
Chapter 5

Arrays

Copyright © 2016 Pearson, Inc.
All rights reserved.

Learning Objectives

• Introduction to Arrays
– Declaring and referencing arrays

– For-loops and arrays

– Arrays in memory

• Arrays in Functions
– Arrays as function arguments, return values

• Programming with Arrays
– Partially Filled Arrays, searching, sorting

• Multidimensional Arrays

5-2Copyright © 2016 Pearson Inc. All rights reserved.

Introduction to Arrays

• Array definition:
– A collection of data of same type

• First "aggregate" data type
– Means "grouping"

– int, float, double, char are simple data types

• Used for lists of like items
– Test scores, temperatures, names, etc.

– Avoids declaring multiple simple variables

– Can manipulate "list" as one entity

5-3Copyright © 2016 Pearson Inc. All rights reserved.

Declaring Arrays

• Declare the array allocates memory
int score[5];
– Declares array of 5 integers named "score"

– Similar to declaring five variables:
int score[0], score[1], score[2], score[3], score[4]

• Individual parts called many things:
– Indexed or subscripted variables

– "Elements" of the array

– Value in brackets called index or subscript
• Numbered from 0 to size - 1

5-4Copyright © 2016 Pearson Inc. All rights reserved.

Accessing Arrays

• Access using index/subscript
– cout << score[3];

• Note two uses of brackets:
– In declaration, specifies SIZE of array

– Anywhere else, specifies a subscript

• Size, subscript need not be literal
– int score[MAX_SCORES];

– score[n+1] = 99;
• If n is 2, identical to: score[3]

5-5Copyright © 2016 Pearson Inc. All rights reserved.

Array Usage

• Powerful storage mechanism

• Can issue command like:

– "Do this to ith indexed variable"
where i is computed by program

– "Display all elements of array score"

– "Fill elements of array score from user input"

– "Find highest value in array score"

– "Find lowest value in array score"

5-6Copyright © 2016 Pearson Inc. All rights reserved.

Array Program Example:
Display 5.1 Program Using an Array (1 of 2)

5-7Copyright © 2016 Pearson Inc. All rights reserved.

Array Program Example:
Display 5.1 Program Using an Array (2 of 2)

5-8Copyright © 2016 Pearson Inc. All rights reserved.

for-loops with Arrays

• Natural counting loop
– Naturally works well "counting through" elements

of an array

• Example:
for (idx = 0; idx<5; idx++)
{

cout << score[idx] << "off by "
<< max – score[idx] << endl;

}
– Loop control variable (idx) counts from 0 – 5

5-9Copyright © 2016 Pearson Inc. All rights reserved.

Major Array Pitfall

• Array indexes always start with zero!

• Zero is "first" number to computer
scientists

• C++ will "let" you go beyond range

– Unpredictable results

– Compiler will not detect these errors!

• Up to programmer to "stay in range"

5-10Copyright © 2016 Pearson Inc. All rights reserved.

Major Array Pitfall Example

• Indexes range from 0 to (array_size – 1)

– Example:
double temperature[24]; // 24 is array size
// Declares array of 24 double values called
temperature
• They are indexed as:

temperature[0], temperature[1] … temperature[23]

– Common mistake:
temperature[24] = 5;
• Index 24 is "out of range"!

• No warning, possibly disastrous results

5-11Copyright © 2016 Pearson Inc. All rights reserved.

Defined Constant as Array Size

• Always use defined/named constant for
array size

• Example:
const int NUMBER_OF_STUDENTS = 5;
int score[NUMBER_OF_STUDENTS];

• Improves readability

• Improves versatility

• Improves maintainability

5-12Copyright © 2016 Pearson Inc. All rights reserved.

Uses of Defined Constant

• Use everywhere size of array is needed
– In for-loop for traversal:

for (idx = 0; idx < NUMBER_OF_STUDENTS; idx++)
{

// Manipulate array
}

– In calculations involving size:
lastIndex = (NUMBER_OF_STUDENTS – 1);

– When passing array to functions (later)

• If size changes requires only ONE change in
program!

5-13Copyright © 2016 Pearson Inc. All rights reserved.

