
Computer Communications 32 (2009) 1062–1071
Contents lists available at ScienceDirect

Computer Communications

journal homepage: www.elsevier .com/locate /comcom
Dynamic nodeID based heterogeneity aware p2p system

Kyungbaek Kim *

Computer Science Department, University of California, Irvine, CA 92697, USA
a r t i c l e i n f o

Article history:
Received 23 August 2007
Received in revised form 23 December 2008
Accepted 24 December 2008
Available online 14 January 2009

Keywords:
Distributed systems
Peer-to-peer
Heterogeneity
0140-3664/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.comcom.2008.12.044

* Tel.: +1 949 812 2980.
E-mail addresses: kyungbak@uci.edu, kyungbaekki
a b s t r a c t

A lot of research papers discussed Distributed Hash Table (DHT) based p2p systems to promise that idle
resources may be efficiently harvested. However, p2p systems are composed of components with extre-
mely heterogeneous availabilities and they will generate heavy information maintenance traffic to keep
the efficiency of DHT based p2p systems under churn. In this paper, we suggest a dynamic nodeID based
heterogeneity aware p2p system to reduce the overhead by exploiting the heterogeneity of participant
nodes efficiently. Unlike the DHT based p2p systems, the nodeID of a node changes on the fly according
to its characteristic and each node takes different responsibility in accordance with its nodeID to support
p2p systems efficiently. A nodeID is composed of Load-Balanced ID (LBID) which balances the loads of
reliable nodes and Load-Free ID (LFID) which reduces the responsibility of normal nodes and eliminates
compulsory maintenance overhead. We conduct an event-driven simulation and show that our p2p sys-
tem reduces data maintenance traffic and makes routing process more efficient and more reliable.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

In these days, a peer-to-peer system has become an extremely
popular platform for large-scale content sharing. Unlike client/ser-
ver model based storage systems, which centralize the manage-
ment of data in a few highly reliable servers, peer-to-peer
storage systems distribute the burden of data storage and commu-
nications among tens of thousands of clients. The wide-spread
attraction of this model arises from the promise that idle resources
may be efficiently harvested to provide scalable storage services. A
lot of research papers discussed the Distributed Hash Table (DHT)
based p2p systems (CHORD, PASTRY, TAPESTRY and CAN) [3–6].

In contrast to traditional systems, peer-to-peer systems are com-
posed of components with extremely heterogeneous availabilities.
Individually administered hosts may be turned on and off at their
will, have intermittent connectivity, and are constructed from low-
cost low-reliable components. For example, one recent study [9] of
a popular peer-to-peer file sharing system found that the majority
of peers had application-level availability rates of under 20% and
only 20% nodes have server-like profiles. In such an environment,
failure is no longer an exceptional event, but is a pervasive condition.
At any point in time the majority of hosts in the system are unavail-
able and those available hosts may stop servicing requests soon.

A big issue in current DHT based p2p systems is the high over-
head of maintaining DHT routing data structure and the stored data.
When a node joins or leaves the system, the affected routing data
structure of some existing nodes must be updated accordingly in or-
ll rights reserved.

m@gmail.com
der to reflect the change of the membership of nodes. Moreover, as
most p2p systems employ some form of the data redundancy to
cope with failure, when the membership of nodes changes, these
systems generate huge overhead of compulsory copies for the data
availability [7,8,2]. Especially, for nodes which join and leave the
systems frequently, the p2p system will generate a lot of routing
information update traffic and data copy traffic. It does not only in-
crease the consumption of the network bandwidth, but also affects
the efficiency of DHT based routing. Until now, DHT based p2p sys-
tems are not widely used in commercial systems yet, but most p2p
file sharing systems are still using unstructured p2p
mechanisms[15].

In this paper, we suggest a dynamic nodeID based heterogeneity
aware p2p system to reduce the information maintenance over-
head by exploiting the heterogeneity of participant nodes effi-
ciently. The node heterogeneity makes the maintenance
overhead heavy, but it also gives us the chance to improve the per-
formance. That is, the more reliable and more stable nodes can
handle much more jobs than normal nodes. If we can sort out
the reliable nodes from all participant nodes during the system
running, we can get the chance to reduce the management over-
head. In this case, the nodeID of a node is coupled to its role of
the p2p systems; if we use the static nodeID which is predefined
by a node’s unique identifier like the previous DHT based p2p sys-
tems, it is hard to change its position on the ID space as well as its
role of p2p systems. In order to give the flexibility in the role of a
node, in our p2p system the nodeID of a node changes on the fly
based on its characteristic. This dynamic nodeID supports that each
node takes the different responsibility in accordance with its no-
deID to help the p2p system efficiently.

mailto:<xml_chg_old>kyungbaekkim@gmail.com</xml_chg_old><xml_chg_new>kyungbak@uci.edu</xml_chg_new>
mailto:<xml_chg_old>kyungbak@uci.edu</xml_chg_old><xml_chg_new>kyungbaekkim@gmail.com</xml_chg_new>
http://www.sciencedirect.com/science/journal/01403664
http://www.elsevier.com/locate/comcom

K. Kim / Computer Communications 32 (2009) 1062–1071 1063
The nodeID consists of Load-Balanced ID (LBID) and Load-Free ID
(LFID). The nodeID is dynamically assigned based on nodes’ behav-
ior and this nodeID assignment is fully distributed without any
central manager. According to the nodeID, every node is classified
into two types, representative nodes and leaf nodes. The represen-
tative nodes are more stable and more reliable nodes servicing
routing and replication for wider region on the ID space. On the
other hand, the leaf nodes are the normal nodes which join and
leave very frequently the system, and the majority of the partici-
pant nodes are these leaf nodes taking simple roles such as servic-
ing the request and helping representative nodes. According to this
classification, LBID used mainly to identify the representative
nodes should be evenly distributed to balance their workloads
which might be heavy, and LFID used mainly to identify the leaf
nodes should make the ID region of a leaf node as small as possible
to reduce the effect of their dynamic membership change. This no-
deID assignment helps our p2p system reducing the overhead of
data management as well as achieving more efficient routing with-
out frequent updates.

Moreover, we exploit the plentiful information of the availabil-
ities of nodes and reduce the data management traffic for the dy-
namic membership. That is, even if many nodes join and leave
frequently, as more available nodes replicate data, more data traffic
we can reduce.

