
A Survey of Static Program Analysis Techniques

Wolfgang Wögerer

Technische Universität Wien

October 18, 2005

Abstract

Computer program analysis is the process of automatically analysing
the bahavior of computer programs. There are two main approaches in
progam analysis: static program analysis and dynamic program analysis.
In static analysis the programs are not executed but are analysed by tools
to produce useful information. Static analysis techniques range from the
most mundane (statistics on the density of comments, for instance) to the
more complex, semantics-based analysis techniques. This text will give
an overview of the more complex static program analysis techniques.

The main applications of program analysis are program optimization
and program correctness. As far as correctness is concerned there is made
a distinction between total correctness, where it is additionally required
that the algorithm terminates, and partial correctness, which simply re-
quires that if an answer is returned it will be correct. Since there is no
general solution to the halting problem, a total correctness assertion is not
solvable in general. In pratice the main goal is to use program analysis
technology to build tools for validating industrial-sized software. How-
ever, two results of the theoretical computer science, namely the Rice’s
theorem [3] and the undecideabillity of the Halting Problem1 [7] , show the
limit of analysis methods. Generally precise program analysis methods are
in exaustive need and processing time and/or memory space. Therefore
the degree of precision must be determined application specific. Especially
abstract interpretation offers good possibillities to handle this trade-off
between precision and scalability.

In the following I will go deeper into the following topics:

• data flow analysis

• abstract interpretation

• symbolic analysis

1The undecidablity of the Halting Problem was proved by Alan Turing for the Turing Ma-
chine, which has unlimited memory. The proof uses this infinity to show that there can always
be found one program where the algorithm in question cannot decide whether the program
halts or not. Real computers do not have unlimited memory. Therefore, striktly speaking,
the Halting Problem argument may not be used here. In this article, the undecideabillity of
the Halting Problem shall represent the intractalbe problem of deciding whether a program
on a real machine terminates.

1

1 Data Flow Analysis

Data flow analysis is a process for collecting run-time information about data in
programs without actually executing them. Data flow anlaysis however does not
make use of semenatics of operators. The semantics of the program language
syntax is, however, implicity captured in the rules of the algorithms.

There are some common used terms when talking about data flow analysis
that I want to define before going into details:

basic block: A basic block B is a sequence of consecutive instructions such
that

1. control enters B only at its beginning;

2. control leaves B only at its end (under normal execution); and

3. control cannot halt or brach out of B except at its end

This implies that if any instruction in a basic block B is executed then all in-
struction in B are executed.

control flow graph: A control flow graph is an abstract representation of
a (procedure or) program. Each node in the graph represents a basic block.
Directed edges are used to represent jumps in the control flow. If a block has
no incoming edge it is called an entry block, and if a block has no outgoing edge
it is called an exit block.

control flow path: A control flow path is a path in the control flow graph
that starts at an entry block and ends at an exit block. Normally, there extists
more that one possible control flow paths, often the number of possible con-
trol flow paths is infinite because of the unpredictabillity of some loop bounds.
One major task of the worst-case execution time analysis is to find the longest
possible control flow path.

Data flow analysis is performed in two steps. In the first step so called gen/kill
algorithms are used to collect the desired facts. The facts to be collected depend
on the kind of data flow analysis in question. Gen/kill algorithms are very
efficient because they just need one pass over the source code that is to be
analysed and the only thing that those algorithms do is to check every statement
if one or some of the variables in this statement should be added to the gen
(generate) set or the kill set. The condition for adding variables to those set
also depends on the kind of data flow analysis. The output of the gen/kill
algorithm are n gen set and n kill sets where n is the number of statements
in the program. These sets are then used in the second set of the data flow
analysis, the setting up and solving of equations.

When it comes to setting up the equations we can distinguish between forward
analysis and backward analysis. In forward analysis the equations are set up in
way that the information is transferred from the inital statements to the final
statments, in backward analysis the information is transferred from the final

2

statments to the initial statements. To make this concrete in forward analysis
the equations are set up according to the following scheme:

entry! =
{

∅ if ! is an initial statement⋃
exit!′ where !′ is a ancestor statement of !

exit! = entry! \ kill! ∪ gen!

And in backward analysis the equations are set up as follows:

entry! = exit! \ kill! ∪ gen!

exit! =
{

∅ if ! is an final statement⋃
entry!′ where !′ is a ancestor statement of !

Whether forward or backward analysis needs be used is given by the problem.
Details can be found in [4].

