computers such as Google Glass. Therefore, we generated the custom dataset using 
DeepEye in our experiments, and utilized it for testing the proposed training mechanism. 
To thoroughly verify its effectiveness, we should still investigate whether our mecha-
nism also works well for more complex image classification problems (e.g., 100-class 
object recognition). Thus, we are considering distributing DeepEye to a group of Google 
Glass users, and to collect abundant image data from their everyday lives. Furthermore, 
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we need to tackle any potential overfitting problems in training personalized deep learn-
ing models. For this, we applied a neural network regularization technique named drop-
out [20] to DeepEye’s training mechanism. Dropout forces neural networks to learn 
several independent representations of identical input-output pairs, by randomly disa-
bling some neurons (nodes) in a given layer. For all experiments described above, we 
used a fixed dropout rate of 0.7 for fully-connected layers. Therefore, it is worth inves-
tigating the optimum dropout rate for training more complex models through chained 
finetuning. 

While often overlooked, privacy is an important concern [6, 8]. For the person iden-
tification task, users need to take photos of people around them (mostly, friends and 
acquaintances). We assumed that they would ask them for their permission before taking 
a photo. However, there are no user interfaces or mechanisms in our system advising 
them to do that. The system may invade privacy if it collects photos of people without 
their consent. To find the best way to prevent possible privacy invasions, we need to 
collect users’ opinions on, and/or reactions against the system. Also, it is necessary to 
prevent unauthorized access to user-generated image data and the trained models, as 
they may reflect a user’s very personal behavior and interests. 

Finally, we believe that even users who are not tech-savvy should have little diffi-
culty using our system because they are only asked to perform a few simple operations 
via Google Glass (e.g., image labelling through Google Voice Input). However, we need 
to verify the usability of the system with target users who have special needs. Specifi-
cally, we need to qualitatively and quantitatively assess the usability of the system for 
people with memory or visual impairments, possibly including their caregivers. Their 
feedback may allow us to improve our user interface, so that our system will work in a 
more user-friendly way. Additionally, a longitudinal study might be needed to verify 
whether our system can have a positive influence on their lives and medical conditions. 

Conclusion 

In this paper, we designed and implemented a novel wearable system which builds per-
sonalized deep learning models for recognizing objects of interest to a user. To the best 
of our knowledge, this is the first attempt to train deep learning models for personalized 
visual recognition, via camera-equipped wearable computers like Google Glass. The 
proposed system works as a client-server model: Google Glass (client) collects images 
from a user’s everyday life and sends them to a GPU-equipped Linux server. The server 
then trains a deep convolutional neural network (CNN) on the user-specific image data. 
To efficiently update the pre-trained network on newly-added images, we proposed a 
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simple training mechanism called chained finetuning. As a variant of conventional fine-
tuning, it is effective in terms of prediction power and training efforts in continuously 
training (or updating) a personalized deep learning model. In a custom 10-class object 
recognition task, our system took 7 minutes to train a personalized CNN on our GPU 
platform, and showed a 97% classification accuracy without serious overfitting. Con-
sidering the training time and the model’s prediction power, we believe our system can 
become a feasible intelligent personal assistant. Future work will mainly focus on the 
testing of the proposed system with more users and harder tasks. It will also include 
privacy impact assessments and a verification of its effectiveness in improving users’ 
cognitive abilities. 
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