This paper is organized as follows. In Section 2, we describe the
DHT based p2p systems and the other researches which try to re-
duce the overhead. Section 3 introduces the detail of the dynamic
nodeID based heterogeneity aware p2p system. The simulation
environment and performance evaluation are given in Section 4. Fi-
nally we conclude in Section 5.
2. Background

There are many DHT based p2p systems such as CHORD, PAS-
TRY, TAPESTRY and CAN [3–6]. Each node has a DHT which is a
small routing table and any node can be reached in about
OðlogNÞ routing hops where N is the total number of nodes in the
system. To achieve this efficient and bounded routing, there are
some rules for the organizing of the participant nodes. First of all,
each node has a unique nodeID which is taken by hashing any un-
ique identifier of a node, and according to its nodeID it maps on the
ID space where nodes and objects are co-located with nodeIDs and
keys which are the hashed values of nodes and objects, respec-
tively. In turn, each node manages its DHT based on its own p2p
system. In CHORD [3], for the ID space defined as a sequence of
m bits, a DHT keeps at most m pointers to nodes which follow it
in the ID space by 21; 22; and so on, up to 2m�1. The ith entry in
node n’s DHT contains the first node that succeeds n by least 2i�1

in the ID space. With this DHT, CHORD routes to the target ID with-
in OðlogNÞ hops. In PASTRY [4], a DHT is organized into log2b N rows
with 2b � 1 columns. The 2b � 1 columns in row i refer to a node
whose nodeID matches the present node’s nodeID in the first i dig-
its, but whose iþ 1th digit has one of the 2b � 1 possible values
other than the iþ 1th digit in the present node’s nodeID. According
to this DHT, PASTRY achieves Oðlog2b NÞ routing.

Though these well-organized rules make the routing of DHT
based p2p systems efficient and bounded, a big issue in the current
DHT based p2p systems is the high information maintenance over-
head of maintaining the DHT routing data structure and the stored
data. Because its nodeID is already given by the hashing function
with the unique and fixed identifier and its position on ID space
is already fixed, when a node joins or leaves the p2p system, the
ID regions being served by its neighbor nodes change. For the
p2p system to support the correct and reliable services, the af-
fected neighbor nodes should copy the responsible data for the
new ID region and update their DHTs too. Moreover, many p2p sys-
tems use a simple replication method to cope with massive node
failure and keep high data availability [2,7,8,10]. That is, if a p2p
system needs N replicas to achieve acceptable data availability,
each node has N or more replicas for its responsible ID range
among its sequentially closest neighbor nodes such as successor
list of CHORD and leafset of PASTRY. According to this simple rep-
lication method, when a node changes, N replicas should be up-
dated to keep high data availability. In this case, one recent
research [9] of a popular p2p file sharing system found that 80%
of total nodes of a p2p system join and leave very frequently and
the majority of nodes have the application-level availability rate
of under 20%. In such an environment, the information mainte-
nance overhead is getting worse and this overhead discourages
that the DHT based p2p systems are deployed to the real world.

Some researches emerged to prevent the information mainte-
nance overhead by using the heterogeneity of participant nodes.
In paper [11], they manage the DHT which is a certain amount of
system routing information with the availability of each node
which is evaluated during the time it joins the system. They prefer
to add stable nodes into routing data structures instead of normal
nodes which join and leave frequently. Paper [10] tries to reduce
the compulsory data copies for the churn of nodes with the node
availability. They manage the availability of each data by evaluat-
ing the availability of each node which stores the data. The com-
mon feature of these approaches is that the stable nodes take
most system workload and this reduces the information mainte-
nance overhead of the DHT based p2p systems. However, in these
approaches, though the stable nodes get too much workload, they
lack for the explicit method which balances the workload of each
stable node. Because each stable node already has the fixed nodeID
and the space between any two stable nodes is unbalanced, each
node gets an unfair workload [16]. Moreover, the fixed nodeID still
affects the ID region of a node and the churn of a node makes the
compulsory copies too. In our solution, the dynamic nodeID based
heterogeneity aware p2p system, each stable node gets the bal-
anced ID region and workload, and normal nodes which join and
leave very frequently affects the information maintenance over-
head little.

Some approaches [12,13] provide a hierarchical method to use
the most reliable node as the supernode. However, because these
methods assume that powerful supernodes already exist, they lack
explicit methods to sort out the reliable nodes from the whole par-
ticipant nodes. This makes the system inflexible and the problems
of the fixed nodeID also exist. Moreover, in the paper [17], they ex-
plore how they manage superpeer nodes. But, their target system is
the unstructured p2p systems and their method cannot apply to
the DHT based p2p system directly. They cannot show how effi-
cient the lookup process performs either, because of the nature
of the unstructured p2p system. Our p2p system assigns a nodeId
to a node dynamically and each node manages its routing table
which is a kind of DHT tables. Each node can change its nodeID eas-
ily on the fly according to its characteristics and moves to the prop-
er position easily. This behavior can help organizing the superpeer
structure for the DHT based p2p systems.
3. Dynamic nodeID based heterogeneity aware p2p

3.1. Overview

Previous DHT based p2p systems lack explicit methods for
exploiting the heterogeneous characteristics of participant nodes.
The main reason of this lack is the static nodeID which fixes a loca-
tion of a node on the ID space and it is hard to organize the p2p sys-
tem flexibly. We address this problem with the dynamic nodeID.

1064 K. Kim / Computer Communications 32 (2009) 1062–1071
When a node joins the p2p system, a nodeID is assigned to this
node. After some time, this nodeID can be changed to relocate a
node on the ID space. Stable nodes are relocated on more impor-
tant position which is mainly responsible for routing and replica-
tion, and normal nodes are moved to trivial position mitigating
the maintenance overhead induced by their joining or leaving.

Fig. 1 shows the stable state of our p2p system using the dy-
namic nodeID. Participant nodes are on the 25 ID space and the
number of bits for a nodeID is 5. The general systems use 2128 ID
space, but in this example we use only few bits for the easy expla-
nation. To distribute participant nodes efficiently, we should divide
the ID space into many sub-regions which are the balanced ID re-
gions. Each sub-region has one representative node which repre-
sents this region and many leaf nodes which assist the
representative node. That is, the representative node is mainly
responsible for routing and servicing the objects for the sub-region
and the leaf nodes service the objects for the small ID region which
is the part of the sub-region allocated to each leaf node in accor-
dance with its nodeID. Consequently, stable nodes and normal
nodes are relocated on the representative nodes and the leaf nodes,
respectively.