We can apply data flow analysis for,amongst others, the following applications:

Available Expression Analysis (forward analysis): Here we are interested
in expressions that are computed in more than one place in the program. If the
expression, e.g. x op y, has been computed and there are no intervening kills
of x and y, then the expression x op y may be substituted with the previous
computation.

Reaching Definitions Analysis (forward analysis): The aim is here to deter-
mine for each program point which assignments may have been made and not
overwritten when program execution reaches this point along some path. That
way for example definitions can be found that are never used.

Very Busy Expression Analysis (backward analysis): We want to know
for every exit of a basic block the expressions that, no matter what path is
taken, are used. If the variables of the expression do not change until each
usage then the expression is called busy and compiler can produce the code for
evaluating that expression just once.

Live Variable Analysis (backward analysis): We want to know for variable
v of location p in a program whether the value of v at a previous location p′

could be used along some path in the flow graph starting at p. If so, we say
v is live at p′; otherwise v is dead at p′. This information is used for register
allocation, e.g., after a value is computed in a register and it is dead at the end
of the block, then it is not necessary to store that value.

Assume we have the following program and want to determine the live vari-
ables (the program language used is called WHILE and is defined in [5]):

[x:=2]1 ; [y:=4]2 ; [x:=1]3 ; (if [y>x]4 then [z:=y]5 else
[z:=y*y]6) ; [x:=z]7

3

The rule the produce the gen set: If statement ! is an assignment then gen!

consists of all variables of the right hand side. If the statement is a condition
that gen! consists of all varibles of that condition. Otherwise the set is empty.

The rule the produce the kill set: If statement ! is an assignment then kill!
consists of the variable in the left hand side, otherwise the set is empty.

We therefore get the following sets:

! kill! gen!

1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {x,y}
5 {z} {y}
6 {z} {y}
7 {x} {z}

Applying the equation scheme for backward analysis we get the following equa-
tions:

entry1 = exit1 \ {x} exit1 = entry2

entry2 = exit2 \ {y} exit2 = entry3

entry3 = exit3 \ {x} exit3 = entry4

entry4 = exit4 ∪ {x,y} exit4 = entry5 ∪ entry6

entry5 = (exit5 \ {z}) ∪ {y} exit5 = entry7

entry6 = (exit6 \ {z}) ∪ {y} exit6 = entry7

entry7 = {z} exit7 = ∅

Solving this equations is pretty easy since we just need to iteratively replace
the sets that do not depend on other equations. So, we can replace the term
entry7 in the equation of exit6 and exit5. Then we can replace the term exit6
in the equation of entry6, then exit6 in entry4, and so on. This will result in
the following solution of the live variable analysis:

entry1 = ∅ exit1 = ∅
entry2 = ∅ exit2 = {y}
entry3 = {y} exit3 = {x,y}
entry4 = {x,y} exit4 = {y}
entry5 = {y} exit5 = {z}
entry6 = {y} exit6 = {z}
entry7 = {z} exit7 = ∅

However, solving the equations is not generally as easy as that, as the follow-
ing example illustrates:

The program

(while [x>1]1 do [skip]2) [x:=x+1]3

4

leads to the equations

entry1 = exit1 ∪ {x} exit1 = entry2 ∪ entry3

entry2 = exit2 exit2 = entry1

entry3 = {x} exit3= ∅

Now, this replacing procedure of the example above does not work anymore
because there are too much dependencies within the equations. By continually
replacing terms we would end up stuck with equations like:

entry1 = entry1 ∪ {x} exit1 = entry2 ∪ entry3

entry2 = entry2 ∪ {x} exit2 = entry1

entry3 = {x} exit3 = ∅

In fact by replacing in our first solution the set {x} by any superset of {x}
is a solution to the equation system. What we are looking for, however, is the
smallest soluation. One way to solve that problem is to find an algorithm that
uses fixpoint construction, i.e. an algorithm that iteratively approximates the
smallest solution until the smallest solution is found. This algorithm needs to
fulfill two properties:

1. the solution found is really the smallest solution and

2. the algorithm always terminates.

The MFP (minimum fixed point) algorithm described in [4] fulfills both prop-
erties. It actually does not use the equations themselves to find a solution but
the rules to construct those equations. The algorithm starts at the first state-
ment of the program and produces the gen/kill sets. It then analysis the next
statement where the produces gen/kill sets of the previous statements are trans-
ferred as an input. These gen/kill sets are now being altered according to the
statement in question and are then forwarded to the next statement. In case of
an if clause both branches are analysed seperately, where of course both get the
same gen/kill sets as input. At the end of the branch the two sets are merged
(analogously to construct an entry set with more that one immediate ancestor
statements). In case of loops, this is where the fixed points come in, the loops
are iteratively run through until the gen/kill sets do not change anymore.