Ranged-Based For Loop
• The C++11 ranged-based for loop makes it

easy to iterate over each element in a loop

• Format

• Example

5-14Copyright © 2016 Pearson Inc. All rights reserved.

for (datatype varname : array)
{

// varname is set to each successive
// element in the array

}

int arr[] = {20, 30, 40, 50};

for (int x : arr)

cout << x << " ";

cout << endl;

Output: 20 30 40 50

Arrays in Memory

• Recall simple variables:
– Allocated memory in an "address"

• Array declarations allocate memory for
entire array

• Sequentially-allocated
– Means addresses allocated "back-to-back"

– Allows indexing calculations
• Simple "addition" from array beginning (index 0)

5-15Copyright © 2016 Pearson Inc. All rights reserved.

An Array in Memory

5-16Copyright © 2016 Pearson Inc. All rights reserved.

Initializing Arrays

• As simple variables can be initialized at
declaration:
int price = 0; // 0 is initial value

• Arrays can as well:
int children[3] = {2, 12, 1};

– Equivalent to following:
int children[3];
children[0] = 2;
children[1] = 12;
children[2] = 1;

5-17Copyright © 2016 Pearson Inc. All rights reserved.

Auto-Initializing Arrays

• If fewer values than size supplied:
– Fills from beginning

– Fills "rest" with zero of array base type

• If array-size is left out
– Declares array with size required based on

number of initialization values

– Example:
int b[] = {5, 12, 11};
• Allocates array b to size 3

5-18Copyright © 2016 Pearson Inc. All rights reserved.

Arrays in Functions

• As arguments to functions
– Indexed variables

• An individual "element" of an array can be
function parameter

– Entire arrays
• All array elements can be passed as

"one entity"

• As return value from function
– Can be done chapter 10

5-19Copyright © 2016 Pearson Inc. All rights reserved.

Indexed Variables as Arguments

• Indexed variable handled same as simple
variable of array base type

• Given this function declaration:
void myFunction(double par1);

• And these declarations:
int i; double n, a[10];

• Can make these function calls:
myFunction(i); // i is converted to double
myFunction(a[3]); // a[3] is double
myFunction(n); // n is double

5-20Copyright © 2016 Pearson Inc. All rights reserved.

Subtlety of Indexing

• Consider:
myFunction(a[i]);

– Value of i is determined first

• It determines which indexed variable is sent

– myFunction(a[i*5]);

– Perfectly legal, from compiler’s view

– Programmer responsible for staying
"in-bounds" of array

5-21Copyright © 2016 Pearson Inc. All rights reserved.

Entire Arrays as Arguments

• Formal parameter can be entire array

– Argument then passed in function call
is array name

– Called "array parameter"

• Send size of array as well

– Typically done as second parameter

– Simple int type formal parameter

5-22Copyright © 2016 Pearson Inc. All rights reserved.

Entire Array as Argument Example:
Display 5.3 Function with an Array Parameter

5-23Copyright © 2016 Pearson Inc. All rights reserved.

Entire Array as Argument Example

• Given previous example:

• In some main() function definition,
consider this calls:

int score[5], numberOfScores = 5;
fillup(score, numberOfScores);

– 1st argument is entire array

– 2nd argument is integer value

– Note no brackets in array argument!

5-24Copyright © 2016 Pearson Inc. All rights reserved.

Array as Argument: How?

• What’s really passed?

• Think of array as 3 "pieces"

– Address of first indexed variable (arrName[0])

– Array base type

– Size of array

• Only 1st piece is passed!

– Just the beginning address of array

– Very similar to "pass-by-reference"

5-25Copyright © 2016 Pearson Inc. All rights reserved.

Array Parameters

• May seem strange
– No brackets in array argument

– Must send size separately

• One nice property:
– Can use SAME function to fill any size array!

– Exemplifies "re-use" properties of functions

– Example:
int score[5], time[10];
fillUp(score, 5);
fillUp(time, 10);

5-26Copyright © 2016 Pearson Inc. All rights reserved.

The const Parameter Modifier

• Recall: array parameter actually passes
address of 1st element
– Similar to pass-by-reference

• Function can then modify array!
– Often desirable, sometimes not!

• Protect array contents from modification
– Use "const" modifier before array parameter

• Called "constant array parameter"

• Tells compiler to "not allow" modifications

5-27Copyright © 2016 Pearson Inc. All rights reserved.

Functions that Return an Array

• Functions cannot return arrays same way
simple types are returned

• Requires use of a "pointer"

• Will be discussed in chapter 10…

5-28Copyright © 2016 Pearson Inc. All rights reserved.

Programming with Arrays

• Plenty of uses

– Partially-filled arrays

• Must be declared some "max size"

– Sorting

– Searching

5-29Copyright © 2016 Pearson Inc. All rights reserved.