The nodeID consists of the Load-Balanced ID (LBID) and the
Load-Free ID (LFID). The LBID is the identifier for a sub-region and
all nodes on the same sub-region have the same LBID. Each node
has the LBID table consisting of m entries where m is the number
of bits of the LBID. The ith entry of a node n’s LBID table points a
representative node whose ith bit of the LBID is only different from
n’s LBID. By using this LBID table, a node routes a request to a rep-
resentative node which is responsible for the requested sub-region.
The LFID is the identifier for a node in a sub-region. All the bits of a
LFID of a representative node are set to 1. Except this representa-
tive node, other leaf nodes get different LFIDs related to their loca-
Fig. 1. Overview of dynamic nodeID based heterogeneity aware P2P system and
LBID/LFID tables for node B(00111).

Fig. 2. Three phases of n
tion. Each node has the LFID table composed of many LFID entries
which are evenly distributed in a sub-region by the LFID prefix. The
location of each entry is predefined by its LFID prefix and a new
node gets a new LFID from one of empty entries. In Fig. 1, the first
2 bits of a nodeID is the LBID and the other 3 bits is the LFID. Nodes
B(00111), R(00011) and M(00101) are included in the same sub-re-
gion(00***) and their LBIDs are same(00). The LFID of the represen-
tative node B is 111 and the other leaf nodes get different LFIDs
based on the LFID table.

When a node tries to lookup an object, it sends a lookup request
with the object key to any other participant node. This request is
forwarded to the representative node for the sub-region which is
responsible for the object key by referring the LBID tables, and fi-
nally forwarded to the node whose ID region is responsible for
the object key by referring the LFID tables. A representative node
is responsible for whole represented sub-region as its ID region,
but a leaf node is responsible for the relatively short ID region
which is defined by the LFID table. In Fig. 1, when a node wants
to get an object whose key is 00001, the representative node B
for the sub-region 00*** handles this request and finds a leaf node
being responsible for this object key by referring the LFID table.
But, there is no leaf node for the 00* entry of the LFID table and
the representative node B takes this request. However, when a
node tries to get an object whose key is 00010, there is the leaf
node R mapped to 01* entry of the LFID table whose ID region is
responsible for the key between 00010 and 00011, and R takes this
request to assist the representative node B.

During the initial state of our p2p system, we allocate new
nodes for representative nodes to be responsible for the sub-re-
gions. In this case, we cannot use the static ID at all and every no-
deID is assigned dynamically to distribute the load of each sub-
region evenly. After this state, when a node joins, we get its static
nodeID by hashing its identifier like the DHT based p2p systems.
We only use this hashed value for a new node to find its sub-re-
gion, and according to this, the number of leaf nodes are distrib-
uted evenly to all sub-regions. To route to the sub-region, a node
which gets a join request forwards it to the next node which is
on the most prefix matched entry of the LBID table. After finding
the sub-region, the LFID table assigns the right LFID to the new
node. In the next section, we show the detail of the whole join
process.

3.2. Dynamic nodeID

3.2.1. NodeID transformation
Fig. 2 shows the three phases of nodeID assignment as well as

the nodeID transformation. At the first time, when there are few
nodes in the p2p system and any one of sub-regions needs a repre-
sentative node, this phase is called the bootstrap phase. In this
phase, the LBID assignment performs to divide sub-regions evenly
and to make up the LBID routing tables. When a new node joins, it
odeID assignment.

K. Kim / Computer Communications 32 (2009) 1062–1071 1065
should get a nodeID to represent a sub-region as a representative
node regardless of its behavior and characteristic. According to
this, in this phase some representative nodes are not really reliable
and available nodes.

After the bootstrap phase, that is, when every sub-region has its
representative node, the transient phase starts. Joining the system
as leaf nodes to assist the representative nodes, new nodes get
nodeIDs by performing the LFID assignment. When a new node
joins, a join message with the node identifier is forwarded to the
representative node whose LBID is same to the node identifier. This
representative node picks up a new nodeID which is composed of a
same LBID of the representative node and a new LFID from the LFID
table. The new node gets this new nodeID and all nodes in the
same sub-region updates their LFID tables with this new node. In
this phase, when the representative node fails, the most reliable
leaf node in the same sub-region substitutes it. That is, a represen-
tative node which is not reliable is displaced by a new reliable node
which is in the same sub-region.

According to this assignment and the failure recovery, the p2p
system becomes stable. That is, in the stable phase, more reliable
nodes acts as representative nodes and the other nodes assist the
representative nodes as leaf nodes. Like the transient phase, in
the stable phase, a new nodeID is assigned by the LFID assignment
and the same failure recovery is used.

3.2.2. NodeID assignment – LBID
During the LBID assignment, our p2p system cannot use the sta-

tic nodeID which is generally used by other DHT p2p systems, but
assigns the proper nodeID to each new node in order to act as a
representative node without any help of any servers which manage
proper nodeIDs. The nodeID of a new node is assigned by a repre-
sentative node which gets a join message. The LBID of the new no-
deID is generated by the representative node and all of the bits for
the LFID of the new nodeID are set to 1 because it will become a
representative node. In this LBID assignment, the new node also
creates the LBID routing table according to its LBID.

Each representative node has the state information such as Join,
Level, Full and Leaf. When the Join bit sets to 1, this node can pro-
cess join requests and create new LBID for new nodes. The Level
indicates the depth value which means how many join requests
are processed in this node, that is, how many routing entries are
filled. The Full bit sets to 1 after the enough representative nodes
join the p2p system and they are ready to get the leaf nodes. The
Leaf means the number of leaf nodes which is connected to a rep-
resentative node. According to these state information, LBID is as-
signed automatically and correctly.

The basic algorithm for the LBID assignment is in Fig. 3. When a
new node joins the p2p system and there is no representative node,
it has the new LBID whose all bits set to 1. Otherwise, when any rep-
resentative node gets a join request, it creates new LBID based on its
LBID and its Level bit. To make a new LBID, the Levelth leftmost bit of
its LBID sets to the exclusive bit. This simple rule makes the differ-
ence of LBID of any two closest representative nodes even and each
representative node takes the balanced and fair sub-region.