Data flow analysis is a very efficent and feasable way of program analysis
and is mainly used in compilers to create optimised code. For the purpose of
detecting possible runtime errors or the calculation of the wort-case execution
time of a program it is however not powerful enough. Many interesting pieces
of information cannot be gatherd because data flow analysis does not make use
of the semantic of the programming language’s operators.

5

2 Abstract Interpretation

Abstract interpretation is a theory of semantics approximation. The idea of
abstract interpretation is to create a new semantic of the programming language
so that the semantic always terminates and the store for every program points
contains a superset of the values that are possible in the actual semantic, for
every possible input. Since in this new semantic a store does not contain a single
value for a variable but a set (or interval) of possible values, the evaluation of
boolean and arithmetic expressions must be redefined.

To make this method more feasable usually an abstract value domain is also
defined. Therefore two functions need to be defined, one for mapping a concrete
value to an (or a set of) abstract value(s) and one to map an abstract value to
a (or set of) concrete values. It is obvious that by using an abstract domain
information gets lost. But even without using an abstract domain information
gets lost because the new semantic needs to always terminate. Loops in the
new semantic must have a heuristic that determines when to set all variables
in question to the value ”all values possible”. But there could have been a
fixpoint in that loop would have been more precise. The framework of abstract
interpretation was intrduced by Patrick Cousot and Radhia Cousot in [1]. Using
this mathematical framework (together with its restrictions as to always use
a lattice as abstract domain) it is relatively easy to logically show that the
new semantic terminates and always gives a correct abstraction of the actual
semantic.

Using that abstract semantics one can detect some possible semantic errors,
like division by zero. We can also use that technique to verify that a program
returns results within a certain range (if the program terminates! - this can
of course not be proven since that problem is equivalent to the Halting Prob-
lem [7]).

In the following I will define an abstract semantic for the WHILE language
(as defined in [5]). It is assumed that just variables with integer values are used
and the abstract value domain is based on intervals.

The value domain is normally the most important desing issue when it comes
th construction an abstract interpretation because it naturally greatly influences
the other parts of the semantic. There are however some restrictions. The value
domain must form a partially ordered set and need to support the greatest lower
bound operator and the least upper bound operator for each tuple of the value
domain. Also it must contain a least element and a top element. There must
also exist a monotone function γ : D̃ → D, called concretisation function, that
transforms an item of the abstract domain to the concrete domain, and there
must be a second monotone function α : D → D̃ that performs the transfor-
mation in the opposite direction. In general γ is not the inverse function of α,
since α uses some abstraction. Here is an example: Let v ∈ D = {1, 2, 7, 8} then
γ(v) = [1..8] and α([1..8]) = {1, 2, 3, 4, 5, 6, 7, 8}.

The formal definition of our concrete and abstract value domain is

6

D = P(N | maxint < n < minint, n ∈ N) ∪ ⊥ ∪ &
D̃ = {[l..u] | l, u ∈ N and minint ≤ l, u ≤ maxint and l ≤ u} ∪⊥ int ∪ &int

where ⊥ and ⊥int represent a not initialized variable value and & and &int

represent all possible values including the error value.

Both the abstract domain and the concrete domain need to be a partially
ordered set with a least element and a top element. The ordering is defined as

v1 (v2 ⇐⇒ v1 ⊂ v2

⊥ (v ∀ v ∈ D
v (& ∀ v ∈ D

[l1, u1] (int [l2, u2] ⇐⇒ l1 ≤ l2 and u1 ≤ u2

⊥int (ṽ ∀ ṽ ∈ D̃
ṽ (&int ∀ ṽ ∈ D̃

The greates lowest bound operators are definded as

v - & = & - v = v
v1 - v2 = v1 ∩ v2

v - ⊥ = ⊥ - v = ⊥

ṽ -int&int = &int -int ṽ = ṽ

[l1..u1] -int [l2..u2] =
{

[max(l1, l2)..min(u1, u2)] if max(l1, l2) ≤ min(u1, u2)
⊥int if max(l1, l2) < min(u1, u2)