Partially-filled Arrays

• Difficult to know exact array size needed

• Must declare to be largest possible size

– Must then keep "track" of valid data in array

– Additional "tracking" variable needed

• int numberUsed;

• Tracks current number of elements in array

5-30Copyright © 2016 Pearson Inc. All rights reserved.

Partially-filled Arrays Example:
Display 5.5 Partially Filled Array (1 of 5)

5-31Copyright © 2016 Pearson Inc. All rights reserved.

Partially-filled Arrays Example:
Display 5.5 Partially Filled Array (2 of 5)

5-32Copyright © 2016 Pearson Inc. All rights reserved.

Partially-filled Arrays Example:
Display 5.5 Partially Filled Array (3 of 5)

5-33Copyright © 2016 Pearson Inc. All rights reserved.

Partially-filled Arrays Example:
Display 5.5 Partially Filled Array (4 of 5)

5-34Copyright © 2016 Pearson Inc. All rights reserved.

Partially-filled Arrays Example:
Display 5.5 Partially Filled Array (5 of 5)

5-35Copyright © 2016 Pearson Inc. All rights reserved.

Global Constants vs. Parameters

• Constants typically made "global"
– Declared above main()

• Functions then have scope to array
size constant
– No need to send as parameter then?

• Technically yes

– Why should we anyway?
• Function definition might be in separate file

• Function might be used by other programs!

5-36Copyright © 2016 Pearson Inc. All rights reserved.

Searching an Array

• Very typical use of arrays

• Display 5.6 next slide

5-37Copyright © 2016 Pearson Inc. All rights reserved.

Display 5.6
Searching an Array (1 of 4)

5-38Copyright © 2016 Pearson Inc. All rights reserved.

Display 5.6
Searching an Array (2 of 4)

5-39Copyright © 2016 Pearson Inc. All rights reserved.

Display 5.6
Searching an Array (3 of 4)

5-40Copyright © 2016 Pearson Inc. All rights reserved.

Display 5.6
Searching an Array (4 of 4)

5-41Copyright © 2016 Pearson Inc. All rights reserved.

Sorting an Array:
Display 5.7 Selection Short

• Selection Sort Algorithm

5-42Copyright © 2016 Pearson Inc. All rights reserved.

Sorting an Array Example:
Display 5.8 Sorting an Array (1 of 4)

5-43Copyright © 2016 Pearson Inc. All rights reserved.

Sorting an Array Example:
Display 5.8 Sorting an Array (2 of 4)

5-44Copyright © 2016 Pearson Inc. All rights reserved.

Sorting an Array Example:
Display 5.8 Sorting an Array (3 of 4)

5-45Copyright © 2016 Pearson Inc. All rights reserved.

Sorting an Array Example:
Display 5.8 Sorting an Array (4 of 4)

5-46Copyright © 2016 Pearson Inc. All rights reserved.

Multidimensional Arrays

• Arrays with more than one index
– char page[30][100];

• Two indexes: An "array of arrays"

• Visualize as:
page[0][0], page[0][1], …, page[0][99]
page[1][0], page[1][1], …, page[1][99]
…
page[29][0], page[29][1], …, page[29][99]

• C++ allows any number of indexes
– Typically no more than two

5-47Copyright © 2016 Pearson Inc. All rights reserved.

Multidimensional Array Parameters

• Similar to one-dimensional array
– 1st dimension size not given

• Provided as second parameter

– 2nd dimension size IS given

• Example:
void DisplayPage(const char p[][100], int sizeDimension1)
{

for (int index1=0; index1<sizeDimension1; index1++)
{

for (int index2=0; index2 < 100; index2++)
cout << p[index1][index2];

cout << endl;
}

}

5-48Copyright © 2016 Pearson Inc. All rights reserved.

Summary 1

• Array is collection of "same type" data

• Indexed variables of array used just like
any other simple variables

• for-loop "natural" way to traverse arrays

• Programmer responsible for staying
"in bounds" of array

• Array parameter is "new" kind
– Similar to call-by-reference

5-49Copyright © 2016 Pearson Inc. All rights reserved.

Summary 2

• Array elements stored sequentially

– "Contiguous" portion of memory

– Only address of 1st element is passed to functions

• Partially-filled arrays more tracking

• Constant array parameters

– Prevent modification of array contents

• Multidimensional arrays

– Create "array of arrays"

5-50Copyright © 2016 Pearson Inc. All rights reserved.