The LBID routing table which is used for routing to any repre-
sentative node is also organized when a new LBID is created. The
basic rule is the ith entry of a routing table has information of a
node whose ith leftmost bit of LBID is exclusive to the owner’s
LBID. These bit-wise exclusive entries constitute the LBID routing
table and a node can reach any other nodes through these LBID
routing tables. In Fig. 4, the node whose LBID is 000 has routing en-
tries 100, 010, 001. In this case, the routing entry 100 is the next
routing point for LBID 1** and the routing entry 010 is the next
routing point for LBID 01*. Like Fig. 4, this LBID routing table has
logm of routing entries and the maximum routing hops are limited
to logm, where m is the number of LBID bits.
When there is not proper node information for a routing entry,
this entry becomes a temporal routing entry. In Fig. 5, the first entry
of node B is C(101) which is the right one. However the second en-
try of node B is G(110) which does not fit to this entry and this en-
try is called a temporal routing entry. This temporal routing entry
has the node information which does not matched, but this un-
matched node is closer to the right node information. When a node
has a temporal routing entry getting a join request, it forwards the
join request to the temporal node which is ready to process a join
request. After this forwarding process, the new node replaces the
temporal routing entry with right routing entry and the LBID rout-
ing table is composed completely.

Fig. 5 shows a simple example of the LBID assignment. When
the new node A joins and the target node B gets this join request,
the node B makes a decision which it makes a new nodeID or for-
ward to next nodes. The main point of the decision is the fulfill-
ment of LBID routing table and the requested node tries to fill
the LBID routing table with a new LBID. In this case, the node B
can treat the join request, because its third routing entry is empty.
According to the basic rule for the LBID routing table which is de-
scribed in the previous section, the requested node B assigns a new
nodeID, 000 to the new node A to fill the third routing entry. After
the new node A gets the new nodeID, it also makes up the LBID
routing table. To do this, when the requested node B responses
the join request, it gives not only the new nodeID but also its
new modified LBID routing table. The node A checks that each
delivered routing entry is the right information for its LBID routing
table according to the basic rule for the LBID routing table. If a
routing entry is the right one, it is used, otherwise, the node tries
to find the right information by requesting to the wrong one. For
example, the third entry of the node A received from B is B(001)
and it can be used by itself because of B(001) is the right one for
the third entry of the node A. However, the second entry of the
delivered information is G(110) which is the wrong one and the
node A requests the proper information to the node G. Fortunately,
the node G has information of the node D(010) which is the first
routing entry of the node G and the node A can update its second
routing entry with D(010). Moreover, unless one node finds the
proper node information, it remains this entry and sets as the tem-
poral routing entry. So, the first entry of the node A is the temporal
routing entry, C(T)(101). After the new node updates its LBID rout-
ing table, it should advertise its information to every node of its
LBID routing table to update the routing information.

We described the join process when the LBID routing table of
target node is not full. If the LBID routing table is full, it should for-
ward the request to the next node which can deal with the join re-
quest. First of all, if the requested node has any temporal routing
entries, it forwards the join request to the node which is referred
by this temporal routing entry. Otherwise, the join request is for-
warded by referring to the LBID routing table with descending
manner. At first, a node whose routing table is full forwards the
join request through the first routing entry. If the next node which
gets the join request also has the full routing table, it sends the join
request to the node on the second routing entry because the first
entry has the information of the requesting node. According to this
descending routing mechanism, the join request is forward to a
joinable representative node.

If the join request is forwarded by referring the last routing en-
try of any node, this node tries to find any node which can treat the
join request among the whole representative nodes. In this case,
each node does not know the whole representative nodes, but only
knows the m routing entries where m is the number of the LBID
bits. According to this, one nodes cannot notify to all other nodes
by itself and the p2p system needs the efficient and systematic
method to visit the whole representative nodes [14]. To achieve
this, a node sends messages with TTL count value to every nodes

Fig. 3. Basic algorithm of the nodeID assignment.

Fig. 4. The basic concept of LBID routing table (left:LBID 000, right:LBID 101).

Fig. 5. Simple example of the LBID assignment.

1066 K. Kim / Computer Communications 32 (2009) 1062–1071
of the LBID routing table. Like Fig. 6, the message for the ith routing
entry has i� 1 TTL count value, except the 1st entry for whom the
message has 1 TTL value. The node A which gets the message from
the node B reduces the TTL value by 1 and the message is for-
warded to the L� 1th routing entry, where L is the position of
the node A on the node B’s LBID routing table. For example, if
the node B is the 2nd routing entry of the node A, the node A sends
the message to its first routing entry. However, if the node B is the
first routing entry of the node A, it sends the message to its last
routing entry. According to this mechanism, one node can visit
the whole representative nodes. If there is no node which can pro-
cess the join request, the LBID assignment finishes and the finaliz-
ing mechanism starts. This finalizing mechanism visits all of the
representative nodes and sets the Full bit to 1 for every represen-
tative node to be ready to get the leaf nodes.

3.2.3. NodeID assignment – LFID
After the bootstrap phase, the transient phase starts. In this

phase, each node joins in the system as leaf nodes. Because leaf

Fig. 6. Message flow to the whole of the representative nodes.

K. Kim / Computer Communications 32 (2009) 1062–1071 1067
nodes are generally composed of the nodes which join and leave
the p2p system frequently, our p2p system should minimize their
responsibility to reduce the compulsory management cost which
are due to the dynamic membership change such as updating the
routing tables and copying the responsible data.

Basically the leaf node acts as an assistant for the representative
node, and the LFID assignment is composed of two parts: finding a
proper sub-region of a new node and assigning a new nodeID.
When a new node joins the p2p system, it sends the join request
to any one of participant nodes. In this case, unlike the LBID assign-
ment, the join request contains the static nodeID obtained by hash-
ing unique identifier of the new node in order to balance the
number of the leaf nodes for each sub-region. This join request
routes to the representative node whose LBID is the same to the
LBID of the static nodeID of the new node. This routing process is
the most prefix matched method which is generally used by other
DHT based p2p systems. That is, when a node gets a join request, it
forwards this request to the LBID routing table entry whose LBID is
most prefix matched to the LBID of the static nodeID of the
requesting node unless the LBID of this static nodeID is perfectly
matched to the LBID of its nodeID.