ṽ -int ⊥int = ⊥int -int ṽ = ⊥int

The least upper bound operators are definded as

v / & = & / v = &
v1 / v2 = v1 ∪ v2

v / ⊥ = ⊥ / v = ⊥

ṽ /int&int = &int /int ṽ = &int

[l1..u1] /int [l2..u2] = [min(l1, l2)..max(u1, u2)]
ṽ /int ⊥int = ⊥int /int ṽ = ṽ

The arthmetic operators of the WHILE language are now redefined as

&int op ṽ = ṽ op &int = &int if op ∈ {+̃, −̃, ∗̃, /̃}, for any value ṽ 2= ⊥int

[l1..u1] +̃ [l2..u2] =
{

[l1 + l2..u1 + u2] if minint ≤ (l1 + l2), (u1 + u2) ≤ maxint
&int otherwise

[l1..u1] −̃ [l2..u2] =
{

[l1 − l2..u1 − u2] if minint ≤ (l1 − u2), (u2 − l2) ≤ maxint
&int otherwise

7

[l1..u1] ∗̃ [l2..u2] =

[min(V)..max(V)] if minint ≤ min(V), max(V) ≤ maxint
where V = {l1 ∗ l2, l1 ∗ u2, u1 ∗ l2, u1 ∗ u2}
&int otherwise

[l1..u1] /̃ [l2..u2] =

[min(V)..max(V)] if minint ≤ min(V), max(V) ≤ maxint
and (u2 < 0 or l2 > 0) where V = {l1/l2, l1/u2, u1/l2, u1/u2}
&int otherwise

⊥int op ṽ = ṽ op ⊥int = ⊥int if op ∈ {+̃, −̃, ∗̃, /̃}, for any value ṽ

As a next step the definition of evaluation of comparisions for <, >, >=, <=,
= are defined. When comparing sets it is possible that some combinations of
elements evaluate to true and others to false. In that case both branches that
follow the condition must be taken. At the location where both braches meet,
all variables have to be merged by calculation the least upper bound for each
variable pair.

When it comes to loops, the loop is iterated until the conditions evaluates to
false or the heuristic of the abstract semantic decides that no fixed point will be
found in acceptable time and sets all variables that can be changed in the loop
to the top element.

Abstract interpretation is a very powerful program analysis method. It uses
information on the programming language’s semantic and can detect possible
runtime errors, like division by zero or variable overflow. Since abstract inter-
pretation can be computationally very expensive it must be taken care choose
an appropriate value domain and appropiate heuristic for loop termination to
ensure feasabillity.

8

3 Symbolic Analysis

Symbolic analysis is a static analysis method for reasoning about program values
that may not be constant. It aims to derive a precise mathematical character-
isation of the computations and can be seen as a compiler that translates a
program into a different language whereas this language consists of symbolic
expressions and symbolic recurrences.

Computer algebra systems (such as Axiom, Derive, Macsyma, Maple, Math-
ematica, MuPAD, and Reduce) play an important role in supporting this tech-
nique since the quality of the final results depend significantly on smart algebraic
simplification methods.

The properties and the idea of symbolic analysis might be best illustrated
by an example. The following example shows a sequence of statements written
in some standard programming language. Below each statement there is the
program context for this statement. The result of an analysis is the program
context of all program’s exit points. The program context constist of tree parts:
The state (s), the state condition (t) and the path condition (p). The state
is a set of varialbe/value pairs whereas there is for each variable exacly one
value. Uninitialised values are denoted by ⊥ and the reading from a stream
is symbolized by ∇i. In programs without branches (like the example below)
just the state is of interest. The path condition and the state condtion will be
explained later.

!0: int a, b;
[s0 = {a = ⊥, b = ⊥}, t0 = true, p0 = true]

!1 : read(a);
[s1 = {a = ∇1, b = ⊥}, t1 = true, p1 = true]

!2 : read(b);
[s2 = {a = ∇1, b = ∇2}, t2 = true, p2 = true]

!3 : a = a + b;
[s3 = {a = ∇1 +∇2, b = ∇2}, t3 = true, p3 = true]

!4 : b = a− b;
[s4 = {a = ∇1 +∇2, b = (∇1 +∇2)−∇2}, t4 = true, p4 = true]

!5 : a = a− b;
[s5 = {a = (∇1 +∇2)− ((∇1 +∇2)−∇2), b = (∇1 +∇2)−∇2},
t5 = true, p5 = true]

Example 1.1: simple symbolic analysis

As mentioned above the result of the analysis is given by the program contexts
of the program’s exit points. In the example above this comes down to the state
s5. However without simplifying the algebraic expressions of the two state
variables a and b there will be no useful information. Therefore, let’s now
simplify:

9

a = (∇1 +∇2)− ((∇1 +∇2)−∇2)
= ∇1 +∇2 −∇1 −∇2 +∇2

= ∇2

b = (∇1 +∇2)−∇2

= ∇1 +∇2 −∇2

= ∇1

Therefore, the analysis shows that the program above does nothing else then
to assign the first input to varialbe b and the second input to variable a.