After the join request of a new node is forwarded to the proper
sub-region, the representative node of this sub-region assigns a
new nodeID to the new node. The LBID of this new nodeID is same
to the representative node and its new LFID is assigned by referring
the LFID table which identifies the responsible ID region of leaf
nodes. The LFID is composed of many LFID entries which are evenly
distributed in the sub-region and each leaf node fills each LFID en-
try. In Fig. 7, all nodes under the sub-region whose LBID is 110 have
a LFID table like that. This LFID table has four entries which are
identified by the prefix such as 00*, 01*, 10* and 11*. When a leaf
node joins, an empty entry is selected to be filled with this new leaf
node, and in order to create a new LFID for this new leaf node the
LFID bits are set to 1 except the prefix bits of the selected LFID en-
Fig. 7. LFID table and node assignment (LBID 110).
try. According to this assignment, in Fig. 7, the node L’s LFID is
00111 and the node M’s LFID is 01111. However, there is one
exception of generating a new LFID. That is, the LFID of the last en-
try whose prefix is 11* is not 11111, but 11110. According to the
LBID assignment, if all bits of LFID are set to 1, this nodeID refers
to the representative node. So, to avoid the nodeID confliction, all
bits of the LFID of the last entry are set to 1 except its last bit. When
a leaf node joins and there is no empty entry, one of entries sepa-
rates into two entries and the new entry is assigned to the new leaf
node. After a new node gets its new nodeID, it updates its LBID ta-
ble and LFID table which are delivered from the representative
node. Also it announces its join to other leaf nodes on the same
sub-region to update their LFID tables.

A leaf node is responsible for servicing the objects whose LFIDs
have same prefix to its corresponding LFID prefix. For example, the
node L is responsible for servicing the objects whose LFIDs are be-
tween 00000 and 00111. The LFID prefix is divided evenly and each
ID region of each leaf node is balanced within a sub-region. As the
number of leaf nodes increases, an ID region decreases. According
to this, our system can mitigate the overhead which is due to the
dynamic membership change of leaf nodes.

3.3. Lookup

The lookup process of our p2p system is similar to the LFID
assignment. Fig. 8 shows the simple example of the lookup opera-
tion. The normal node Y wants to find ‘‘d3.avi” file and the static
object key of d3.avi is 10000101. First of all, node Y checks its LBID
routing table with the object key 10000101. If the LBID of the ob-
ject key is matched to the node Y, node Y tries to find the right LFID
entry from its LFID table. However, in this case, the LBID of the ob-
ject key is different from node Y and node Y finds the next routing
node from its LBID routing table. The node Y selects a next routing
node as the most prefix matched LBID entry to the object key. In
this figure, the next routing node is H and H also selects next rout-
ing node D by using most prefix matched method.

Finally, lookup request is forwarded to node D whose LBID is
100 which is same LBID of the object key. After finding right sub-
region, the representative node D checks its LFID table. If the prop-
er LFID entry is empty, the representative node handles this lookup
request. Otherwise, the representative node forwards this lookup
request to the leaf node allocated to the right LFID entry. In this fig-
ure, the object key 10000101 is managed by the first LFID entry,
node L, whose prefix is 00*. So, the lookup request is forwarded
to the node L and node L returns the requested object ‘‘d3.avi” to
node Y. According to this assistant, the representative nodes lessen
their responsible loads.
Fig. 8. Lookup operation.

1068 K. Kim / Computer Communications 32 (2009) 1062–1071
The lookup operation is composed of the LBID lookup and the
LFID lookup. The LBID lookup takes OðlogNr) cost where Nr is the
number of the representative nodes and the LFID lookup takes
Oð1Þ cost. Generally, Nr is about 0:2 � N where N is the number of
total nodes because of the characteristics of participant nodes in
the p2p systems. Consequently, the total lookup cost is propor-
tional to OðlogNÞ where N is the number of total nodes. That is, this
lookup operation is scalable.

3.4. Data management

The general servers have very high availability and the data
management on them is more simple having little overhead. How-
ever, unlike the general servers, in the p2p systems the participants
have very low availability. In this case, to preserve the availability
of data, there are many replications for the data. These data are the
basic p2p system information such as routing information as well
as the object data which is managed by each node which is respon-
sible for some ID region. Previous DHT based p2p systems manage
the replication by using the sequential node list such as the succes-
sor list of CHORD [8] and the leaf set of PASTRY [7,2]. This ap-
proaches take too much overhead to preserve the level of
replications when nodes join and leave frequently.

In our p2p system, each representative node knows not only the
availability of itself, but also the availabilities of the other nodes
such as leaf nodes and LBID routing entry nodes which are man-
aged by the representative node like Fig. 9. In this case, the plenti-
ful information of the availabilities is exploited to reduce the data
management traffic against the dynamic membership change. That
is, more available nodes replicate data, more data traffic the p2p
system can reduce when the other nodes frequently join and leave.
Basically, more available than other leaf nodes, the representative
nodes on LBID routing entries may replicate data with very high
probability. However, being mainly responsible for each sub-re-
gion, each representative node takes too many jobs. Consequently,
even though the representative nodes is highly available, the num-
ber of the representative nodes for replicating data is limited. Each
representative node selects few other representative nodes and
preferentially picks up the replicas among the leaf nodes. In this
case, the leaf nodes having very low availability such as node R
in Fig. 9 are not selected as replicas.

3.4.1. Availability prediction
According to other researches [9,11], the long-lived nodes gen-

erally have the large bandwidth as well as the high computing
power, and we assume that the node availability is the prediction
value how long a node is alive. The Mean Time To Failure and the
Mean Time To Recover are used to estimate the node availability.
MTTF is the average value how long a node is alive after it joins
and MTTR is the average value how long a node is offline after it
Fig. 9. Node availability update.
leaves. To estimate these values, the Time To Failure and the Time
To Recover are measured like Fig. 10. To do this, each online node
stores the current time (Tcurrent

n), the join time (Tjoin
n), the previous

leave time (Tleave
n�1), and the previous join time (Tjoin

n�1). When joining
the system, a node gets TTFn by using the previous join time and
the previous leave time, updating MTTFn with this TTFn like the
Eq. (2). One more thing for TTFn is that having no chance to update
its MTTFn until rejoining the system, a long-lived node updates
TTFn and MTTFn periodically by using the join time and the current
time like Eq. (1).

TTFn ¼
Tleave

n�1 � Tjoin
n�1 If measuring at join time

Tcurrent
n � Tjoin

n If measuring periodically

(
ð1Þ

MTTFn ¼ a � TTFn þ ð1� aÞ �MTTFn�1; ð0 < a < 1Þ: ð2Þ

To update MTTRn, when joining the system, a node calculates TTRn

with the join time and the previous leave time like Eq. (3). Similar
to MTTFn; MTTRn is obtained by the weighted average of TTRn like
Eq. (4).

TTRn ¼ Tjoin
n � Tleave

n�1 ð3Þ

MTTRn ¼ b � TTRn þ ð1� bÞ �MTTRn�1; ð0 < b < 1Þ: ð4Þ

The node availability is computed with MTTF and MTTR like Eq. (5).
Because of updating MTTF, a node obtains its node availability at
join time or periodically. When getting its node availability, a leaf
node notifies its node availability to the nodes on the same sub-re-
gion including the representative node and other leaf nodes. When
a representative node obtains its node availability, it notifies its
node availability to the leaf nodes on the same sub-region as well
as the representative nodes on the LBID routing table. Each node ex-
ploits node availability to select the proper location for replicating
data.

NodeAvailabilityðAiÞ ¼
MTTF

MTTF þMTTR
: ð5Þ
3.4.2. Data replication set
In the p2p system, nodes join and leave at their will and some

nodes leave the system without any notice. Even if this dynamic
environment, the p2p system should support the high level of data
availability by replicating data to multiple nodes. In this case, the
data availability means the total availability when the multiple
nodes restore the data. We call the set of multiple nodes restoring
data the replication set. The data availability is calculated by Eq. (6),
that is, the probability of simultaneous failure of all nodes in the
replication set subtracted from 1. It means if only one node is alive,
the data is available. To get this probability, the node availability of
each node in the replication set is exploited.

DataAvailabilityðDiÞ ¼ 1�
Y
i2R

ð1� AiÞ;

R is the replication set ð6Þ

Each representative node is responsible for managing the LBID rout-
ing table as well as storing the objects which are mapped to the rep-
resented sub-region. To keep the data availability of the stored
Fig. 10. Node availability prediction.

K. Kim / Computer Communications 32 (2009) 1062–1071 1069
information over the target data availability with small mainte-
nance cost, the representative node manages the data replication
set indicating that which nodes replicate its data. When selecting
the nodes for the replication set, a representative node chooses
more available nodes among the leaf nodes and the other represen-
tative nodes of the LBID routing table.

Fig. 11 shows the operation of the data replication and its target
data availability is 0.99. In this figure, Node H (0.85) means its node
availability is 0.85 and Data (0.995) means its data availability is
0.995. When the leaf node P leaves, because this node is not a node
replicating data, the representative node H just updates the LFID
slot. When the leaf node Y joins, the representative node just up-
date the LFID slot and copies the data of new id range for the node
Y. That is, since the leaf nodes with relatively low node availability
hardly become a member of the replication set, their frequent
changes do not affect the management cost too much. However,
when the node L, one of the nodes replicating data, leaves, the total
data availability decreases below the target data availability
(0:985 < 0:99). In this case, the representative node H should se-
lect a new node replicating data to keep the target data availability.

When selecting a new replica which is a new node replicating
data, a node firstly check if one another representative node repli-
cates the data. If not, it selects one representative node as a new
replica. Otherwise, it does not select any other representative
nodes as a new replica to prevent that replicas converge on few
reliable nodes, because other representative nodes already have
many jobs for other sub-regions. After that, it chooses the most
available node among leaf nodes on the same sub-region as a
new replica. This selecting process is performed until the new data
availability is greater than the target availability. In Fig. 11, the
node H selects the node S as a new replica, because there is already
a representative node F for a replica and the node S is the most
available node among leaf nodes in the sub-region 10***.

3.5. Update messages

When churn occurs, affected nodes should update its routing ta-
bles such as DHT, LBID table and LFID table to ensure the correct-
ness and the efficiency of the lookup process. In general DHT based
p2p such as CHORD and PASTRY, when one node joins or leaves,
each affected node updates its DHT. It takes OðlogNÞ2 cost because
there are OðlogNÞ affected nodes and it takes OðlogNÞ cost to find
one node.

However, in our p2p system, the update cost depends on the
type of the leaving node. When a leaf node joins or leaves, the af-
fected nodes are the representative node and the leaf nodes on the
same sub-region. Because the leaf node is identified by the LFID ta-
ble, each affected node updates its LFID table only. That is, the up-
date cost is OðNtÞ, where Nt is the average number of leaf nodes for
Fig. 11. Data replication set and its operation.
a sub-region. When a representative node joins or leaves, it takes
more cost than a leaf node. This change of a representative node af-
fects the leaf nodes on the same sub-region and the other repre-
sentative nodes of its LBID table. Moreover, it also affects the leaf
nodes of other sub-region which is represented by the representa-
tive nodes of its LBID table, because every leaf nodes contain the
same LBID table of its representative node. According to these,
the update cost is OðNtÞ � ðOðlogNrÞ þ 1Þ, where Nt is the average
number of leaf nodes for a sub-region and Nr is the number of rep-
resentative nodes.

The update cost for representative nodes are bigger than leaf
nodes. However, the most of churn is caused by the leaf nodes.
Consequently, the majority of update cost becomes about OðNtÞ
for our p2p system. In this case, if OðNtÞ is smaller than OðlogNÞ2,
our p2p system updates its routing table more efficiently than
the DHT based p2p.

4. Performance evaluation

4.1. Simulation setup

We carried out event-driven simulations to evaluate our dy-
namic nodeID based heterogeneity aware p2p system and the re-
sults show that it outperforms the previous DHT based p2p
systems such as CHORD and PASTRY. We made a p2p simulator
which emulates behavior of nodes on the application layer by
using C. This simulator contains PASTRY as a DHT based p2p sys-
tem as well as our dynamic nodeID based heterogeneity aware
p2p system. We brought the basic PASTRY module from the Free-
Pastry [1]. 160 bit ID space is used to identify nodes and the total
number of nodes is varied from 512 to 8192. The target data avail-
ability is 0.999 which is same to the 10 replicas whose average
node availability is 0.5. The DHT based p2p system does not con-
sider the behavior of nodes and sets the node availability of every
node to the average value for total nodes.