Let’s now take a look at a program that contains conditional statements:

10

!0: int a, b;
[s0 = {a = ⊥, b = ⊥}, t0 = true, p0 = true]

!1 : read(a);
[s1 = {a = ∇1, b = ⊥}, t1 = t0, p1 = p0]

!2 : if(a < 0){
[s2 = s1, t2 = t1, p2 = (p1 ∧∇1 < 0)]

!3 : b = −2 ∗ a;
[s3 = δ(s2; b = −2 ∗ ∇1), t3 = t2, p3 = p2]

!4 : a = −b;
[s4 = δ(s3; a = 2 ∗ ∇1), t4 = t3, p4 = p3]

!5 : } else {
[s5 = s1, t5 = t1, p5 = (p1 ∧∇1 ! 0)]

!6 : b = 2 ∗ a;
[s6 = δ(s5; b = 2 ∗ ∇1), t6 = t5, p6 = p5]

!7 : }
[s7 = δ(s1; a = ã, b = b̃),
t7 = γ(∇1 < 0; ã = 2 ∗ ∇1, b̃ = −2 ∗ ∇1; ã = ∇1, b̃ = 2 ∗ ∇1),
p7 = p4 ∧ p6]

!8 : if(a >= 0){
[s8 = s7, t8 = t7, p8 = p7 ∧∇1 > 0] =
[s′8 = {a = ∇1, b = 2 ∗ ∇1}, t′8 = true, p′8 = ∇1 < 0]

!9 : a = 2 ∗ a;
[s9 = δ(s′8; a = 2 ∗ ∇1), t9 = t′8, p9 = p′8]

!10 : }
[s10 = δ(s7; a = 2 ∗ ∇1),
t10 = γ(∇1 < 0; b̃ = −2 ∗ ∇1; b̃ = 2 ∗ ∇1),
p10 = true]

introduced functions:
δ ... this function is used to avoid writing the whole set of variables each time.

It states that that resulting set is equal to the first parameter except the
variable/value pairs in the second parameter.

γ ... this function consists of three parameters. This first paramter is a condition.
This condition determines whether the list of variable/value-pairs in the
second or the third parameter shall be true. More formally:
γ(cnd;x1 = e1, ..., xk = ek;x1 = f1, ..., xk = fk) =
(cnd ∧ x1 = e1 ∧ ... ∧ xk = ek) ∨ (¬cnd ∧ x1 = f1 ∧ ... ∧ xk = fk)

Example 1.2: symbolic analysis with conditional statements

This example illustrates the use of the state condition (t) and the path
condition (p). The state condition is a logic formula for describing assumptions
about the variable values. These assuptions can either result from the preceding
pramming instructions (p. e. in !7 the state of variable a equals 2∗∇1 assuming
we took the if-branch in !2) or the assumptions can be brought in from “outside”
(i. e. by the person analysing the programing), p. e. in the upcoming example
about loops we assume that variable b is greater than zero when entering !1.

11

The path condition is a logic formula that codes the condition that this pro-
gram point is reached. If we find a contradiction in a path condition, we have
found dead code. One now might think that a program point k with pk = true
will be reached in any case. While this is true for our model, it is not always
true in reality. An overflow of an integer variable for example could make our
prgram crash. When “compiling” our programming language source code to our
model of symbolic analysis we loose some implementation details.

We could use the result from the example above to optimize the program.
Since the only exit point in the program context of !10 we can now retransform
this program context to our source programming language:

!1 : read(a);
!2 : a = 2 ∗ a;
!3 : if(a < 0){
!4 : b = −a;
!5 : } else {
!6 : b = a;
!7 : }

The quality of symbolic analysis depends critically on the ability to analyse
loops. The following example should on the one hand illustrate the power of
symbolic analysis what precision is concerned. On the other hand the example
should give an idea of the difficulties in achiving this precision:

[s0 = {a = ã, b = b̃, c = ∇1, d = d̃},
t0 = (ã > 0 ∧ b̃ > 0 ∧ d̃ > 0),
p0 = true]