The participant nodes join and leave the p2p system individu-
ally and each node has a different lifetime as well as various dura-
tions for online and offline. To generate this dynamic churn, we use
the Poisson distribution to identify the average lifetime of each
node. In turn, the on/off duration of a node is assigned by using
the exponential distribution whose mean is inherited from the pre-
set value by the Poisson distribution. As the mean of the Poisson
distribution decreases, most nodes have short lifetime and fre-
quently join and leave the p2p system. On the other hand, as the
mean of the Poisson distribution increases, most nodes are reliable
and have long lifetime. In this simulation, setting the mean of Pois-
son distribution to 4, we figured out that the lifetime distribution is
very similar to the measured result of the other research [9].

The comparative systems are follows: DHTP means the DHT
based p2p system, especially PASTRY and BAP(1:Nt) means our
new p2p system in which each representative node obtains about
Nt leaf nodes. That is, the number of representative nodes are
1=Nt�(total number of nodes). For example, when the total number
of nodes is 2048, BAP(1:64) has 32 representative nodes and its
LBID bit is 5. At the same case, BAP(1:16) has 128 representative
nodes and its LBID bit is 7. Table 1 shows the variation of LBID
for each BAP according to the number of nodes. When Nt is big,
Table 1
LBID variation for each BAP.

Number of nodes 512 1024 2048 4096 8192

BAP(1:16) 5 6 7 8 9
BAP(1:32) 4 5 6 7 8
BAP(1:64) 3 4 5 6 7

Fig. 13. Comparison of lookup hops.

1070 K. Kim / Computer Communications 32 (2009) 1062–1071
the number of representative nodes is small and LBID bit is also
small. When the number of node increases, LBID also increases to
keep the number of leaf nodes for each representative node.

We measure and compare the performance of both systems at
the stable phase. To pass over both of the bootstrap phase and
the transient phase, we start gathering data after 500 tick times
from the beginning of our simulator. The average node arrival rate
for 1 tick time depends on the total number of participant nodes. If
the total number of nodes is 2048, the average node arrival rate is
about 26 and if the number is 8192, the arrival rate is about 110. At
any case, 500 tick times are enough to assume that both the boot-
strap phase and the transient phase pass.

4.2. Data maintenance traffic

The main problem of the current DHT p2p is the high manage-
ment cost, especially the data traffic such as objects and replicas to
keep the high data availability. Fig. 12 shows the comparison of the
data traffic usage. To evaluate this, we assume that each node ob-
tains averagely same number of objects, that is, if the total number
of nodes is 100, the total number of objects is 100,000, and if the
total number of nodes is 200, the number of objects is 200,000.
The number of total nodes is varied from 512 to 8192. The object
size is averagely 2 MByte. In this case, our p2p reduces the data
management cost extremely. The main reason of this improvement
is the behavior of leaf nodes. In DHT based p2p, the frequent joins
or leaves of leaf nodes cause the huge compulsory copies. However,
in BAP, the dynamic behavior of leaf nodes hardly affects the data
availability and this churn cannot generate much data traffic.
According to these, our p2p system can reduce much more data
management traffic to keep the same level of the high data avail-
ability than the DHT based p2p system.

One of facts, we should note, is when the number of represen-
tative nodes increases, the management traffic also increases. That
is, BAP(1:64) reduces more traffic than BAP(1:32) and BAP(1:16).
On the same node characteristics, the BAP(1:32) needs more repre-
sentative nodes than BAP(1:64), and the average availability of the
representative nodes of BAP(1:32) is less than BAP(1:64). In
BAP(1:32), the failures of representative nodes occur more than
BAP(1:64) and BAP(1:32) exhausts more network bandwidth than
BAP(1:64).

4.3. Lookup hops

In the p2p system, the lookup cost is also important parameter
for the scalability because there are too many participants. Fig. 13
shows the comparison of the lookup hops. For all systems, the
Fig. 12. Comparison of total data traffic usage.
lookup hops are proportion to the logN, where N is the total num-
ber of nodes. However, BAP performs more efficient lookup than
normal DHTP. The reason is that our p2p system mainly uses the
representative nodes to route the lookup request and the number
of these nodes are much less than the total nodes. These represen-
tative nodes are more stable and more powerful than other nodes
and they are durable nodes for the many routing requests.

Moreover, the slope of the DHTP is steeper than the slopes of
other BAPs. In general DHT based p2p systems the routing table
is filled with unreliable nodes. When these nodes leave, many rout-
ing entries can contain wrong and failed routing information. This
wrong information due to many routing faults and it takes times to
route to the right destination. Sometimes, this failure misleads the
route and the number of lookup hops increases. According to this
fact, the slope of DHTP becomes steeper. However, in BAP, every
routing entry is filled with reliable nodes and there are very few
routing faults. This makes the slopes of our p2p system gentler
than DHT based p2p systems.

Moreover, when the number of LBID bits is big, the average
routing hop is also big. That is, BAP(1:64) has less representative
nodes than BAP(1:32) and BAP(1:64) also has less routing table
than BAP(1:32). According to this small routing table, BAP(1:64)
needs small routing hops than BAP(1:32).

4.4. Control traffic

Fig. 14 shows the needed control messages for the various BAP.
There are three types of control messages: the LFID table updates,
the LBID table updates and the Join Messages. The number of the
LFID tables update is affected by the number of the leaf nodes for
Fig. 14. Average control messages for each BAP, node number = 2048.

Fig. 15. Lookup distribution for the total nodes.

K. Kim / Computer Communications 32 (2009) 1062–1071 1071
a representative node. The number of the LBID table updates and
the number of the Join messages are affected by the number of
the representative nodes. When the number of leaf nodes in-
creases, the number of the LFID table updates increases. As the
same way, when the number of representative nodes increases,
both of the number of the LBID table updates and the number of
the Join messages increase.

In this figure, BAP(1:64) needs most control messages and
BAP(1:16) uses least messages. This is because the majority of
the control messages for BAP are the LFID table updates.
BAP(1:64) keeps the average number of leaf nodes in about 64
and in BAP(1:16), the average leaf nodes for a representative node
is about 16. That is, BAP(1:64) has four times more leaf nodes than
BAP(1:16). On the other side, BAP(1:16) has four times more repre-
sentative nodes than BAP(1:64). According to this, the average
number of the LFID table updates of BAP(1:64) is about four times
more than BAP(1:16). Consequently, even if in BAP(1:64) the num-
ber of the LBID table updates and the number of the Join messages
are less than BAP(1:16), BAP(1:64) needs about 2.5 times more
control messages than BAP(1:16).

4.5. Load balance

Fig. 15 shows the lookup distribution for the total nodes. In this
figure, we define the lookup load of a node as the number of its
lookup requests divided by the average number of lookup requests
of whole nodes. As the nature of the previous DHT based p2p sys-
tem, the load is distributed to the whole of nodes by the shape of
the normal distribution and the average load of nodes is nearly 1.
This behavior causes the heavy information maintenance overhead
because the nodes which join and leave very frequently can be
responsible for the relatively big ID region. On the other hand, in
our p2p, the type of the load distribution can be classified into
the representative nodes and the leaf nodes. About 75% of nodes
have fewer loads than other nodes because these nodes act as leaf
nodes which join and leave frequently and they takes the respon-
sible for small ID region which is assigned by the LFID. The average
load of the leaf nodes is about 0.4 and these nodes are distributed
uniformly. Otherwise, the representative nodes take much more
loads because they are alive for a long time and represent for the
sub-region. The average load of these nodes is about 2.

This feature which classifies the load according to the character-
istics of nodes is very useful for the p2p system on the heteroge-
neous network which is consist of the various nodes such as
servers, workstations and PCs. Our p2p system can exploit these
powerful components efficiently and easily because the server-like
nodes locates for the representative nodes automatically.

5. Conclusions

In this paper, we suggest the dynamic nodeID based heteroge-
neity aware p2p system to reduce the information maintenance
overhead by exploiting the heterogeneity of participant nodes effi-
ciently. Unlike the DHT based p2p systems, the nodeID of a node
changes on the fly based on its characteristic in order to support
the p2p system efficiently and each nodes takes the different
responsibility in accordance with its nodeID. Because the represen-
tative node is more reliable and more stable, it acts as the more
important role of the routing and the replication. The leaf node
which joins and leaves very frequently acts as the simple role to re-
duce the information maintenance traffic. The representative
nodes are mainly identified by the Load-Balanced ID to balance
the loads and the leaf nodes are mainly identified by the Load-Free
ID to reduce the responsibility and eliminate the compulsory main-
tenance overhead.

This system is very good for the p2p system on the heteroge-
neous environment which is consist of the various kinds of nodes
such as servers, workstations and PCs, because it locates the ser-
ver-like nodes at the position for the representative nodes auto-
matically and can exploit these nodes efficiently and easily.
However, our system may over-provision for the representative
nodes and this may decreases the performance of our system.
The adaptive method for the whole state of nodes to keep the prop-
er number of representative nodes is our ongoing job.
References

[1] FreePastry. Available from: <http://freepastry.org/FreePastry/>.
[2] K. Kim, D. Park, Efficient and scalable client clustering for web proxy cache,

IEICE Transactions on Information and Systems E86-D (9) (2003).
[3] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: a scalable

peer-to-peer lookup service for internet applications, in: Proceedings of ACM
SIGCOMM 2001, August 2001.

[4] A. Rowstron, P. Druschel, Pastry scalable decentralized object location and
routing for large-scale peer-to-peer systems, in: Proceedings of the
International Conference on Distributed Systems Platforms (Middleware),
November 2001.

[5] B.Y. Zhao, J. Kubiatowicz, A. Joseph, Tapestry: an infrastructure for fault-
tolerant wide-area location and routing, UCB Technical Report UCB/CSD-01-
114, 2001.

[6] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-
addressable network, in: Proceedings of ACM SIGCOMM 2001, 2001.

[7] P. Druschel, A. Rowstron, PAST: a large-scale persistent peer-to-peer storage
utility, in: Proceedings of HotOS VIII, May 2001.

[8] F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, I. Stoica, Wide-area cooperative
storage with CFS, in: Proceedings of SOSP 2001, October 2001.

[9] S. Saroiu et al., A measurement study of peer-to-peer file sharing systems, in:
Proceedings of MMCN 2002, 2002.

[10] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, G.M. Voelker, Total recall: system support
for automated availability management, in: Proceedings of NSDI 2004, 2004.

[11] Z. Xu, R. Min, Y. Hu, Reducing maintenance overhead in DHT based peer-to-
peer algorithms, in: Proceedings of P2P 2003, 2003

[12] L. Carcs-Erice, E.W. Biersack, P. Felber, K.W. Ross, G. Urvoy-Keller, Hierarchical
peer-to-peer systems, in: Proceedings of Euro-Par 2003, 2003.

[13] B. Yang, H. Garcia-Molina, Designing a super-peer network, in: Proceedings of
ICDE 2003, 2003.

[14] S. El-Ansary et al., Efficient broadcast in structured P2P networks, in:
Proceedings of IPTPS 2003.

[15] Q. Lv et al., Search and replication in unstructured peer-to-peer networks, in:
Proceedings of ACM ICS 2002.

[16] B. Godfrey et al., Load balancing in dynamic structured P2P systems, in:
Proceedings of Infocom 2004.

[17] L. Xia, Z. Zhuang, Y. Liu, Dynamic layer management in superpeer
architectures, in: IEEE Transactions on Parallel and Distributed Systems, vol.
16, no. 11, November 2005.

http://freepastry.org/FreePastry/

	Dynamic nodeID based heterogeneity aware p2p system
	Introduction
	Background
	Dynamic nodeID based heterogeneity aware p2p
	Overview
	Dynamic nodeID
	NodeID transformation
	NodeID assignment – LBID
	NodeID assignment – LFID

	Lookup
	Data management
	Availability prediction
	Data replication set

	Update messages

	Performance evaluation
	Simulation setup
	Data maintenance traffic
	Lookup hops
	Control traffic
	Load balance

	Conclusions
	References