!1 : while(a < b){
[s1 = {a = a, b = b̃, c = c, d = d̃}, t1 = t0, p1 = a " b]

!2 : c = 2 ∗ c;
[s2 = δ(s1; c = 2 ∗ c), t2 = t1, p2 = p1]

!3 : a = a + d;
[s3 = δ(s2; a = a + d;), t3 = t2, p3 = p2]

!4 : }
[s4 = δ(s0; a = µ(a, s0, [s3, t3, p3)]), c = µ(c, s0, [s3, t3, p3])),
t4 = t0, p4 = p0] =

[s′4 = δ(s0; a = d ∗ 6 b+1
d 7, c = ∇1 ∗ 2"

b+1
d #−1),

t′4 = t4, p′4 = p4]

introduced functions:
µ(v, s, c) . . . is the recurrence function. v is the variable we want

to find a closed form for. s is the state that contains the
initial values. c is the program context of the last statement
within the loop.

Example 1.3: symbolic analysis and loops

12

The underlined variables are loop variants, i. e. they may be different per
iteration. One way to find a closed form for this loop is to reformulate the
loop as an mathematical recursion. We therefore get rid of all loop variants.
Instead we get indexed variables and their corresponding recursion formulas.
By intelligently transforming these recursion formulas we can find the closed
form.

Both tasks, i. e. the transformation of the loop to an recursion and the
seach for an closed form for the recursion, are tough tasks whereof detailed
explaination is beyond scope of this article. To give an impression how the
loop problem can be approached concretly I will give a solution for the above
example. Let us assume that we have found an algorithm that can transform
the loop to the recursion formulae (1) to (4).

a(0) = b (1)

a(k + 1) = a(k) + d, k ! 0 (2)

c(0) = ∇1 (3)

c(k + 1) = 2 ∗ c(k), k ! 0 (4)

Because of the simplicity of the example we can intiutively find the transfor-
mations for the closed forms. Let’s first consider variable a. In each recursion
step the only change to the previous value is the addition of b which is also the
starting value. We can therefore transform equation (1) und (2) to

a(k) = b ∗ (k + 1) (5)

Similary we can find the closed form for variable c. Its value is doubled each
step. And its starting value is ∇1. We can therefore transform (3) and (4) to

c(k) = ∇1 ∗ 2k (6)

The next step is now to find the last iteration. With a(n) > b (recurrence con-
dition) the last iteration z can be determined

z = min{k|a(k) > b} (7)

= min{k|d ∗ (k + 1) > b} (8)

=
⌈

b + 1
d

⌉
− 1 (9)

by subistituting z for k in (5) and (6) we get

c = ∇1 ∗ 2"
b+1

d #−1 (10)

13

a = d ∗
⌈

b + 1
d

⌉
(11)

When used in optimizing compilers symbolic anlysis can lead to very good
results, both in the code size and in run-time behaviour. Symbolic analysis is
also applicable in worst-execution time analysis, since unpredictable loops can
be transformed in a predictable sequence. However, there are many loops that
cannot be transformed in a closed form.

14

4 Conclusion

Data flow analysis is a special type of program analysis that is typically based
on an abstract semantics of the program. Data flow analysis algorithms are
quite easy to construct and usually computationally feasable.

Abstract interpretation is a generic framework for the construction of program
analysis techniques. Every kind of program anlaysis can be seen as an instance
of abstract interpretation.

Symbolic analyis is a technique to derive precise characterisations of program
properties in a parameteric way.

15

References

[1] Patrick Cousot, Radhia Cousot. Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approximation
of fixpoints. In Conference Record of the Sixth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 238–
252, Los Angeles, California, 1977. ACM Press, New York.

[2] Jan Gustafsson. Analysing Execution-Time of Object-Oriented Programs
Using Abstract Interpretation. Uppsala University, 2000

[3] Moret, Bernard M. E.: The theory of computation. Addison-Wesley, 1998.
ISBN 0-201-25828-5

[4] Nielson, Flemming : Principles of program analysis. - Berlin [u.a.] :
Springer, 1999

[5] Hanne Riis Nielson and Flemming Nielson: Semantics with Applications:
A Formal Introduction, revised edition, 1999.

[6] Scholz, Bernhard : Symbolic analysis of programs and its applications, 2001

[7] Turing, A.M. 1936 : On Computable Numbers, with an Application to the
Entscheidungsproblem. Proceedings of the London Mathematical Society,
Series 2, 42 (1936-37), pp.230-265.

16

